Integrable Corners in the Space of Gukov-Witten Defects

Adam Chalabi, Niels Bohr Institute

Based on 2503.22598 with Charlotte Kristjansen and Chenliang Su

Danish QFT Meeting, Odense, 13 August 2025

N=4 SYM Theory

Simplest non-abelian gauge theory:

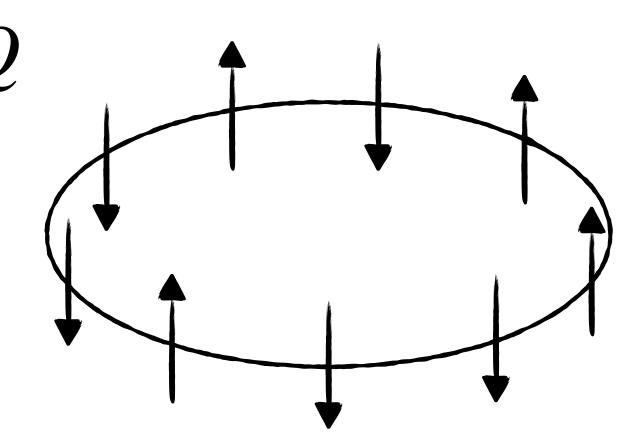
4d SU(N) N=4 super-Yang-Mills $= 1 \times A_{\mu}$, $4 \times$ Weyl ψ^A , $6 \times$ real ϕ^I

- $\beta(g_{YM}^2) = 0$ exactly
- Tractable even at strong coupling due to:

SUSY localisation, conformal bootstrap, AdS/CFT, ..., large-N integrability

Integrability in N=4 SYM Theory at Large-N

- Local operators ${
 m Tr} \; \phi^{I_1} {\cdots} \phi^{I_L}$ of the same engineering dimension L can mix
- ullet Diagonalise dilatation operator D to find good conformal operators
- Minahan-Zarembo '02: $D \leftrightarrow H$ Hamiltonian on a 1d spin chain
- ullet H is integrable \Longrightarrow \exists tower of conserved charges Q
- ullet H diagonalisable via Bethe ansatz



Closed Sub-sectors and Integrability

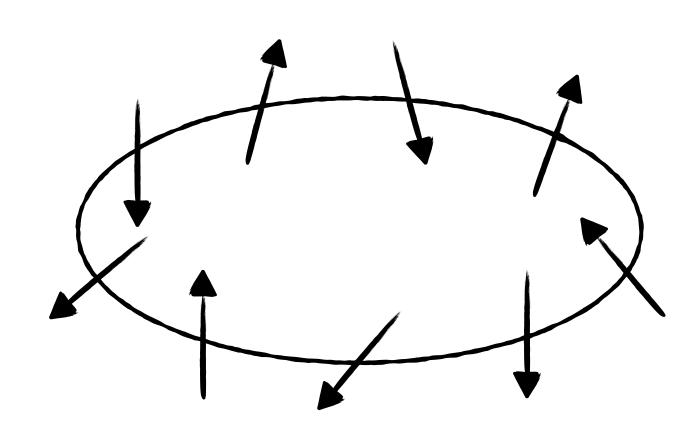
- N=4 SYM has 3 complex scalars $\{Z,Y,X\}$
- SU(2) sector: simplest closed sub-sector at 1-loop consists of $\{Z,Y\}$ only
- Heisenberg spin chain with identification $Z=|\downarrow\rangle$ and $Y=|\uparrow\rangle$

• E.g.
$$\operatorname{Tr} ZZYZZY \longleftrightarrow$$

• Eigenstates found by diagonalising Hamiltonian $H \propto \sum_{i=1}^{L} (1_{i,i+1} - P_{i,i+1})$

