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Optical Cherenkov Telescopes
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Antares# & 
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Baikal-GVD†

IceCube(-Gen2*)

Markov 1960: 
"We propose setting up 

apparatus in an 
underground lake or deep in 

the ocean in order to 
separate charged particle 
directions by Cherenkov 

radiation."

P-ONE†

*proposed

TRIDENT*, 

HUNT* & NEON*

under construction†

#decommissioned
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Optical Cherenkov Signals
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High-Energy Neutrinos
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2013: A Milestone for Neutrino Astronomy

First observation of high-energy astrophysical neutrinos by IceCube!

“track event” (from nµ scattering) “cascade event” (from all flavours)

[“Breakthrough of the Year” (Physics World), Science 2013]
(neutrino event signature: early to late light detection)
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First observation of high-energy astrophysical neutrinos by IceCube in 2013.

Edep ≃ 71 TeV Edep ≃ 1.0 PeV

"track event" (e.g.  CC interactions)νμ "cascade event" (e.g. NC interactions)

(colours indicate arrival time of Cherenkov photons from early to late)
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Diffuse TeV-PeV Neutrinos
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IceCube All Flavor Di!use Spectrum

AGN cores [13], and a contribution from neutrinos from BL Lacertae objects [14]. The broken
power law (BPL) and log-parabolic (LP) flux models add curvature to the spectrum across di!erent
energy ranges. Another model we tested includes a Gaussian bump in the SPL in order to account
for a potential excess at 30 TeV observed by the 2 year MESE result [9]. In addition to these fits,
we performed a model-independent fit of the astrophysical normalization in 13 energy segments
assuming a power law spectrum in each segment.
The full list of tested models are shown in Tab. 1, in order of decreasing log likelihood.

Figure 1: Model Fits to Data: Results of a fit of the astrophysical neutrino flux in independent energy
bands. Left: The results are compared to the models fitted in the analysis. The solid lines show the energy
range where the dataset is sensitive to the respective model, and the dotted lines show the energy range
over which the fit is performed. Right: The segmented fit is compared to previous measurements from
IceCube, all favoring the SPL model. The shaded region corresponds to the 68% confidence region for these
measurements, as do the error bars on the MESE points

4. Discussion

We see that the best fit to the data is provided by the broken power law spectral model, with the
test statistic TS = →2ωlnL = 27.3 when compared to the likelihood obtained for the SPL model.
This corresponds to a p-value of 1.2 ↑ 10→6, or 4.7𝐿, assuming Wilks’s Theorem [15]. Figure 2
shows the agreement between the data and the modeling of the various contributions to the neutrino
flux. This result, in conjunction with a contemporaneous measurement in [16], marks the first time
IceCube has been able to resolve structure in the di!use neutrino spectrum beyond a single power
law to a degree above 4𝐿. As evident in Fig. 1, two features appear to drive this preference for
curvature in the spectrum. These are the excess at ↓ 30 TeV and a deficit at a few hundred TeV,
when compared to the baseline SPL model.
Various tests were performed to validate the results obtained by this analysis, both before and after
unblinding the data. In particular, it was shown that any non-isotropic neutrino flux from the galactic
plane [17] failed to bias the best fit physics parameters to a significant degree. Similarly, possible
variations in the modeling of the atmospheric neutrino flux or a contribution from ‘prompt’ neutrinos

4

• All-sky neutrino-pure sample (MESE starting events) from 1 TeV to 10 PeV 

• Clear evidence for departure from single power law (SPL)  

• Significance:  for broken power law (BPL) with break at 30 TeV4.7σ
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Astrophysical Flavours
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Measurement of the Three-Flavor Composition of Astrophysical Neutrinos

Figure 2: Fits to the astrophysical flavor ratio with the MESE sample for the baseline assumption of a BPL
flux (blue) and for the cross-check with an SPL fit (orange). 68% CL and 95% CL Wilks’ contours are
shown here along with the best fit. The best fit from both flux assumptions are consistent with each other.
Assumptions of flavor ratio at source, after undergoing oscillations during their propagation towards Earth
are also shown in the figure.

• An increased livetime: We use 11.4 years of data collected with IceCube in this analysis.

4. Conclusion

The results presented here show that, for the first time, we are able to constrain the fraction of
neutrinos of each flavor of neutrino to be > 0 with more than 68% CL. Based on the maximum-
likelihood test, we reject zero electron neutrinos with 98.7% CL and a zero fraction of tau neutrinos
with 91.9% CL. While the best fit flavor ratio of 𝐿𝐿 : 𝐿𝑀 : 𝐿𝑁 = 0.30 : 0.37 : 0.33 is closest
to the standard pion decay scenario, the muon-damped source scenario is still within the 68%
CL contour. A neutrino flux dominated by neutron decay at source is rejected at 94.8% CL with
the Wilks’ contour from the maximum-likelihood fit. Although a previous analysis from IceCube
(’Combined Fit (2015)’ [8]) rejected the neutron-decay scenario at a higher confidence level, the
previous analysis used no information about tau neutrinos. This analysis uses an updated treatment
of systematics and better modeling of the ice, which a!ects light propagation and therefore the
description of signal collection by the DOMs. The best fit of the flavor ratio lies on the line
connecting the three standard source scenarios, which is the only region allowed by the standard
theory of neutrino oscillations [10]. Therefore, our results are consistent with this theory. Future
studies including other methods of classifying tau-neutrino events, for instance a neural-network
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Realtime Neutrino Alerts
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Realtime neutrino alerts and follow-up in IceCube

