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N=4 SYM Theory

» Simplest non-abelian gauge theory:

4d SU(N) N=4 super-Yang-Mills = 1X A, 4 X Weyl y*, 6 X real ¢'

. ﬁ(g%M) = () exactly
e [ractable even at strong coupling due to:

SUSY localisation, conformal bootstrap, AdS/CFT, ..., large-N integrability



Integrability in N=4 SYM Theory at Large-N

 Local operators Ir gbll---¢IL of the same engineering dimension L can mix
« Diagonalise dilatation operator D to find good conformal operators

e Minahan-Zarembo ’02: D < H Hamiltonian on a 1d spin chain

« Hisintegrable — d tower of conserved charges O

« H diagonalisable via Bethe ansatz




Closed Sub-sectors and Integrability

e N=4 SYM has 3 complex scalars {Z, Y, X}
» SU(2) sector: simplest closed sub-sector at 1-loop consists of {Z, Y'} only

 Heisenberg spin chain with identification Z = | | ) and Y = | 1 >

e EQ.Tr ZZYZZY <+« Q W

L
» Eigenstates found by diagonalising Hamiltonian H 2 1 (1;;00 = P; 1)
s ,




Closed Sub-sectors and Integrability

. SO(6) sector: {Z,Y,X,X,Y,7Z)
— each site in vector representation of so(6)
. SL(2) sector: {Z, DZ,D?Z, ...} where D = D,+D,andD,=0,+1i[A,, ]

— Infinite-dimensional Hilbert space at each site

* Integrability extends to full N=4 SYM at large N




Defects in CFT

* |n CFTs with defects, local operators acquire 1-pt functions (@ A) =

* Focus on defects described by singularity conditions,

a)l

e.g. gbl = 7 + fluctuations

* | eading order 1-pt functions obtained by substituting classical part

 But operators mix!

2%,

A



Integrable Defects

* |n spin chain picture, encode defect as boundary state

(AB| =tr (Zila)l(l\ )®L

» 1-pt function of D-eigenstates (O) x (% |u)

. j k Specifies O via Bethe roots u
Specifies defect

together with a choice of {Z, Y, X}

. Defect is integrable <= 0°| %) = 0 and (% |u) has closed-form



Integrable Defects

* |n spin chain picture, encode defect as boundary state
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» 1-pt function of D-eigenstates (O) x (% |u)

.. j k Specifies O via Bethe roots u ‘)
Specifies defect

together with a choice of {Z, Y, X}

. Defect is integrable <= 0°| %) = 0 and (% |u) has closed-form



Integrable 1/2-BPS Defects in N=4 SYM
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Integrable 1/2-BPS Defects in N=4 SYM
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Gukov-Witten Defects

e 2d N=(4,4) surface defects in 4d N=4 SYM come in two kinds
(1) Ordinary

R4
A=ady and ® = e (ﬁ + 1y) *, W
k diagonal )(""'L?,
(2) Rigid (a, p,y — 0) matrices R?
I3
A= dy and O = 1+ 1t
lOg r s \/zrlogr( : 2)

k su(2) representation matrices



Gukov-Witten Defects

e 2d N=(4,4) surface defects in 4d N=4 SYM come in two kinds

) Ordinary

R4
» A=ady and O = \/__W(ﬁ-l-l}/) *, W
k diagonal )(.-2.-4-?
) Rigid (a, f,y — 0) matrices R
2
A = dy and © = t + it
IOg r 4 \/Erlogr( 1 2)

k su(2) representation matrices



Overlaps for Ordinary Gukov-Witten Defect

» SO(6) sector: (B |u) = 0 unless number of Bethe roots N | = 24, =2/, C ﬂ @ D

- - @ _ ,,0 o _ 4,0
and roots are chirally paired (u1 , T U, U W/ u Ve /2) @

M °
~i(L- 0,(0)Q,(/2) det G*
Xk — N e ML=V D 52 4 2)\L/2
i Z'l " Pt 1) \/Qz(O)Qz(i/z)Qg(O)Q3(i/2) det G-



Overlaps for Ordinary Gukov-Witten Defect

» SO(6) sector: (B |u) = 0 unless number of Bethe roots N | = 24, =2/, C ﬂ @ D

- - @ _ ,,0 o _ 4,0
and roots are chirally paired (u1 , T U, U W/ u Ve /2) @

M °
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W, =Y — arg(ﬁm + l}/m) Qi(x) — H (.X . uc(zi)) J P

G* = “— log (Bethe equations)”
ou

b = \e/_; diag((f; + iyy)1 Np» = (P + iVM)lNM)