Closed Sub-sectors and Integrability

- SO(6) sector: $\{Z, Y, X, \bar{X}, \bar{Y}, \bar{Z}\}$
 - ----- each site in vector representation of so(6)
- SL(2) sector: $\{Z,DZ,D^2Z,\ldots\}$ where $D=D_t+D_x$ and $D_\mu=\partial_\mu+i[A_\mu,\bullet]$
 - ---- infinite-dimensional Hilbert space at each site
- Integrability extends to full N=4 SYM at large N



Defects in CFT

- In CFTs with defects, local operators acquire 1-pt functions $\langle \mathcal{O}_{\Delta} \rangle = \frac{a_{\mathcal{O}}}{r^{\Delta}}$
- Focus on defects described by singularity conditions,

e.g.
$$\phi^I = \frac{\omega^I}{r}$$
 + fluctuations

- Leading order 1-pt functions obtained by substituting classical part
- But operators mix!

Integrable Defects

• In spin chain picture, encode defect as boundary state

$$\langle \mathcal{B} | = \operatorname{tr} \left(\sum_{I=1}^{d} \omega^{I} \langle I | \right)^{\otimes L}$$

- 1-pt function of D-eigenstates $\langle \mathcal{O} \rangle \propto \langle \mathcal{B} \, | \, \mathbf{u} \rangle$

Specifies defect

Specifies \mathcal{O} via Bethe roots \mathbf{u} together with a choice of $\{Z,Y,X\}$

• Defect is integrable $\Longleftrightarrow Q^{\mathrm{odd}} | \mathscr{B} \rangle = 0$ and $\langle \mathscr{B} | \mathbf{u} \rangle$ has closed-form

Integrable Defects

• In spin chain picture, encode defect as boundary state

$$\langle \mathcal{B} | = \operatorname{tr} \left(\sum_{I=1}^{d} \omega^I \langle I | \right) \otimes L$$

$$\left(\frac{u_j + i/2}{u_j - i/2} \right)^L \prod_{k \neq j}^{N} \frac{u_j - u_k - i}{u_j - u_k + i} = 1$$
 • 1-pt function of D -eigenstates $\langle \mathcal{O} \rangle \propto \langle \mathcal{B} | \mathbf{u} \rangle$ Specifies \mathcal{O} via Bethe roots \mathbf{u} together with a choice of $\{Z, Y, X\}$

• Defect is integrable $\Longleftrightarrow Q^{\mathrm{odd}} | \mathscr{B} \rangle = 0$ and $\langle \mathscr{B} | \mathbf{u} \rangle$ has closed-form

Integrable 1/2-BPS Defects in N=4 SYM

Co-dim 1	Co-dim 2	Co-dim 3
D3-D5 system $\phi_i \to t_i^{(k)}/r$		1/2-BPS 't Hooft line \mathbb{R}^4 $\phi^I \to n^I/r$

[Bajnok, Buhl-Mortensen, de Leeuw, Gombor, Ipsen, Komatsu, Kristjansen, Linardopoulos, Wang, Wilhelm, Zarembo, ... '15 — today]

Integrable 1/2-BPS Defects in N=4 SYM

Co-dim 1	Co-dim 2	Co-dim 3
D3-D5 system $\phi_i \to t_i^{(k)}/r$		1/2-BPS 't Hooft line \mathbb{R}^4 $\phi^I \to n^I/r$

