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What can we do to solve the problems of confinement and the
mass gap in quantum chromodynamics (QCD) using mathematical
methods?

At large bare coupling on a lattice, there is confinement and a
mass gap. Unfortunately, the large-bare-coupling approximation is
too far from the continuum limit at zero bare coupling. At best, this
a yields a quark model. This criticism also applies to string-theory-
motivated large-bare-coupling approaches.

The action of the CORRECT large-bare-coupling effective the-
ory must include those marginal or irrelevant operators produced by
an integration over short-distance degrees of freedom.
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The original femtouniverse is a picture of the bag in QCD. QCD
is weakly coupled below a distance of 1 Fm = 10−13 cm. Above this
distance, chromoelectric flux is suppressed.

Bjorken (1979)

Hansson, Johnson and Petersen (1982)
We consider a small-diameter region of Euclidean spacetime, in-

stead of space, which we shall call brief femtouniverse.

Alternative approach: toroidal femtouniverse, periodic boundary
conditions (possibly twisted):
Lüscher (1982)
Lüscher and Münster (1984)
van Baal (1980’s - 2000’s)
Kovtun, Ünsal and Yaffe (2007)
Bergner, González-Arroyo and Soler (2025)
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Instead of p.b.c., use Dirichlet b.c.. Functionally integrate within
femtouniverses (FU) covering spacetime, to find effective theory on
(d−1)-dimensional interfaces.

Femtouniverse RG (FURG)
Ideally, FU tile, but they can overlap, as a first approximation.

1. Consider arbitrary Dirichlet boundary conditions on one FU.

2. Find smallest action S0 config. inside the FU, consistent with the
boundary data. These lie in a lower-dimensional manifold M,
parametrized by ϕ1, ϕ2, . . . ϕk.

3. Approximate the functional integral by steepest descents,

I =
∫

dnx f (x)e−S(x) ≈C
∫

M
dk

ϕ
√

det(G)(ϕ) f [x(ϕ)]
e−S0√

det′(δ 2S)
,

Gi j(t) =
k

∑
l=1

∂xl(ϕ)

∂ϕi

∂xl(ϕ)

∂ϕ j
, δ

2Si j =
∂ 2S(x)
∂xi∂x j

∣∣∣∣
x(ϕ)∈M

,
∂S(x)
∂x j

∣∣∣∣
x(ϕ)∈M

= 0.
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4. Identify boundary data of intersecting/overlapping FU.

5. This yields a model with d.o.f. on the codimension-1 boundary,
to which we wish to apply strong-coupling expansions or other
nonperturbative approximation methods.

6. Difficult to implement 5., because the functional integration is
over a (d − 1)-dimensional region. We therefore pick a finite
number of points at the boundary, with values of the field (spins)
assigned, and

interpolate

to a solution of the field equations inside the FU. Result: an
effective lattice model.

Summary: FURG is a real-space (block-spin) RG transformation,
via semiclassics.
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Yang-Mills in d = 4 is still too hard. We apply FURG to the O(3)
nonlinear sigma model (CP1 model) for d = 2. This work is not
finished yet.

Z =
∫

[d3n]δ (~n ·~n−1)e−S,

S = SNLSM+SΘ =
1

2g0

∫
d2x ~n · (−∂

2)~n+
iΘ
4π

∫
d2x ~n · (∂0~n×∂1~n) .

Spin-1 AF chains, A2Cu3O(SO4)3 where A2 =Na2,NaK,K2 , with
T < 3 K (Haldane correspondence).
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Background field method:
Integrate over “fast” degrees of freedom between r (UV regulator)
and FU size R (IR regulator). The remaining “slow” degrees of
freedom lie in the boundary data.

φ , φ are fluctuation fields. Gauge field Aµ = ~ec · ∂µ~eb, where
~n,~e1,~e2 are a system of orthonormal vector fields.

Z(boundary data) =
∫
[dφ ]e−SNLSM

≈ exp−
∫
|x|≤R

d2x
[

1
2g(r)

~ncl · (−∂
2)~ncl−

1
2π

ln
r
L

AµAµ

]
× det−1

[
−D2− 1

2
~ncl · (−∂

2)~ncl

]
r,R
,

〈φ(x)φ(y)〉r,R =
2
−∂ 2δ

2(x− y)
∣∣∣∣
r,R

=− 1
2π

ln
R2|x− y|2+R3r

R4−2R2x · y+ |x|2|y|2+R3r
.
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Leading order in pert. theory:

Z(boundary data) = e−
∫

d2x Leff r,R ,

where

Leff r,R =

[
1

2g(r)
− 1

2π
ln

R
r

]
~ncl · (−∂

2
r,R)~ncl−

1
2π

ln
R
L

AµAµ

− 1
2π

ln
(R2−|x|2)2+R3r

R4

[
~ncl · (−∂

2
r,R)~ncl+AµAµ

]
.

Asymptotic freedom:
1

2g(R)
=

1
2g(r)

− 1
2π

ln
R
r
.

β (g) =−∂g(R)
∂ lnR

=−1
π

g(R)2.
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Interpolation

Stereographic coordinates for orthogonormal system of vectors:

~n =
1

ww+1
(w+w, iw− iw, ww−1), ~e1 =

1
2
√

ww
(−iw+ iw, w+w, 0),

~e2 =
1

2(ww+1)
√

ww
[−(ww−1)(w+w), −i(ww−1)(w−w), 4ww].

