

Status of High-Energy Neutrino Astronomy

KØBENHAVNS UNIVERSITET

Markus Ahlers Niels Bohr Institute GraphNeT Workshop 2025

Multi-Messenger Astronomy

Acceleration of **cosmic rays** (CRs) - especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves**.

Secondary **neutrinos** and **gamma-rays** from pion decays:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{0} \rightarrow \gamma + \gamma$$

$$\downarrow \qquad e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

Optical Cherenkov Telescopes

Optical Cherenkov Signals

"cascades" &

"tracks"

rare events from CC ν_{τ} interactions

High-Energy Neutrinos

First observation of high-energy astrophysical neutrinos by IceCube in 2013.

"track event" (e.g. ν_{μ} CC interactions)

"cascade event" (e.g. NC interactions)

(colours indicate arrival time of Cherenkov photons from early to late)

Diffuse TeV-PeV Neutrinos

- All-sky neutrino-pure sample (MESE starting events) from 1 TeV to 10 PeV
- Clear evidence for departure from single power law (SPL)
- **Significance:** 4.7σ for broken power law (BPL) with break at 30 TeV

Astrophysical Flavours

Realtime Neutrino Alerts

Low-latency (<1min) public neutrino alert system established in April 2016.

- ◆ Gold alerts: about 10 per year 50% signalness (on average)
- ◆ Bronze alerts: about 20 per year 30% signalness (on average)

Extragalactic Populations

Populations of extragalactic neutrino sources visible as

individual sources

and by

combined isotropic emission.

The relative contribution can be parametrized (*to first order*) by the average

local source density ho_{eff} and

source luminosity $L_{\!\scriptscriptstyle
u}$

"Observable Universe" with far (faint) and near (bright) sources.

Hubble-Lemaître horizon

Extragalactic Populations

Populations of extragalactic neutrino sources visible as

individual sources

and by

combined isotropic emission.

The relative contribution can be parametrized (*to first order*) by the average

local source density ho_{eff} and

source luminosity $L_{\!\scriptscriptstyle
u}$

[Ackermann, MA, Anchordoqui, Bustamante et al.'19] [see also Murase & Waxman'16]

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Hidden Sources?

Efficient production of 10 TeV neutrinos in p γ scenarios require sources with **strong X-ray backgrounds** (e.g. AGN core models).

High pion production efficiency implies strong internal γ-ray absorption in Fermi-LAT energy range:

$$\tau_{\gamma\gamma} \simeq 1000 f_{p\gamma}$$

[Guetta, MA & Murase'16]

Excess from NGC 1068

Neutrino excess from Seyfert galaxy NGC 1068 with a PKS 1424+240 post-trial **significance of 4.2** σ TXS 0506+056 (trial-corrected for 110 sources). 24h $-\log_{10}(p_{\text{local}})$ Murase et al $\nu_{\mu} + \bar{\nu}_{\mu}$ IceCube $\nu_{\mu} + \bar{\nu}_{\mu}$ Archival data 4FGL-DR2 Inoue et al $\nu_{\mu} + \bar{\nu}_{\mu}$ **MAGIC** 0.6 10^{-9} - Best-Fit ★ NGC 1068 0.4 $E^2 \phi \ [{
m TeV} \ {
m cm}^{-2}$ dec. [deg] 0.2 10^{-11} 0.0 10^{-12} 10^{-13} -0.2 10^{-14} -0.4 10^{-12} 10^{-9} 10^{-6} 10^{-15} 10^{-3} 10^{0} 10^{3} 10^{6} 41.2 41.0 40.8 40.6 40.4 40.2 Energy [GeV] r.a. [deg]

[IceCube, PRL 124 (2020) 5 (2.9 σ post-trial); Science 378 (2022) 6619 (4.2 σ post-trial)] [model predictions by Murase, Kimura & Meszaros '20; Inoue, Khangulyan & Doi '20]

Hidden Cores of AGN

 Searches of combined neutrino emission of X-ray emitting AGN yield only upper limits.

