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Overview

e Network Architectures in IceCube

 What | am working on right now &

design challenges

 Requirements from lceCube '
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Network Architectures
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What | am working on right now

atmospheric v astrophysical v |
J/ Muon Track in IceCube
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* We are currently working on a new lceCube event selection

- Ditference between atm. ¢ and v, induced p

* The current implementation works with 11 constructed high level variables (implemented 10 years ago)
 We have developed a graph based reconstruction algorithm for JUNO

* Implement this network for IceCube Selection
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Network Architecture
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Network Architecture (AutoEncoder)

* Reconstructed time and charge pairs
(g,t) are preprocessed

> .l Feature Extraction
// N lAutoEncodef > Dynamic windowing to allocate

| (¢.1)pairs Prepzit:‘ssing photon hits in 10 ns (charged
| (256,2) summed, first time hit in window)
| - > Divide by standard deviation
256 > Time median per DOM is
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> Signhed sqgrt of times

4SSN

s > Correct hits for respective time shift

 Train Transformer based AutoEncoder

}x 4 to learn 10 arbitrary features that

describe the per-DOM time series

q: ll g, 4 | ) 5 .
 Requirement for fast on-the-fly
1 > [NERER 56 processing

e Possible feedback to write interim
results to disk
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Filter

Network Architecture (Graph) %@g

Partitioning Aggregation
e e

* Different Graph implementation than

GraphNet (“spherical harmonics”) Additional Information
Graph Neural Network %, 7> 2 Qo Hoodians L]

» Graph Network inspired by default Input (4680, 16)
convolutional neural network ST

S X{ GCN ResNet

AveragePartitionPooling

ResNet Block

* Own pooling algorithm that aggregates
based on node proximity 6 X

5 x{ GCN ResNet
MLP (128)

« ResNet Architecture with ~ 70 GCN layers
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Network Architecture (Output)
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Strong classifier for neutrino events with
excellent Data/MC agreement

25 % statistics improvement

Other tasks like topology classification, energy-
and directional reconstruction work well by
easily swapping out th classification head
Multi-purpose network

Requirement to swap out the classification
head



Network Architecture (Output)
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Strong classifier for neutrino events with
excellent Data/MC agreement

25 % statistics improvement

Other tasks like topology classification, energy-
and directional reconstruction work well by
easily swapping out th classification head
Multi-purpose network

Requirement to swap out the classification
head



Domain Adaptation
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 |nitial iImplementations of the network
£) ® domain label had terrible DC/MC agreement

e Solution was to use Unsupervised
Graph Neural Network Domain Adaptation by

Backpropagation
FR1 GON ResNet _  Requirement to be able to train with

6 X multiple outputs that are trained
FR{ GoN Reshet differently

Classification MLP (128) Domain
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Domain Adap
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 Better MC / Data agreement

« ~ 5% increase in event statistics, loss at the horizon
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Adversarial Training Fast Gradient Sign M

* Disturb network input to change neural L
network output

+ .007 X

* Networks are susceptible to minuscule

changes, that are network specific N ign (V. J(0.2.) x +

esign(VwJ(O, L, y))
. - “panda” “nematode” “gibbon”
Adversarial attac;ks Car? be US.eq for 57.7% confidence 8.2% confidence 99.3 % confidence
data augmentation during training,
maximally disturbed inputs! Input
* This leads to “flatter” loss manifolds, -
that are more robust against (targeted) o
noise BR{ con resnet NI .
A ” . e Adversarial
6 X{ veragePartitionPooling 2 Attack
 Different methods for attacks! PR GON ResNet =
>
. . 3
* Requirement to access model input 5
from output and iteratively apply m =

Result
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Adversarial Attacks (Deep Fool)

* Projection of the image In the
INnput space to a decision

boundary
* Assuming a linear network the
solution Is:
f (i)
r; < — V[(x
Al (e - ARPACH
e |n real use cases the networks F /\ -

are not linear
* |terative application of the above
step until boundary is reached
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Adversarial Attacks (Deep Fool)
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Adversarial Attacks (Deep Fool)
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* Apply DeepFool to a simulated v, event to make it look like a v/,
* This introduces unphysical negative pixel values
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Adversarial Attacks (MiniFool)
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» Self developed method (MiniFool) includes physical constraints (also external)

* Wrongly classified events seem to be more susceptible to adversarial attacks

7 found v_ events, one seems to be more agreeable with background, within expectation

* Publication is on the way!
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Normalizing Flows
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 Sometimes target distributions do not properly
describe the event distribution and uncertainty

(MSE = Gaussian)

= 68% (exact)

 Normalizing flows approximate the true Outputs —— 68% (FVM approx.)

Posterior distribution — = 95% (FvVM approx.) 0|5 1!0
e true direction .PDF value |

e “Normal” Networks can be used to condition flows

 Requirement is to train multiple subsequent
models in the same update step
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Formal Requirements

* Jo be truly a universal tool, allow for other neural network implementations to
interface (i.e. TensorFlow, JAX)

* Allow for truly dynamic training that incorporates multiple outputs / training
schemes

* Reproduciblility: Trained networks must be reproducible without the need to
retrain the model (must for for the foreseeable future)

» Better interface with IceTray. Especially low level reconstruction that are

performed early in the processing chain must be able to write output to I3
frames
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Backup
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Unsupervised Domain Adaptation by Backpropagation

MNIST SYN NUMBERS SYN SIGNS

SOURCE

TARGET

MNIST-M

Figure 2. Examples of domain pairs used in the experiments. See Section 4.1 for details.

METHOD SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS
TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY 5749 .8665 5919 .7400
SA (FERNANDO ET AL., 2013) | .6078 (7.9%) 8672 (1.3%) 6157 (5.9%) 7635 (9.1%)
PROPOSED APPROACH .8149 (57.9%) .9048 (66.1%) .7107 (29.3%) .8866 (56.7%)
TRAIN ON TARGET 9891 9244 9951 9987
MNIST — MNIST-M: top feature extractor layer SYN NUMBERS — SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted (a) Non-adapted (b) Adapted

Figure 3. The effect of adaptation on the distribution of the extracted features (best viewed in color). The figure shows t-SNE (van der
Maaten, 2013) visualizations of the CNN’s activations (a) in case when no adaptation was performed and (b) in case when our adaptation
procedure was incorporated into training. Blue points correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions of features much closer.
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Initial Network Performance
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 Neural Network outperforms old BDT
* Unfortunately very poor Data / MC agreement!
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