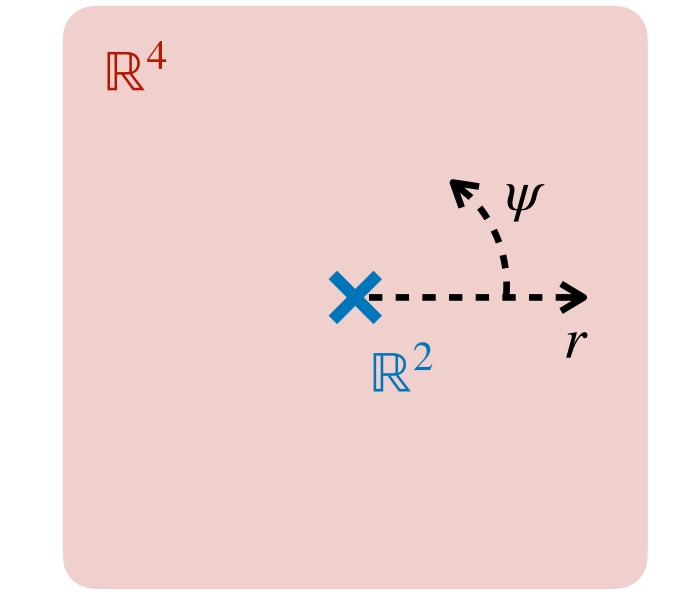
[Bajnok, Buhl-Mortensen, de Leeuw, Gombor, Ipsen, Komatsu, Kristjansen, Linardopoulos, Wang, Wilhelm, Zarembo, ... '15 — today]

Gukov-Witten Defects

- 2d N=(4,4) surface defects in 4d N=4 SYM come in two kinds
 - (1) Ordinary

$$A=\alpha\,d\psi$$
 and $\Phi=rac{e^{-i\psi}}{\sqrt{2}r}(\beta+i\gamma)$ diagonal matrices

$$A = \frac{t_3}{\log r} d\psi \text{ and } \Phi = \frac{e^{-i\psi}}{\sqrt{2}r\log r} (t_1 + it_2)$$

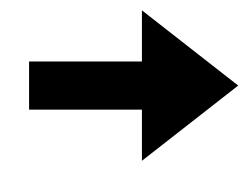


su(2) representation matrices

Gukov-Witten Defects

• 2d N=(4,4) surface defects in 4d N=4 SYM come in two kinds

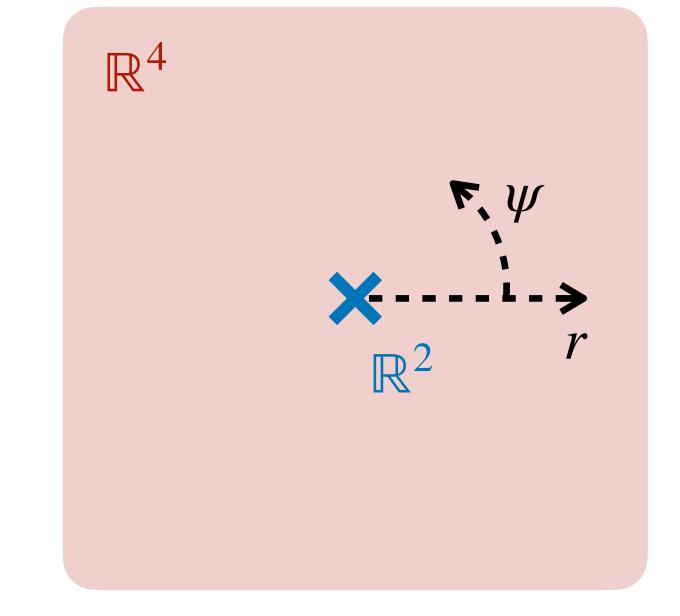
(1) Ordinary



$$A = \alpha \, d\psi \text{ and } \Phi = \frac{e^{-i\psi}}{\sqrt{2}r} (\beta + i\gamma)$$
diagonal matrices

(2) Rigid $(\alpha, \beta, \gamma \rightarrow 0)$

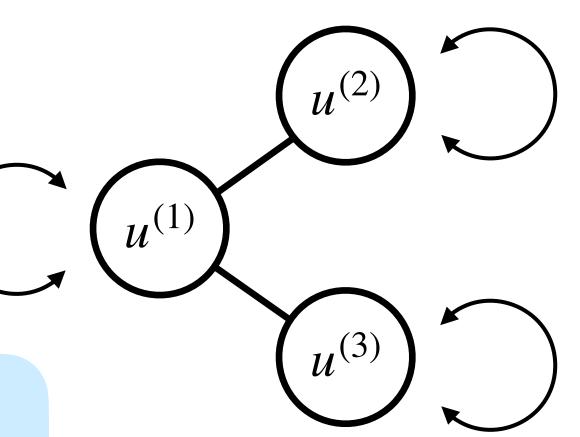
$$A = \frac{t_3}{\log r} d\psi \text{ and } \Phi = \frac{e^{-i\psi}}{\sqrt{2}r\log r} (t_1 + it_2)$$