[IceCube, ApJ (2025) 981, 131; arXiv:2406.07601] [see also Neronov et al. PRL 132 (2024) 10]

• However, neutrino excess from the direction of Seyfert galaxy **NGC 4151** with post-trial **significance 2.9** σ .

NGC 4151 disk-corona model

Galactic Cosmic Rays

Standard paradigm:
 Galactic CRs accelerated
 in supernova remnants

[Baade & Zwicky'34] [Ginzburg & Sirovatskii'64]

diffusive shock acceleration:

$$n_{\rm CR} \propto E^{-\Gamma}$$

 rigidity-dependent escape from Galaxy:

$$n_{\rm CR} \propto E^{-\Gamma - \delta}$$

 Neutrino emission from CR interactions with gas

Galactic Neutrino Emission

Galactic diffuse ν emission at 4.5 σ based on template analysis.

[IceCube **Science** 380 (2023)]

Galactic Neutrino Emission

Best-fit normalization of spectra

KRA⁵, Model — KRA⁵, Best-Fit ν Flux $\mathsf{KRA}^{50}_{\nu} \; \mathsf{Model} \; \longrightarrow \; \mathsf{KRA}^{50}_{\nu} \; \mathsf{Best}\text{-Fit} \; \nu \; \mathsf{Flux}$ π^0 Model π^0 Best-Fit ν Flux IceCube All-Sky v Flux (22) 10^{-6} $E_{v}^{2} \frac{dN}{dE_{v}} [\text{GeV s}^{-1} \text{ cm}^{-2}]$ isotropic galaction 10^{-8} 10^{3} 10⁵ 10⁶ 10^{4} 10^{7} E_v [GeV]

Templates with different resolution

[IceCube **Science** 380 (2023)]

[templates: Fermi'12; Gaggero, Grasso, Marinelli, Urbano & Valli '15]

Point-Source Significance Map

Segmented Fit

Fit of Galactic flux in segments using DNNcascade

[IceCube, PoS(ICRC2025)1130 & PoS(ICRC2025)1219]

- Fit of power-law emission (spectral index & normalization) along GP.
- Evidence for enhanced emission in inner region $(-40^{\circ} \le \ell \le 40^{\circ})$
- **Significance:** 3.84σ (pre-trial) for three-segment fit

DNNcascade Sample

Analysis is based on novel cascade event selection and reconstruction using deep neutral networks (DNNcascade).

DNNcascade Sample

Analysis is based on novel cascade event selection and reconstruction using deep neutral networks (DNNcascade).

[IceCube **Science** 380 (2023)]

KM3-230213A

- 120 PeV muon reaching ARCA-21 from 0.6° above the horizon
- For $E_{\nu_{\mu}}^{-2}$ -flux, corresponds to 72 PeV 2.6 EeV neutrino (90% C.L.)
- Flux is in tension with upper limits of IceCube and Auger $(2.5 3\sigma)$

[KM3NeT, Nature 638 (2025) 8050; arXiv:2502.08173]

KM3-230213A

- 120 PeV muon reaching ARCA-21 from 0.6° above the horizon
- For $E_{\nu_{\mu}}^{-2}$ -flux, corresponds to 72 PeV 2.6 EeV neutrino (90% C.L.)
- Flux is in tension with upper limits of IceCube and Auger ($2.5 3\sigma$)

[KM3NeT, Nature 638 (2025) 8050; arXiv:2502.08173]

Summary: HE Neutrino Astronomy

- High neutrino intensity compared to other cosmic backgrounds.
- Open questions:
 - ★ origin?
 - ★ spectral features?
 - **★** consistent MM emission?
- Some strong indications for individual sources:
 - ★ blazar TXS 0506+056
 - ★ active galaxy NGC 1068
 - **★** Seyfert galaxy catalogues
 - ★ Galactic plane
- Many interesting (but weak) correlations with other candidate sources.