IceCube 
Live

South

IceCube 
Live
North

Online Event 
Filtering 
System

Iridium

HESE Alert

EHE Alert AMON 
& 

GCN

South Pole, Antarctica

IceCube Data Center, Madison WI

Median alert latency: 33 seconds 

Followup 
Reconstructions

Figure 1: Overview of the realtime alert system. Events satisfying alert criteria are identified in the online
event filtering system that operates in realtime at the detector site in Antarctica. Event summaries and event
data are transferred to the north via the IceCube Live experiment control system [9] over an Iridium satellite
connection. Once in the north, alerts are formatted for distribution to GCN via the AMON network. Ad-
ditionally, full event information for each alert is used to trigger automated followup event reconstructions.
Median latency for alerts, comparing the time of the neutrino event to the alert being issued, is 33 seconds.

Track events are classified online by a "signal-trackness" parameter [14] that uses the likeli-
hood values returned from track and shower reconstructions to assign a numerical measure of how
consistent each HESE event is with being a track. Events with a signal-trackness value �0.1 are
classified as tracks.

Based on measured background event rates, and expectations based on the measured HESE
neutrino flux [6], 4.8 alerts are expected per year. Of these, 1.1 are expected to be astrophysical,
while 3.7 are from atmospheric background events, primarily rare cosmic ray muon events. Given
their track nature these events have good angular uncertainty, as shown in Figure 2, based on
simulated HESE event samples. Here, the median angular difference between the alert direction
and true direction is 0.55� (1.89� for 90% inclusion) for tracks with a reconstructed track length
>200 m.

2.2 EHE Track Alerts

The extremely-high-energy (EHE) neutrino alert stream is based on an offline search for cos-
mogenic neutrinos that resulted in the serendipitous discovery of the first observed PeV-scale neu-
trinos [15]. The standard EHE analysis searches for neutrinos with energies of ⇠ 10 PeV to 1 EeV,
where the expected event rate in the most optimistic case is ⇠1 event per year [13]. To move this
analysis into the realtime framework the event selection was modified in order to increase the sen-
sitivity to astrophysical neutrinos, specifically neutrino energies in the 500 TeV to 10 PeV range,
which are track events with good angular resolution.

The EHE alert selection requires a minimum deposited charge of ⇠4000 photoelectrons (NPE)
detected in IceCube DOMs, as well as at least 300 DOMs registering a signal. A cut on deposited
charge that strengthens with zenith angle for well reconstructed tracks is then applied [14] (see
Figure 3) to reject events likely to be from atmospheric origins.

A "signalness" value is calculated for each track event, which reflects how likely each event is
to be of astrophysical origin relative to the total background rate. This value is calculated from the

490

✦ Gold alerts: about 10 per year      
50% signalness (on average) 

✦ Bronze alerts: about 20 per year    
30% signalness (on average)

Low-latency (<1min) public neutrino alert system established in April 2016.

[IceCube'23]
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Extragalactic Populations

Hubble-Lemaître horizon

“Observable Universe”  
with far (faint) and near (bright) sources.

bright

faint

Populations of extragalactic 
neutrino sources visible as 

individual sources 

and by 

combined isotropic emission. 

The relative contribution can 
be parametrized (to first order) 

by the average  

 local source density   

and 

source luminosity 

ρeff

Lν
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Extragalactic Populations
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[Ackermann, MA, Anchordoqui, Bustamante et al.'19] 

[see also Murase & Waxman'16]
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Corresponding Opacities

• required cosmic ray energy:

ECR ⇠ 20En

• required target photon energy:

#t ⇠ 200 keV
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FIG. 2: Neutrino and CR bounds on the optical depth to
�� � e+e� in the sources of di�use TeV-PeV neutrinos. We
calculate ��� and fp� as functions of �� and �p, respectively,
imposing fp� � 0.01. We consider simple power laws with
� = 2.5 and � = 2/3 for �b

� = 6–25 TeV (shaded bands), and
the gray-body case with the temperature kT/�2 = 112 eV.