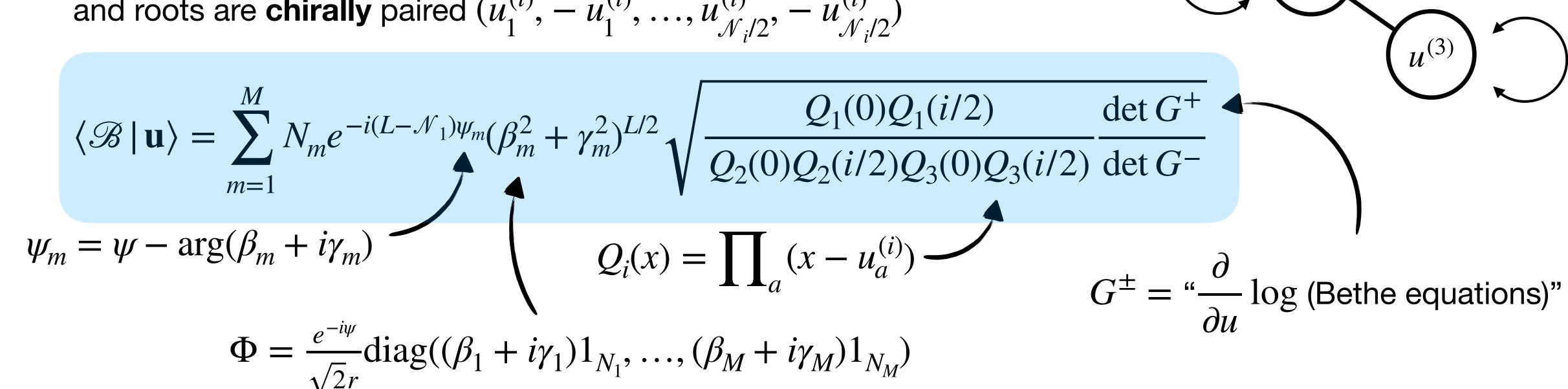
su(2) representation matrices

• SO(6) sector: $\langle \mathcal{B} \, | \, \mathbf{u} \rangle = 0$ unless number of Bethe roots $\mathcal{N}_1 = 2 \mathcal{N}_2 = 2 \mathcal{N}_3$ and roots are **chirally** paired $(u_1^{(i)}, -u_1^{(i)}, ..., u_{\mathcal{N},/2}^{(i)}, -u_{\mathcal{N},/2}^{(i)})$

$$\langle \mathcal{B} | \mathbf{u} \rangle = \sum_{m=1}^{M} N_m e^{-i(L-\mathcal{N}_1)\psi_m} (\beta_m^2 + \gamma_m^2)^{L/2} \sqrt{\frac{Q_1(0)Q_1(i/2)}{Q_2(0)Q_2(i/2)Q_3(0)Q_3(i/2)}} \frac{\det G^+}{\det G^-}$$