GraphNeT Applications

event selection

energy reconstruction

low latency responses

event classification

angular reconstruction

Backup Slides

IceCube Observatory

- Giga-ton optical Cherenkov telescope at the South Pole
- 86 IceCube strings of 60
 DOMs instrumenting 1 km³
 of clear glacial ice
- 81 IceTop stations for cosmic ray shower detections
- running in full IC86 configuration since 2011
- >99% detector uptime
- trigger rate about 2.7 kHz
- about 100 GB/day data transferred via satellite

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices, incorporating lessons from a decade of IceCube calibration efforts
- In parallel, IceTop surface enhancements (scintillators & radio antennas) for CR studies.
- Scheduled for deployment at the end of this year.

Vision: IceCube-Gen2

- Multi-component facility (low- and high-energy & multi-messenger)
- In-ice optical Cherenkov array with 120 strings and 240m spacing
- Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto
- Askaryan radio array for >10 PeV neutrino detection
- price: mostly comparable to IceCube-Gen1 when corrected for inflation

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

KM3NeT Observatory

- **ARCA**: 2 building blocks of 115 detection units (DUs) each
- ORCA: 115 DUs optimized for low-energy (GeV) and oscillation analyses
- status May 2025: 33 DUs in ARCA and 28 DUs in ORCA
- Improved angular resolution for water Cherenkov emission.
- 5σ discovery of **diffuse flux** with full ARCA within one year
- Complementary field of view ideal for the study of point sources.

Astrophysical Neutrinos

Non-anthropogenic Neutrino Fluxes ($\nu + \bar{\nu}$ per flavour)

Isotropic Diffuse Flux

HESE (7.5y Full-sky)
Phys. Rev. D 104, 022002 (2021)

Inelasticity Study (5y, Full-sky)
Phys. Rev. D 99, 032004

Cascades (6y, Full-sky)
Phys. Rev. Lett. 125, 121104 (2020)

This work: Through-going Tracks
(9.5y, Northern-Hemisphere)

ANTARES Cascades+Tracks
(best-fit: 9y, Full-sky) PoS(ICRC2019)891

- **Diffuse flux level agrees** across analyses (within their overlapping energy regions).
- However, mild tension between spectral indices for a single power-law flux $E^{-\gamma}$.

Very-High Energy Cosmic Rays

IC-170922A

up-going muon track (5.7° below horizon) observed September 22, 2017 best-fit neutrino energy is about 300 TeV

Active Galaxies & Blazars

TXS 0506+056

[IceCube++, Science 361 (2018) 6398]

- IC170922A observed in coincident with flaring blazar TXS 0506+056.
- Chance correlation can be rejected at the 3σ -level.
- TXS 0506+056 is among the most luminous BL Lac objects in gamma-rays.

Neutrino Flare in 2014/15

Fermi-LAT Blazar Stacking

- Combined contribution of Fermi-LAT blazars (2LAC) **below 30**% of the isotropic TeV-PeV neutrino observation. [IceCube, ApJ 835 (2017) 45]
- MeV-detected (1FLE) below 1%; "hard" emitters (3FHL) below 17%
 [IceCube, ApJ 938 (2022) 1; PoS ICRC2019 (2020) 916]

Hadronic Gamma-Rays

EM cascades from interactions in cosmic radiation backgrounds:

$$\gamma + \gamma_{\rm bg} \rightarrow e^+ + e^-$$
 (PP) $e^{\pm} + \gamma_{\rm bg} \rightarrow e^{\pm} + \gamma$ (ICS)

Outlook: Baikal-GVD

- GVD Phase 1: 8 clusters with 8 strings each were completed in 2021
- status May 2025: 14 clusters
- final goal: 27 clusters ($\sim 1.4 \, \mathrm{km}^3$)

Outlook: RNO-G

- Detection principle of ANITA, ARA & ARIANNA (Antarctica)
- Under construction: Radio Neutrino Observatory-Greenland (RNO-G)
- status March 2024: 7 of 35 stations deployed

Askaryan effect:

Neutrino emission above 10 PeV can be observed via **coherent radio emission of showers** in radio-transparent media.