CR flux E2
cr�cr � 4⇥10�5 GeV cm�2 s�1 sr�1 at 10 PeV

(e.g., Ref. [49]). Since the observed CR flux in this en-
ergy range is dominated by heavy nuclei from Galactic
sources such as supernova remnants, this constraint is
conservative. The recent KASCADE-Grande data [50]
suggest that a light CR component may become promi-
nent above the second knee energy at 100 PeV, which
can be interpreted as the onset of an extragalactic com-
ponent. Using their inferred extragalactic, light CR flux
E2

p�p � 2 ⇥ 10�6 GeV cm�2 s�1 sr�1 as an upper limit,
we obtain fp� & 0.1 at �p & 10 PeV [102].

A similar conclusion is drawn by examining nonther-
mal luminosity densities of known objects. The CR lu-
minosity density of galaxies including starbursts is re-
stricted as �pQ�p . 1045–1046 erg Mpc�3 yr�1 [51,
52]. The luminosity density of x rays (QX � 2 ⇥

1046 erg Mpc�3 yr�1 [53]), which are thought to orig-
inate from thermal electrons in hot coronae, can be re-
garded as an upper limit of nonthermal outputs from
AGN. Adopting �pQ�p . 2 ⇥ 1046 erg Mpc�3 yr�1 as a
reasonable assumption for CRs from galaxies or AGN, we
have fp� & 0.01, independently of the above argument.

Figure 2 shows comparisons of the e�ective p� optical
depth required from the IceCube observation to the cor-
responding optical depth to �� interactions in the Fermi
range, related by Eq. (8). Strictly speaking, Eqs. (8) and
(9) are valid for soft target spectra. To see the robustness
of our results, following Ref. [39], we perform numerical
calculations using the detailed cross sections of the two-
photon annihilation and photomeson production (includ-
ing nonresonant processes). We consider target photon
spectra leading to �b

� = 6–25 TeV (indicated as bands in
Fig. 2), which can reproduce minimal p� scenarios. Note
that adopting lower values of �b

� or assuming �-ray trans-

parency for models like those shown in the right panel of
Fig. 1 leads to inconsistency with the Fermi IGRB data.
The conclusion from Eq. (8) holds even for realistic tar-
get radiation fields, including synchrotron and gray-body
spectra.

The high p� e�ciency suggested by the IceCube data
and upper limits on CR luminosity densities suggest that
the direct 1–100 GeV �-ray emission from the sources–
either leptonic or hadronic–is suppressed. Thus, tensions
with the IGRB, which are unavoidable for �-ray transpar-
ent sources, are largely alleviated or even absent. How-
ever, TeV �-ray counterparts could be seen by Cherenkov
telescopes and the High-Altitude Water Cherenkov Ob-
servatory. For power-law target photon spectra, which
extend to low energies, ��� is larger than unity beyond
the Fermi band and as a result the TeV emission from
the sources should also be suppressed (see Fig. 2). For
gray-body-like spectra, one could expect point-source �-
ray emission above TeV. The escaping hadronic � rays
are cascaded in the CMB and EBL and could be visi-
ble as extended pair-halo emission in the sub-TeV range
(e.g., Refs. [25, 26]). In this special case, although direct
point-source emission at 1–100 GeV is still suppressed
and the tension with the IGRB remains, TeV counter-
part searches can be used as an additional test.

Summary and implications.— We considered im-
plications of the latest IceCube results in light of the
multimessenger data. Based on the di�use �-� flux con-
nection and CR-� optical depth connection, we showed
that the two-photon annihilation optical depth should be
large as a direct consequence of astrophysical scenarios
that explain the large flux observed in IceCube.

There are various implications. Cross correlation of
neutrinos with Fermi-LAT sources is predicted to be
weak. Rather, in p� scenarios, since target photons are
expected in the x-ray or MeV �-ray range, searches for
such counterparts are encouraged. Candidate sources of
hidden CR accelerators include choked GRB jets [21] and
supermassive black hole cores [23, 24, 54] (see also the
Supplementary Material [103], which includes Refs. [55–
89]), so correlations with energetic supernovae including
low-power GRBs, flares from supermassive black holes,
radio-quiet or low-luminosity AGN, and a subclass of
flat spectrum radio quasars can be used to test the mod-
els. For broadband nonthermal target photon spectra, �
rays are suppressed at TeV-PeV as well as 1–100 GeV
energies. However, if the target photons follow a nar-
row thermal spectrum or are monochromatic in x rays,
hadronic � rays might be seen in the TeV range for nearby
neutrino sources. Although the obvious multimessenger
relation between neutrinos and � rays no longer exists,
our findings suggest that cosmic neutrinos play a special
role in the study of dense source environments that are
not probed by � rays. Larger detectors such as IceCube-
Gen2 [90] sensitive to 10–100 TeV neutrinos would be
important for the identification of the sources via auto-
correlation of neutrino events [91, 92].