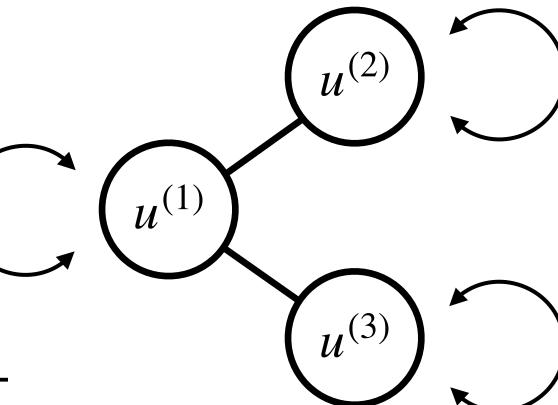
• SO(6) sector: $\langle \mathcal{B} \, | \, \mathbf{u} \rangle = 0$ unless number of Bethe roots $\mathcal{N}_1 = 2 \mathcal{N}_2 = 2 \mathcal{N}_3$ and roots are **chirally** paired $(u_1^{(i)}, -u_1^{(i)}, ..., u_{\mathcal{N}_i/2}^{(i)}, -u_{\mathcal{N}_i/2}^{(i)})$



• SO(6) sector: $\langle \mathcal{B} \, | \, \mathbf{u} \rangle = 0$ unless number of Bethe roots $\mathcal{N}_1 = 2 \mathcal{N}_2 = 2 \mathcal{N}_3$ and roots are **chirally** paired $(u_1^{(i)}, -u_1^{(i)}, ..., u_{\mathcal{N}_i/2}^{(i)}, -u_{\mathcal{N}_i/2}^{(i)})$

$$\langle \mathcal{B} | \mathbf{u} \rangle = \sum_{m=1}^{M} N_m e^{-i(L-\mathcal{N}_1)\psi_m} (\beta_m^2 + \gamma_m^2)^{L/2} \sqrt{\frac{Q_1(0)Q_1(i/2)}{Q_2(0)Q_2(i/2)Q_3(0)Q_3(i/2)}} \frac{\det G^+}{\det G^-}$$

• Trivial SU(2) sector since it is reached by taking $\mathcal{N}_2 = \mathcal{N}_3 = 0 \implies \mathcal{N}_1 = 0$



- SL(2) sector: depends on how we construct $|\mathscr{B}\rangle$
- Either all overlaps are trivial, or $|\mathscr{B}\rangle$ not integrable

[see also Holguin-Kawai '25]

- SL(2) sector: depends on how we construct $|\mathscr{B}\rangle$
- Either all overlaps are trivial, or $|\mathscr{B}\rangle$ not integrable

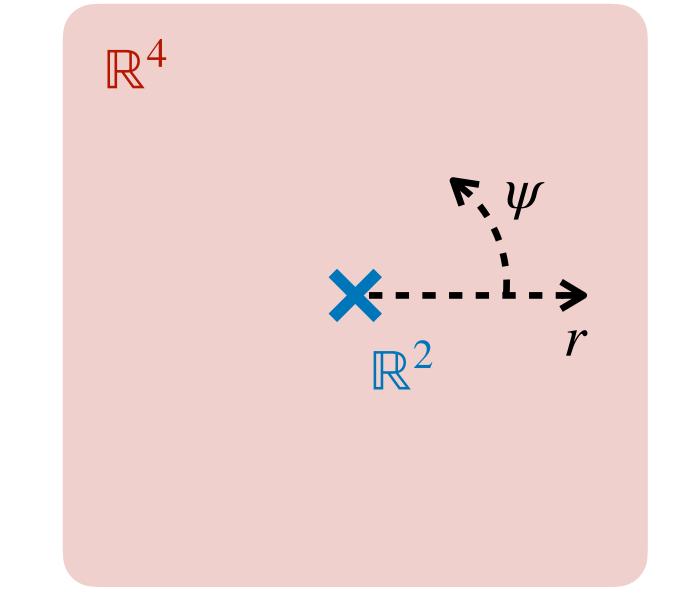
SU(2)	SO(6)	SL(2)
0		×

just a coincidence at leading order?