[RNO-G JINST 16 (2021) 3]

Vision: GRAND

Vision: IceCube-Gen2

Cosmic Rays

- Cosmic rays (CRs) are energetic nuclei and (at a lower level) leptons.
- Spectrum follows a powerlaw over many orders of magnitude, indicating a non-thermal origin.
- direct observation with satellite and balloon-borne experiments up to TeV
- indirect observation as air showers above 10 TeV

Point-Source Significance Map

Point-Source Discovery Horizon

Discovery horizon for $L_{100\,\text{TeV}}=10^{34}\,\text{erg/s}\,\left(\Phi\propto E^{-2}\right)$

[Ambrosone, Groth, Peretti & MA'23]

Point Source vs. Quasi-Diffuse Flux

Populations of galactic neutrino sources visible as

individual sources

and by the

combined isotropic emission.

The relative contribution can be parametrized (*to first order*) by the average

source surface density Σ_{\odot} and

source luminosity $L_{100{
m TeV}}$

[Ambrosone, Groth, Peretti & MA'23]

Template and Catalog Searches

	Flux sensitivity Φ	P value	Best-fitting flux Φ
	Diffuse Gala	ctic plane analysis	
π^{0}	5.98	$1.26 \times 10^{-6} (4.71\sigma)$	21.8 ^{+5.3} _{-4.9}
KRA_{γ}^{5}	0.16 × MF	$6.13 \times 10^{-6} (4.37\sigma)$	$0.55^{+0.18}_{-0.15} imes ext{MF}$
KRA^{50}_{γ}	0.11 × MF	$3.72 \times 10^{-5} (3.96\sigma)$	$0.37^{+0.13}_{-0.11} \times MF$
	Catalog s	tacking analysis	
SNR		$5.90 \times 10^{-4} (3.24\sigma)^*$	
PWN		$5.93 \times 10^{-4} (3.24\sigma)^*$	
UNID		$3.39 \times 10^{-4} (3.40\sigma)^*$	
•••••••	Othe	er analyses	
Fermi bubbles		0.06 (1.52σ)	post-trial p-value
Source list		0.22 (0.77σ)	template search:
Hotspot (north)		0.28 (0.58σ)	4.5σ
Hotspot (south)		0.46 (0.10σ)	

[IceCube **Science** 380 (2023)]

Neutrino Selection

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- Cosmic neutrino events can start inside the fiducial volume.
- High-Energy Starting
 Event (HESE) analysis

Tidal Disruption Events (TDEs)

Tidal Disruption Events (TDEs)

- Association of alert IC191001A with radio-load TDE AT2019dsg
- Chance for random correlation of TDEs and IceCube alerts is 0.5%.
- Other associations with TDE candidates, e.g. IC200530A & AT2019fdr.

[Reusch et al. PRL 128 (2022) 221101; Walter & Lunardini ApJ 948 (2023) 1]

TDE Neutrino Limits

[IceCube, PoS (ICRC2019) 1016]

Limits derived based on stacking of 3 jetted and 13 non-jetted TDEs. Contribution to diffuse flux **below 2**% and **below 26**%, respectively.

Gamma-Ray Bursts

High-energy neutrino emission is predicted by cosmic ray interactions with radiation at various stages of the GRB evolution.

GRB Neutrino Limits

- IceCube routinely follows up on γ -ray bursts. [IceCube, ApJ 843 (2017) 2]
- Search is most sensitive to "prompt" (<100s) neutrino emission.