[Murase, Guetta & MA’15]
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Efficient production of 10 TeV neutrinos in p  scenarios require sources 

with strong X-ray backgrounds (e.g. AGN core models).
γ

High pion production 
efficiency implies 

strong internal -ray 
absorption in Fermi-
LAT energy range: 

γ

τγγ ≃ 1000 fpγ
[Guetta, MA & Murase’16]
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Neutrino excess from Seyfert 
galaxy NGC 1068 with a       

post-trial significance of 4.2               
(trial-corrected for 110 sources).

σ

Figure 1: Skymap of the scan for point sources in the Northern Hemisphere. The color scale
represents the local p-value obtained from the maximum likelihood analysis evaluated (with the
spectral index as free fit parameter) at each location in the sky, shown in Equatorial coordinates
with Hammer-Aitoff projection. The black circles indicate the three most significant objects in
the source list search. The circle of NGC 1068 also coincides with the overall hottest spot in the
Northern Sky.

scanning many independent positions in the sky under the three spectral index hypotheses, the

global p-value corresponds (27) to a significance of 2.0� and therefore is not significant when

the entire Northern Sky is scanned without additional prior information. A high-resolution scan

around the best-fit position of the hottest spot is shown in Fig. 2.

As part of the various inspections to be carried out a posteriori, we also searched for astro-

physical counterparts in close proximity with the direction of the five locally most significant

spots in each of the three skymaps (reported in Tab. 2 (27)). We note that the nearby Seyfert I

galaxy NGC 4151 (11) is located at ⇠0.18 degrees distance from the fourth-hottest spot in the

map obtained with �=2.5. Because possible neutrino emission from NGC 4151 is not one of

the hypotheses that were formulated for this work, we cannot estimate a global p-value for this

coincidence.

Searching the entire Northern Hemisphere entails a strong penalty due to testing multiple

7

Figure 2: The sky region around the most significant spot in the Northern Hemisphere

and NGC 1068. The left plot shows a fine scan of the region around the hottest spot. The spot
itself is marked by a yellow cross and the red star shows the position of NGC 1068. In addition,
the solid and dashed contours show the 68% (solid) and 95% (dashed) confidence regions of
the hot spot localization. The right plot shows the distribution of the squared angular distance
between NGC 1068 and the reconstructed event direction. From Monte Carlo we estimate the
background (orange) and the signal (blue) assuming the best-fit spectrum at the position of
NGC 1068. The superposition of both components is shown in gray and provides an excellent
match to the data (black). Note that this representation of the result neglects all the information
on the energy and angular uncertainty of the events that is used in the unbinned maximum
likelihood approach.

This results in a local significance of 3.7�, a small increase with respect to what was reported

in (25) that is independent of the increase of the significance at the location of NGC 1068.

After correcting for having tested three different spectral index hypotheses, we obtain a final

post-trial significance of 3.4� for the binomial test. Besides NGC 1068, the other two objects

contributing to the excess are the blazars PKS 1424+240 and TXS 0506+056, for which we

find potential neutrino emission with local significance of 3.7� and 3.5�, respectively. We

emphasize that the significance of TXS 0506+056 reported here relates to a time-integrated

9

is L⌫ = (2.9 ± 1.1stat) ⇥ 1042 erg s�1. This is significantly higher than the isotropic equivalent

gamma-ray luminosity observed by Fermi-LAT of 1.6 ⇥ 1041 erg s�1 in the energy range be-

tween 100 MeV and 100 GeV (40), and higher than the upper limits recently reported by the

MAGIC collaboration (41) (see Fig. 4).
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Murase et al �µ + �̄µ

Inoue et al �µ + �̄µ

IceCube �µ + �̄µ

4FGL-DR2

Archival data

MAGIC

Figure 4: Spectral energy distribution of NGC 1068. Gray points show publicly available
multi-frequency measurements (42). Dark and light green error bars refer to gamma-ray mea-
surements from Fermi-LAT (33, 43) and MAGIC (41), respectively. The solid, dark blue line
shows the best-fit neutrino spectrum, and the corresponding blue band covers all powerlaw
neutrino fluxes that are consistent with the data at 95%C.L. It is shown in the energy range
between 1.5 TeV and 15 TeV where the flux measurement is well constrained. Two theoretical
AGN core models are shown for comparison: The light blue shaded region and the gray line
show the NGC 1068 neutrino emission models from (44) and (45), respectively. Additional
details on the model construction of the light blue shaded region can be found in (46).

High-energy neutrinos are generated in or near astronomical sources as decay products of

charged mesons produced in proton-proton interactions (47), or interactions between protons

and low energy ambient radiation (48) (for a review see (49)). Along with those neutrinos,

14

γ
ν

[model predictions by Murase, Kimura & Meszaros '20; Inoue, Khangulyan & Doi '20]  
[IceCube, PRL 124 (2020) 5 (2.9  post-trial); Science 378 (2022) 6619 (4.2  post-trial)]σ σ
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• Searches of combined neutrino 
emission of X-ray emitting AGN yield 
only upper limits. 