Gukov-Witten Defects

- 2d N=(4,4) surface defects in 4d N=4 SYM come in two kinds
 - (1) Ordinary

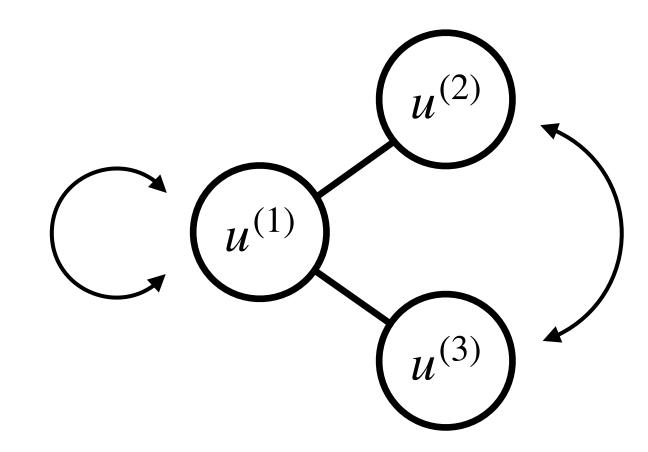
$$A=\alpha\,d\psi$$
 and $\Phi=rac{e^{-i\psi}}{\sqrt{2}r}(\beta+i\gamma)$ diagonal matrices



su(2) representation matrices of dim = k

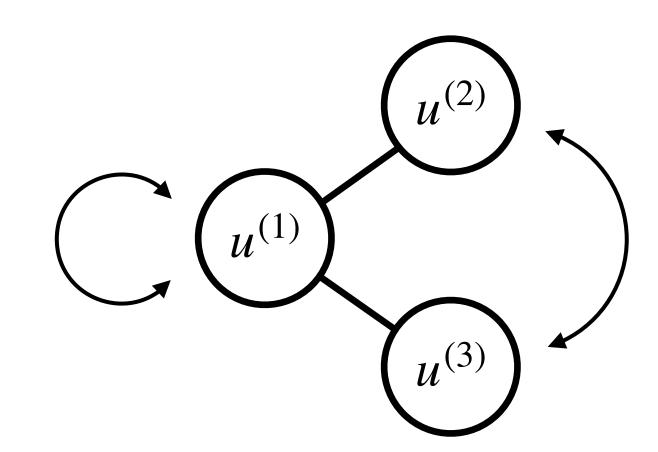
• SO(6) sector: $\langle \mathcal{B} | \mathbf{u} \rangle = 0$ unless roots are **achirally** paired.

When
$$k=2$$
 only, we find $\langle \mathcal{B} \mid \mathbf{u} \rangle = \frac{1}{2^{L-1}} \sqrt{\frac{Q_1(i/2)}{Q_1(0)}} \frac{\det G^+}{\det G^-}$



• SO(6) sector: $\langle \mathscr{B} | \mathbf{u} \rangle = 0$ unless roots are **achirally** paired.

When
$$k=2$$
 only, we find $\langle \mathcal{B} | \mathbf{u} \rangle = \frac{1}{2^{L-1}} \sqrt{\frac{Q_1(i/2)}{Q_1(0)}} \frac{\det G^+}{\det G^-}$



• SU(2) sector actually integrable for all k!

$$|\left\langle \mathcal{B} \left| \mathbf{u} \right\rangle \right| = \mathbb{S}_k Q\left(\frac{ik}{2}\right) \sqrt{Q(i/2)Q(0)} \frac{\det G^+}{\det G^-} \,, \text{ where } \mathbb{S}_k = \sum_{q=-\frac{k-1}{2}}^{\frac{k-1}{2}} \frac{q^L}{Q\left(\frac{2q+1}{2}i\right)Q\left(\frac{2q-1}{2}i\right)}$$

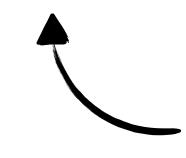
- For SL(2) sector $\{Z, DZ, D^2Z, \dots\}$, restrict to leading singularity $\sim 1/\log^L r$
- $\langle \mathcal{B} | \mathbf{u} \rangle = 0$ unless all \mathcal{N} roots are paired,

$$\langle \mathcal{B} | \mathbf{u} \rangle = \frac{\sin^{\mathcal{N}} \psi}{r^{\mathcal{N}}} \frac{1}{2^{L-1}} \sqrt{\frac{Q(i/2)}{Q(0)}} \frac{\det G^{+}}{\det G^{-}}$$
 for $k = 2$ only