[Waxman & Bahcall '97]

Contribution to diffuse flux below 1% for "prompt" phase and below 27% for neutrino emission within 3h.
[IceCube, ApJ 939 (2022) 2]

GRBs and Gravitational Waves

[LVD, Fermi & INTEGRAL, ApJ 848 (2017) no.2, L13]

GRB 170817A - Neutrino Limits

No detection of neutrinos in prompt phase consistent with **off-axis emission.**

GRB 221009A - The "BOAT"

GRB seen by Fermi-LAT over 10h

Neutrino Upper Limits from IceCube

[γ -ray observations by Fermi **ApJL** 952 (2023) & LHAASO **Science** 9 (2023)]

- "Brightest-Of-All-Time" GRB 221009A $(D_L \simeq 740 \text{ Mpc but } E_{\text{iso}} \simeq 10^{55} \text{erg})$
- MM observations in ApJL focus issue
- $\cdot \nu$ predictions for internal shock model

"Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory"

[IceCube **ApJL** 946 (2023)]

[IceCube PoS-ICRC2023-1511]

Starburst Galaxies

- High rate of star formation and SN explosions enhances (UHE) CR production.
- Low-energy cosmic rays remain magnetically confined and eventually collide in dense environment.
- In time, efficient conversion of CR energy density into γ-rays and neutrinos. [Loeb & Waxman '06]
- Power-law neutrino spectra with high-energy softening from CR leakage and/or acceleration.

[Romero & Torres'03; Liu, Wang, Inoue, Crocker & Aharonian'14; Tamborra, Ando & Murase'14] [Palladino, Fedynitch, Rasmussen & Taylor'19; Peretti, Blasi, Aharonian, Morlino & Cristofari'19] [Ambrosone, Chianese, Fiorillo, Marinelli, Miele & Pisanti'20]

Waxman-Bahcall Limit

UHE CR proton emission rate density:

[e.g. MA & Halzen'12]

$$[E_p^2 Q_p(E_p)]_{10^{19.5} \text{eV}} \simeq 8 \times 10^{43} \text{erg Mpc}^{-3} \text{ yr}^{-1}$$

• Neutrino flux can be estimated as (ξ_z : redshift evolution factor):

$$E_{\nu}^{2}\phi_{\nu}(E_{\nu}) \simeq f_{\pi} \frac{\xi_{z}K_{\pi}}{1 + K_{\pi}} \underbrace{1.5 \times 10^{-8} \text{GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}}_{\text{IceCube diffuse level}}$$

• Limited by pion production efficiency: $f_{\pi} \lesssim 1$

[Waxman & Bahcall'98]

• Similar UHE nucleon emission rate density (local minimum at $\Gamma \simeq 2.04$) :

$$[E_N^2 Q_N(E_N)]_{10^{19.5} \text{eV}} \simeq 2.2 \times 10^{43} \text{erg Mpc}^{-3} \text{ yr}^{-1}$$

[Auger'16; see also Jiang, Zhang & Murase'20]

• **Competition** between pion production efficiency (*dense target*) and CR acceleration efficiency (*thin target*).

Cosmogenic Neutrinos

- Cosmogenic (GZK) neutrinos produced in UHE CR interactions peak in the EeV energy range.
- Target of proposed in-ice
 Askaryan (ARA & ARIANNA), air
 shower Cherenkov (GRAND) or
 fluorescence (POEMMA & Trinity)
 detectors.
- Optimistic predictions based on high proton fraction and high maximal energies.
- Absolute flux level serves as independent measure of UHE CR composition beyond 40EeV.

[Alves Batista et al.'19]

Astrophysical Flavours

Cosmic neutrinos visible via their oscillation-averaged flavour.

Astrophysical Flavours

ICECUBE

- Tau neutrino
 charged current
 interactions can
 produce delayed
 hadronic cascades
 from tau decays.
- Arrival time of Cherenkov photons is visible in individual DOMs.

[IceCube, EPJ C (2022) 82]

Astrophysical Flavours

Cosmogenic Neutrinos

IceCube Upgrade

- Precision measurement of atmospheric neutrino oscillations and tau neutrino appearance
- Improved systematics, in particular, ice models in event reconstructions

[IceCube, PoS (ICRC2019) 1031

Supernovae in IceCube

Figure 1: Top and side view of $\sim 3.4 \times 10^5$ simulated supernova ν interaction vertices registered by IceCube DOMs. The dust layer between -1950m and -2050m and the denser DeepCore subarray are clearly visible.

[IceCube, PoS (ICRC2019) 1177]

Core-Collapse Supernovae