• However, neutrino excess from the 
direction of Seyfert galaxy NGC 4151 
with post-trial significance 2.9 .σ
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9

NGC 1068 NGC 4151

(a) (b)

(c) (d)

Figure 3. Top row: High-resolution scan of the sky around the region of the two most significant source positions (a) NGC 1068
and (b) NGC 4151. For details of the method used to obtain the scans, see Abbasi et al. (2022f). The white cross shows the
best-fit position and the red star shows the source position cataloged in BASS. The solid and dashed contours show the 68%
and 95% CL region around the sources, respectively. Bottom row: Number of events as a function of the square of the angular
distances from the source for (c) NGC 1068 and (d) NGC 4151. The best-fit astrophysical neutrino signal, the background, and
their sum are shown in purple, orange, and grey, respectively. They are obtained using Monte Carlo simulations. The neutrino
event data points are shown in black with error bars.

5. DISCUSSION
The most significant neutrino sources observed are two Seyfert galaxies, NGC 1068 and NGC 4151. However, the

stacking analysis of non-blazar AGN (731 of 732 non-blazar AGN are Seyfert galaxies) shows no significant emission.
This indicates that the potential neutrino emission is not directly proportional to the hard X-ray flux.

NGC 1068 and NGC 4151 are two nearby AGN, with photometric distances 11.14 ± 0.54 Mpc, 14.20 ± 0.88 Mpc
(Tikhonov & Galazutdinova 2021), that are obscured (NH = 1024.95 cm→2, 1022.71 cm→2) and bright in X-rays (flux =
2.06→10→10 ergs cm→2 s→1, 5.26→10→10 ergs cm→2 s→1). They have similar SMBH masses, 1.3→107 M↑ (Wang et al.
2020) and 1.66→107 M↑ (Bentz et al. 2022). However, while NGC 1068 is a starburst galaxy, NGC 4151 shows little
evidence of star formation (Mundell et al. 1999). Both sources show evidence of jet-disk interaction (Venturi, G. et al.
2021; Williams et al. 2020). The relativistic jets and the accretion disk are the two most promising sites for e!cient
particle acceleration, essential for neutrino production.

Acceleration mechanisms describing neutrino production predict a comparable flux of gamma rays and neutrinos.
However, NGC 1068 is “hidden” in gamma rays as the neutrino flux exceeds the gamma-ray flux (see Figure 9).
NGC 4151 is also an obscured source with the core surrounded by heavy amounts of dust and gas but there are no
available gamma-ray observations. Neutrino emission from these sources was also tested in a complementary analysis of
Seyfert galaxies (Abbasi et al. 2024). The two analyses overlap in the sources examined. Nevertheless, the hypotheses

7

Table 1. Summary of results from the stacked search.

Sample No. of sources n̂s ω̂ plocal ε90% ε90% ε90%

(significance) (ω = 2.0) (ω = 2.5) (ω = 3.0)

All AGN 836 161 2.89 0.01 (2.2ϑ) 0.68 8.97 39.25
Blazars 104 10 2.04 0.14 (1.1ϑ) 0.16 1.83 7.38
Non-blazars 732 180 3.02 0.01 (2.4ϑ) 0.75 9.89 41.94
Compton-thick 56 45 3.14 0.12 (1.2ϑ) 0.30 3.63 14.40
Obscured 323 148 2.91 0.003 (2.7ϑ) 0.57 6.85 27.06
Unobscured 457 0 0 1.00 (0.0ϑ) 0.24 3.02 13.85

Note—Flux upper limit normalized at 1 TeV is in units of 10→11 TeV→1cm→2s→1. Best-fit number
of neutrinos, n̂s is the sum over all sources in the sample.

has large uncertainties as given in Table 4. Previously, another IceCube result (Aartsen et al. 2017a) constrained
the contribution from Fermi -2LAC blazars to be 27%. There exists only a small overlap between the blazars in this
analysis and the previous study. They independently conclude that blazars emit a small fraction of neutrinos. The
flux upper limit obtained for all AGN, or non-blazar AGN considering a power law spectrum with an index ω = 3.0
at an energy → 30 TeV is comparable to the di!use flux. We cannot thus exclude that a major fraction of the di!use
flux can be attributed to these source classes.

Figure 1. 90% CL flux upper limit for Left: all AGN in the catalog, blazars and non-blazars, and Right: for unobscured,
obscured and Compton-thick sources. Flux upper limits are shown here for a spectral index of 3.0 since most samples result
in a best-fit value of → 3. These flux upper limits are displayed within the most relevant energy range for the analysis and
are scaled using the catalog completeness factor described in Appendix 6.4.1. For reference, the all-sky di!use flux from muon
tracks (light blue dotted line) (Abbasi et al. 2022a) and from cascades (purple) (Aartsen et al. 2019b) are shown on the plot.