- For SL(2) sector $\{Z, DZ, D^2Z, \dots\}$, restrict to leading singularity $\sim 1/\log^L r$
- $\langle \mathcal{B} | \mathbf{u} \rangle = 0$ unless all \mathcal{N} roots are paired,

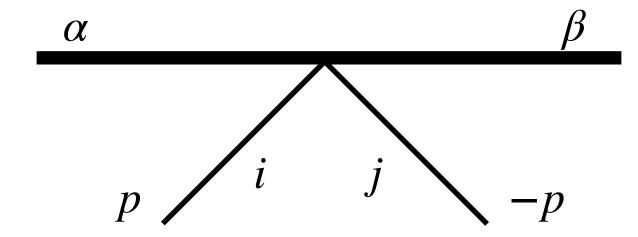
$$\langle \mathcal{B} | \mathbf{u} \rangle = \frac{\sin^{\mathcal{N}} \psi}{r^{\mathcal{N}}} \frac{1}{2^{L-1}} \sqrt{\frac{Q(i/2) \det G^+}{Q(0) \det G^-}} \quad \text{for } k = 2 \text{ only}$$

SU(2)	SO(6)	SL(2)
✓ all k	✓ k=2 only	✓ k=2 only

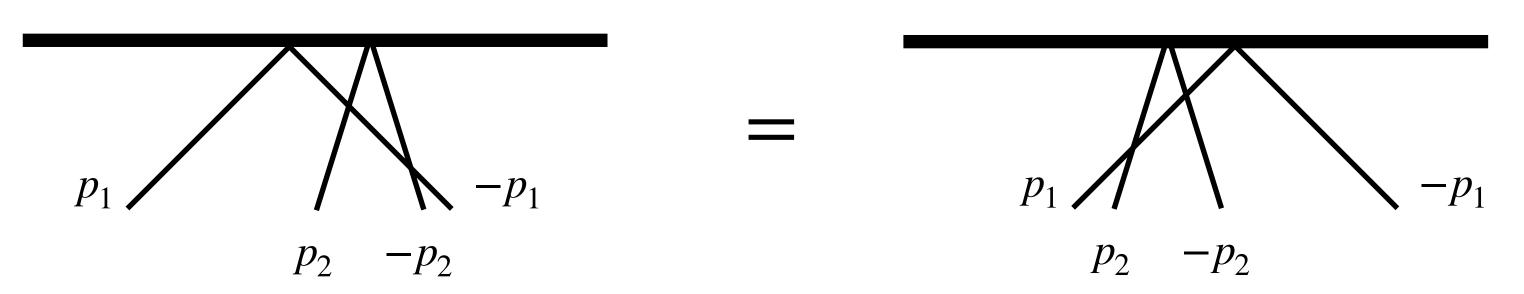


Sketch of Derivation

- Key ingredient is the K-matrix $(K_{i,j}(u))^{\alpha,\beta}$
- Amplitude of two excitations with opposite momenta annihilated by $|\mathscr{B}\rangle$



Integrable scattering off a boundary needs to satisfy the K-Yang-Baxter eq



Sketch of Derivation

ullet Boundary state, K-matrix and monodromy matrix T satisfy KT-relation

•
$$K_{i,\ell}(u)\omega_I \mathcal{L}_{\ell,j;I,J}(u) = \omega_I K_{\ell,j}(u) \mathcal{L}_{i,\ell;I,J}(-u)$$