Overlaps for Ordinary Gukov-Witten Defect

» SO(6) sector: (B |u) = 0 unless number of Bethe roots N | = 24, =2/, C ﬂ @ D

- - @ _ ,,0 o _ 4,0
and roots are chirally paired (u1 , T U, U W/ u Ve /2) @

M °
~i(L- 0,(0)Q,(/2) det G*
Kk — N e L=V D B2 4 2)\L/2
o ,Z'l " Pt 1) \/Qz(O)Qz(i/z)Qg(O)Q3(i/2) det G-

e Trivial SU(2) sector since it is reached by taking /r, = A/, =0 = A ;=0



Overlaps for Ordinary Gukov-Witten Defect

e SL(2) sector: depends on how we construct | %)

» Either all overlaps are trivial, or | 95’) not integrable [see also Holguin-Kawai ‘25]



Overlaps for Ordinary Gukov-Witten Defect

e SL(2) sector: depends on how we construct | %)

» Either all overlaps are trivial, or | 98) not integrable

SU(2) SO(6) SL(2)

0 X

just a coincidence at leading order? j




Gukov-Witten Defects

e 2d N=(4,4) surface defects in 4d N=4 SYM come in two kinds
(1) Ordinary

R4
A=ady and O = e (ﬁ + 1y) *, W
k diagonal )("2""'?,
(2) Rigid (a, p,y — 0) matrices R

2
A= dy and © = t + it
* log r v \/5r10gr<1 )

k su(2) representation matrices of dim = k



Overlaps for Rigid Gukov-Witten Defect

» S0(6) sector: (Z |u) = 0 unless roots are achirally paired. @

1 /2) detG™
When k = 2 only, we find (&8 |u) = \(1/2) de C @
2L-1 0,0) detG— @




Overlaps for Rigid Gukov-Witten Defect

» S0(6) sector: (Z |u) = 0 unless roots are achirally paired. @

1 /2) detG™
When k = 2 only, we find (&8 |u) = \(1/2) de C @
2L-1 0,0) detG-

» SU(2) sector actually integrable for all k!

: + k_Tl L
|(FB|u)| =S, 0 (%) VQ(Z’/Z)Q(O) det & , Where S| = Z 1

_ 2g +1 . 2g —1 .
det G Byt ( q2 z)Q( 612



Overlaps for Rigid Gukov-Witten Defect

. For SL(2) sector {Z, DZ, D*Z, ...}, restrict to leading singularity ~ 1/log" r

« (ZA|u) = 0unless all / roots are paired,

(%) =

in” | /2) detG™
Sl \/Q(l ) de for k = 2 only

rV 201\ Q(0) detG-



Overlaps for Rigid Gukov-Witten Defect

. For SL(2) sector {Z, DZ, D*Z, ...}, restrict to leading singularity ~ 1/log" r

e (Z|u) = 0unless all A roots are paired,

in” w1 /2) detG™
(A |u) = i QUr2) de for k = 2 only
rV 21\ O(0) detG-
SU(2) SO(6) SL(2)

all k k=2 only k=2 only

k k > 2 just a coincidence at leading order?



Sketch of Derivation

» Key ingredient is the K-matrix (Ki,j(u))“’ﬁ

« Amplitude of two excitations with opposite momenta annihilated by | %)
o p

; .
P / —P

* |ntegrable scattering off a boundary needs to satisfy the K-Yang-Baxter eg

P1 —P1 P1 —DPq



Sketch of Derivation

« Boundary state, K-matrix and monodromy matrix 1’ satisfy KT-relation

. K; (), Z f,j;I,J(u) — a)IKf,j(u)g 00— 1)

(AB| =tr (Zila)l(l\ >®L

 Combines K-Yang-Baxter equation and Q(’d‘]1 | %) = 0 condition



Sketch of Derivation

» Gombor '24: general method to find (98 | u) from solution of the KT-relation

# distinct types of roots

size of matrix @’ \ / / # distinct roots of a given type

—

ot = 3 | T30 |42

VAN \ *
eigenvalues of (98| 0) ’ constructed out of K A\ universal part

» Pair structure determined by reflection algebra Y(q, §)




Integrable 1/2-BPS Defects in N=4 SYM

Co-dim 1

Co-dim 2

Co-dim 3

D3-D5 system
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Integrable 1/2-BPS Defects in N=4 SYM

Co-dim 1

Co-dim 2

Co-dim 3

D3-D5 system

Rigid Gukov-Witten defect?
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Outlook

* Higher-loop corrections
» Rigid defect has same symmetries as (X2 0) [Jiang-Komatsu-Vescovi *19]

— all-loop overlap?
* Rigid Gukov-Witten defect in holography, SUSY localisation
o Surface defect with 2d N=(8,0) SUSY