Individual source search - From the list of 43 sources, the two sources with pre-trials significance > 3ε are Seyfert
galaxies NGC 1068 and NGC 4151 and their results are listed in Table 2. NGC 1068 is found at a flux and spectral
index consistent with previous results (Abbasi et al. 2022f). Since it was observed with a high significance, we exclude
it from the estimation of post-trials p-value, evaluated as 1↑(1↑plocal)N where N is the number of sources. NGC 4151,
the source with the highest FOM among the 43 AGN used for the individual source search is found to have a post-

[IceCube, ApJ (2025) 981, 131; arXiv:2406.07601] 
[see also Neronov et al. PRL 132 (2024) 10]

2

FIG. 1: Schematic picture of the AGN disk-corona scenario.
Protons are accelerated by plasma turbulence generated in
the coronae, and produce high-energy neutrinos and cascaded
gamma rays via interactions with matter and radiation.

ing of several components; radio emission (see Ref. [59]),
infrared emission from a dust torus [60], optical and ul-
traviolet components from an accretion disk [61], and x
rays from a corona [33]. The latter two components are
relevant for this work.

The “blue” bump, which has been seen in many AGN,
is attributed to multitemperature blackbody emission
from a geometrically thin, optically thick disk [62]. The
averaged SEDs are provided in Ref. [63] as a function of
the Eddington ratio, λEdd = Lbol/LEdd, where Lbol and
LEdd ≈ 1.26 × 1045 erg s−1(M/107M") are bolometric
and Eddington luminosities, respectively, and M is the
SMBH mass. The disk component is expected to have a
cutoff in the ultraviolet range. Hot thermal electrons in
a corona, with an electron temperature of Te ∼ 109 K,
energize the disk photons by Compton upscattering. The
consequent x-ray spectrum can be described by a power
law with an exponential cutoff, in which the photon index
(ΓX) and the cutoff energy (εX,cut) can also be estimated
from λEdd [31, 64]. Observations have revealed the rela-
tionship between the x-ray luminosity LX and Lbol [65]
[where one typically sees LX ∼ (0.01−0.1)Lbol], by which
the disk-corona SEDs can be modeled as a function of
LX and M . In this work, we consider contributions from
AGN with the typical SMBH mass for a given LX , using
M ≈ 2.0 × 107 M" (LX/1.16 × 1043 erg s−1)0.746 [66].
The resulting disk-corona SED templates in our model
are shown in Fig. 2 (see Supplemental Material for de-
tails), which enables us to quantitatively evaluate CR,
neutrino and cascade gamma-ray emission.

Next we estimate the nucleon density np and coro-
nal magnetic field strength B. Let us consider a corona
with the radius R ≡ RRS and the scale height H , where
R is the normalized coronal radius and RS = 2GM/c2

is the Schwarzschild radius. Then the nucleon den-
sity is expressed by np ≈ τT /(σTH), where τT is the
Thomson optical depth that is typically ∼ 0.1 − 1.
The standard accretion theory [67, 68] gives the coro-
nal scale height H ≈ (Cs/VK)RRS = RRS/

√
3, where

1040
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FIG. 2: Disk-corona SEDs used in this work, for LX = 1042,
1043, 1044, 1045, and 1046 erg s−1 (from bottom to top). See
text for details.

Cs =
√

kBTp/mp = c/
√
6R is the sound velocity, and

VK =
√

GM/R = c/
√
2R is the Keplerian velocity.

For an optically thin corona, the electron temperature
is estimated by Te ≈ εX,cut/(2kB), and τT is empiri-
cally determined from ΓX and kBTe [31]. We expect
that thermal protons are at the virial temperature Tp =
GMmp/(3RRSkB) = mpc2/(6RkB), implying that the
corona may be characterized by two temperatures, i.e.,
Tp > Te [69, 70]. Finally, the magnetic field is given by
B =

√

8πnpkBTp/β with plasma beta (β).

Many physical quantities (including the SEDs) can be
estimated observationally and empirically. Thus, for a
given LX , parameters characterizing the corona (R, β,
α) are remaining. They are also constrained in a cer-
tain range by observations [71, 72] and numerical simu-
lations [45, 47]. For example, recent MHD simulations
show that β in the coronae can be as low as 0.1–10 (e.g.,
Refs. [41, 46]). We assume β <∼ 1− 3 and α = 0.1 for the
viscosity parameter [62], and adopt R = 30.