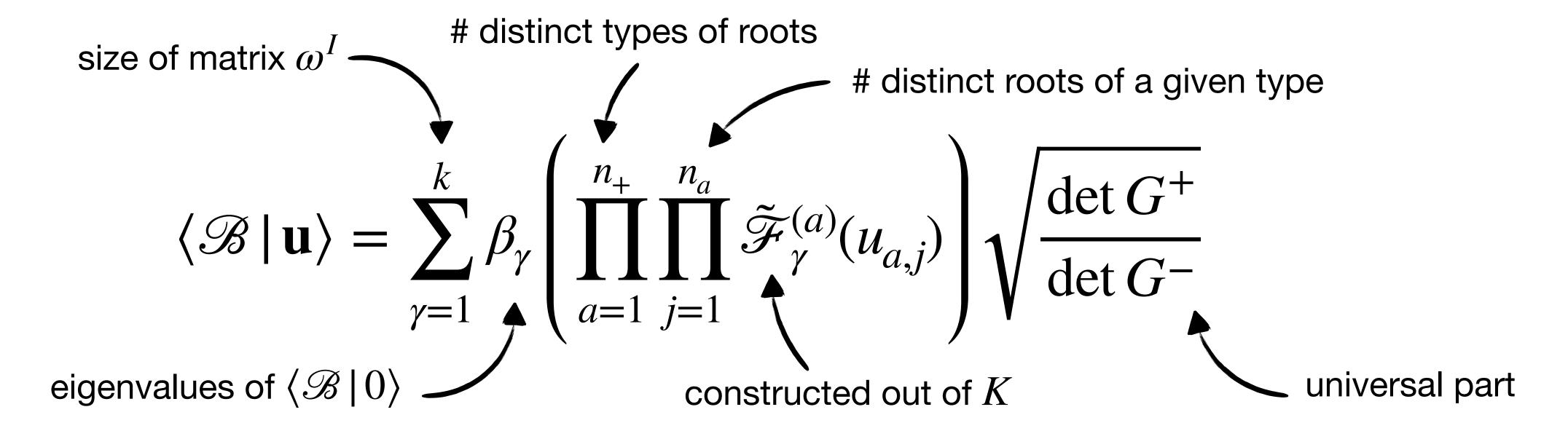
$$T_0 = \mathcal{L}_{0,L}...\mathcal{L}_{0,1}$$

$$\langle \mathcal{B} | = \operatorname{tr} \left(\sum_{I=1}^d \omega^I \langle I | \right)^{\otimes L}$$

• Combines K-Yang-Baxter equation and $Q^{\mathrm{odd}} | \mathscr{B} \rangle = 0$ condition

Sketch of Derivation

• Gombor '24: general method to find $\langle \mathscr{B} \, | \, \mathbf{u} \rangle$ from solution of the KT-relation



• Pair structure determined by reflection algebra $Y(\mathfrak{g},\mathfrak{h})$

Integrable 1/2-BPS Defects in N=4 SYM

Co-dim 1	Co-dim 2	Co-dim 3
D3-D5 system $\phi_i \to t_i^{(k)}/r$		1/2-BPS 't Hooft line $\phi^I \to n^I/r$

Integrable 1/2-BPS Defects in N=4 SYM

Co-dim 1	Co-dim 2	Co-dim 3
D3-D5 system $\phi_i \to t_i^{(k)}/r$	Rigid Gukov-Witten defect? \mathbb{R}^4 \mathbf{x} \mathbb{R}^2 $A_{\psi} \to \frac{t_3^{(2)}}{\log r},$ $\Phi \to \frac{e^{-i\psi}}{\sqrt{2}r\log r}(t_1^{(2)} + it_2^{(2)})$	1/2-BPS 't Hooft line $\phi^I \to n^I/r$

Outlook

- Higher-loop corrections
- Rigid defect has same symmetries as $\langle \mathscr{D} \mathscr{D} \mathscr{O} \rangle$

[Jiang-Komatsu-Vescovi '19]

- → all-loop overlap?
- Rigid Gukov-Witten defect in holography, SUSY localisation
- Surface defect with 2d N=(8,0) SUSY