Note w, w are the fields in the CP1 formulation.

Given any three spins ~n0, ~n1 and ~n2, located at three equidistant
points of the circle (disc boundary), we can interpolate to self-dual
(w = w(z)) or anti-self-dual solutions (w = w(z)) inside the disc.

Central point: ~ncenter =
~N
N ,

~N =~n0×~n1+~n1×~n2+~n2×~n0.

11/18



12/18



From~n0,~n1 and~n2, we can reconstruct the angles θ , ϕ1 and ϕ2 in
the parametrization, after a rotation,

~ncenter = (0,0,1), ~n0 = (sinθ ,0,cosθ),

~n1 = (sinθ cosϕ1,sinθ sinϕ1,cosθ),

~n2 = (sinθ cosϕ2,sinθ sinϕ2,cosθ).

The circle is the locus of:(sinθ cosϕ,sinθ sinϕ,cosθ), fixed θ ,
arbitrary ϕ ∈ [0,2π). In stereographic coordinates, w = cot θ

2eiϕ ,
w = cot θ

2e−iϕ .
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The interpolation gives: Instantons!
The instanton partition function was written as a Coulomb gas

many decades ago.
Fateev, Frolov and Schwarz
Berg and Lüscher

There remain questions about instanton-antiinstanton configura-
tions, unitarity and how the mass gap forms.

In our approach there can be instantons in some FU and anti-
instantons in others.

Recall

I =
∫

dnx f (x)e−S(x) ≈C
∫

M
dk

ϕ
√

det(G)(ϕ) f [x(ϕ)]
e−S0√

det′(δ 2S)
,

Gi j(t) =
k

∑
l=1

∂xl(ϕ)

∂ϕi

∂xl(ϕ)

∂ϕ j
, δ

2Si j =
∂ 2S(x)
∂xi∂x j

∣∣∣∣
x(ϕ)∈M

,
∂S(x)
∂x j

∣∣∣∣
x(ϕ)∈M

= 0.
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Instantons (continued):
Instanton solution is a q−→ 1 map:

w(z) = cot
θ

2

q

∏
j=1

a( j)z+b( j)R

b
( j)

z+a( j)R
,

Angles ϕ
( j)
1 , ϕ

( j)
2 ∈ [0,2π), with j = 1, . . . ,q, and

q

∑
j=1

ϕ
( j)
1 = ϕ1+2πq1,

q

∑
j=1

ϕ
( j)
2 = ϕ2+2πq1+2πq2,

for integers q0, q1, q2 = 0,1,2 . . . , with q = q0+q1+q2+1,
T ( j)

1 = tan[ϕ ( j)
1 /2], T ( j)

2 = tan[ϕ ( j)
2 /2], and

a( j) =
√

3
[
T ( j)

2 −T ( j)
1

]
+2T ( j)

1 T ( j)
2 − i

[
T ( j)

1 +T ( j)
2

]
,

b( j) =
√

3
[
T ( j)

2 −T ( j)
1

]
−2T ( j)

1 T ( j)
2 + i

[
T ( j)

1 +T ( j)
2

]
.

The manifold M of saddle-points is parametrized by ϕ
j

1,2.
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The classical action of the instanton is given by S0 = SNLSM+SΘ,

SNLSM =
2πq
g0

{
1− cosθ , ϕ1 < ϕ2,
1+ cosθ , ϕ1 > ϕ2

,

SΘ =−iΘq
2

{
1− cosθ , ϕ1 < ϕ2,
1+ cosθ , ϕ1 > ϕ2

.

There are similar formulas for antiinstantons.

The metric on M is

G{i,a}{ j,b} =
∫

zz<R2

dzdz
2i[w(z)w(z)+1]2

∂w(z)

∂φ
(i)
a

∂w(z)

∂φ
( j)
b

.

The fluctuation operator:

δ
2S = (−D2−F01)

2, Dµ = ∂µ− iAµ, Aµ =− i
2

ww−1
ww+1

∂µ ln
w
w
.
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The work ahead is in the determinants of these two operators and
the integration over moduli {ϕ ( j)

1,2}. In the effective lattice model,
not only must the spins be matched between FU, but the integers
q0,1,2 must be matched at edges (links).

An improvement is to put spins at vertices of equilateral triangles,
which tile. Repeat the above with Dixonian elliptic function sm(ζ ),
which conformally maps an eq. triangle into the unit disc:

ζ =
∫ sm(ζ )

0

du
(1−u3)3/2.

For example

〈φ(x)φ(x′)〉r,R =
2
−∂ 2δ

2(x− x′)
∣∣∣∣
r,R
=− 1

2π
ln
|sm(z/R)− sm(z′/R)|2+ r/R

|1− sm(z/R)sm(z′/R)|2+ r/R
,

z = x0+ ix1, z′ = x0 ′+ ix1 ′, and the triangle has side
√

3
6π

Γ
(1

3

)3 R.
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Thanks to Anne, Maja, Jane,
Roger, Florian and Matthias!

and THANK YOU!
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