Stochastic proton acceleration in coronae.—Standard
AGN coronae are magnetized and turbulent, in which it
is natural that protons are stochastically accelerated via
plasma turbulence or magnetic reconnections. In this
work, we solve the known Fokker-Planck equation that
can describe the second order Fermi acceleration pro-
cess (e.g., Refs. [73–76]). Here we describe key points
in the calculations of CR spectra (see Supplemental Ma-
terial or an accompanying paper [77] for technical de-
tails). The stochastic acceleration time is given by
tacc ≈ η(c/VA)

2(H/c)(εp/eBH)2−q, where VA is the
Alfvén velocity and η is the inverse of the turbulence
strength [78, 79]. We consider q ∼ 3/2 − 5/3, which
is not inconsistent with the recent simulations [58], to-
gether with η ∼ 10. The stochastic acceleration process
is typically slower than the first order Fermi acceleration,
which competes with cooling and escape processes. We
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• Standard paradigm: 
Galactic CRs accelerated 
in supernova remnants 

• diffusive shock 
acceleration: 

• rigidity-dependent escape 
from Galaxy: 

• Neutrino emission from 
CR interactions with gas

[Baade & Zwicky'34] 
[Ginzburg & Sirovatskii'64]

nCR ∝ E−Γ

nCR ∝ E−Γ−δ

illustration of Milky Way 
[Credit: NASA]

CR
ν
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as tracks in IceCube. The selection of cascade
events instead of track events therefore reduces
the contamination of atmospheric neutrinos—
by about an order of magnitude at tera–electron
volt energies—and permits the energy thresh-
old of the analysis to be lowered to about 1 TeV.
In the Southern sky, the lower background,

better energy resolution, and lower energy
threshold of cascade events compensate for
their inferior angular resolution, compared
with those of tracks. This is particularly true for
searches for emission from extended objects,
such as the Galactic plane, for which the size
of the emitting region is larger than (or similar
to) the angular resolution. Compared with
track-based searches, cascade-based analyses
are more reliant on the signal purity and less
on the angular resolution of individual events.
We therefore expect analyses based on cascades
to have substantially better sensitivity to ex-
tended neutrino emission in the tera–electron
volt energy range from the Southern sky.

Application of deep learning to cascade events

To identify and reconstruct cascade events in
IceCube, we used tools based on deep learn-
ing. These tools are designed to reject the

overwhelming background from atmospheric
muon events, then to identify the energies and
directions of the neutrinos that generated the
cascade events. IceCube observes events at a
rate of about about 2.7 kHz (18), arisingmostly
from background events (atmospheric muons
and atmospheric neutrinos) that outnumber
signal events (astrophysical neutrinos) at a
ratio of roughly 108:1. To search for neutrino
sources, event selection was required to im-
prove the signal purity by orders of magnitude.
Previously used event selections for cascade

events (22, 26, 27) relied on high-level observ-
ables, such as the event location within the
IceCube volumeand totalmeasured light levels,
to reduce the initial data rate. In subsequent
selection steps, more computing-intensive se-
lection strategies were performed, such as the
definition of veto regions within the detector,
to further reject events identified as incoming
muons. We adopted a different approach,
using tools based on convolutional neural net-
works (CNNs) (15, 28) to perform event selec-
tions. The high inference speed of the neural
networks (milliseconds per event) allowed us
to use a more complex filtering strategy at
earlier stages of the event selection pipeline.

This retains more low-energy astrophysical
neutrino events (Fig. 2) and includes cascade
events that are difficult to reconstruct and dis-
tinguish from background because of their lo-
cation at the boundaries of the instrumented
volume or in regions of the ice with degraded
optical clarity (from higher concentrations of
impurities in the ice).
After the selection of events, we refined

event properties, such as the direction of the
incoming neutrino and deposited energy, using
the patterns of deposited light in the detector.
The likelihood of the observed light pattern
under a given event hypothesis was maximized
to determine the event properties that best
describe the data. For this purpose, we used
a hybrid reconstruction method (16, 17) that
combines a maximum likelihood estimation
with deep learning. In this approach, we used
a neural network (NN) to parameterize the
relationship between the event hypothesis
and expected light yield in the detector. This
smoothly approximates a (more computation-
ally expensive) Monte Carlo simulation while
avoiding the simplifications that limit other
reconstruction methods (19, 29). Starting with
an event hypothesis, theNNmodels the photon
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Fig. 1. The plane of the Milky Way Galaxy in photons and neutrinos. (A) to
(E) are in Galactic coordinates, with the origin being at the Galactic Center,
extending ±15° in latitude and ±180° in longitude. (A) Optical color image (39),
which is partly obscured by clouds of gas and dust that absorb optical photons.
[Credit: A. Mellinger, used with permission.] (B) The integrated flux in gamma
rays from the Fermi Large Area Telescope (Fermi-LAT) 12-year survey (40)
at energies greater than 1 GeV, obtained from the Fermi Science Support Center
and processed with the Fermi-LAT ScienceTools. (C) The emission template
calculated for the expected neutrino flux, derived from the p0 template that

matches the Fermi-LAT observations of the diffuse gamma-ray emission (1).
(D) The emission template from (C), after including the detector sensitivity to
cascade-like neutrino events and the angular uncertainty of a typical signal event
(7°, indicated by the dotted white circle). Contours indicate the central regions
that contain 20 and 50% of the predicted diffuse neutrino emission signal.
(E) The pretrial significance of the IceCube neutrino observations, calculated
from the all-sky scan for point-like sources by using the cascade neutrino event
sample. Contours are the same as in (D). Gray lines in (C) to (E) indicate the
northern-southern sky horizon at the IceCube detector.
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with individual source searches, because the
neutrino fluxes add together, whereas random
background adds incoherently (36). The ob-
jects in each catalog were selected according
to the observed gamma-ray emission above
100 GeV and the detector sensitivity, following
previously described methods (20). We chose
the 12 sources from each category with the
strongest expected neutrino flux andweighted

them under the hypothesis that each contrib-
utes equally to the flux (supplementary text).
The total number of signal events and the
spectral index are left as free parameters for
each catalog search. The resulting P value for
each catalog search is shown in Table 1. Each
result rejects the background-only hypothesis
at the 3s level or above. However, we do not
interpret these neutrino event excesses as a

detection because the objects in these Galactic
source catalogs overlap spatially with regions
that predict the largest neutrino fluxes in the
Galactic plane diffuse emission searches.

Implications of Galactic neutrinos

The neutrino flux we observed from the Galac-
tic plane could arise from several different
emission mechanisms. The predicted energy
spectra integrated over the entire sky is shown
in Fig. 5 for each of the Galactic plane models
and their best-fitting flux normalization. Model-
to-model flux comparisons depend on the
regions of the sky considered. The KRAg best-
fitting flux normalizations are lower than pre-
dicted, which could indicate a spectral cutoff
that is inconsistent with the 5 and 50 PeV
values assumed. The simpler extrapolation of
the p0 model from giga–electron volt energies
to 100 TeV predicts a neutrino flux that is a
factor of ~5 below our best-fitting flux. How-
ever, the best-fitting flux for the p0 model ap-
pear to be consistent with recent observations
of 100-TeV gamma rays by the Tibet Air Shower
Array (fig. S8) (37). The p0 model mismatch
could arise from propagation or spectral differ-
ences for cosmic rays in the Galactic Center
region, or from contributions from unresolved
neutrino sources.
We used model injection tests to quantify

the ambiguity between different source hy-
potheses. In these tests, the best-fitting neu-
trino signal from one source search was
simulated, then the expected results in all
other analyses were examined. Injecting a
signal from the p0 model analysis, with a flux
normalization equal to the best-fitting value
from the observations, produces a median sig-
nificance that is consistent with the best-fitting
values for all other tested hypotheses (within
the expected statistical fluctuations). This in-
cludes the 3s excess observed inGalactic source
catalog searches. Individually injecting the
best-fitting flux of any one of the tested Ga-
lactic source catalogs, at the flux level observed,
did not recover the observed p0 or KRAg model
results. However, the angular resolution of the
sample and the small number of equally
weighted sources included in these catalogs
does not constrain emissions from these broad
source populations. It is plausible that many
independently contributing sources from the
Galactic plane could show a similar result to
diffuse emission from interactions in the inter-
stellar medium. These tests favor a neutrino
signal from Galactic plane diffuse emission,
but we do not have sufficient statistical power
to differentiate between the tested emission
models or identify embedded point sources.
The neutrinos observed from the Galactic

plane contribute to the all-sky astrophysical
diffuse flux previously observed by IceCube
(Fig. 5) (21, 22, 38). The fluxes we infer for each
of the Galactic template models contribute

IceCube Collaboration, Science 380, 1338–1343 (2023) 30 June 2023 5 of 6

Fig. 5. Energy spectra for
each of the Galactic plane
models. Energy-scaled, sky-
integrated, per-flavor neutrino
flux is shown as a function of
neutrino energy (Ev) for each of
the Galactic plane models.
Dotted lines are the predicted
values for the p0 (dark blue),

KRA5g (orange), and KRA
50
g (light

blue) models. Solid lines are our
best-fitting flux normalizations
from the IceCube data. Shaded
regions indicate the 1s uncer-
tainties; they extend over the
energy range that contributes
to 90% of the significance.
These results are based on the
all-sky (4p sr) template and are
presented as an all-sky flux. For
comparison, the gray hatching
shows the IceCube total neu-
trino flux (22), scaled to an all-sky flux by multiplying by 4p, with its 1s uncertainty.
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Table 1. Summarized results of the neutrino emission searches. The flux sensitivity and best-fitting
flux normalization (F) are given in units of model flux (MF) for the KRAg templates and for the p

0 analyses
as E2 dN

dE at 100 TeV, in units of 10–12 TeV cm–2 s–1 (where dN
dE is the differential number of neutrinos per

flavor, N, and neutrino energy, E). P values and significances are calculated with respect to the
background-only hypothesis. Pretrial P values for each individual result are listed for the three diffuse
Galactic plane analyses and three stacking analyses, and posttrial P values are given for the other analyses
(supplementary text). Because of the spatial overlap of the stacking catalogs with the diffuse Galactic
plane templates, strong correlations between these searches are expected. More detailed results for each
search are provided in tables S1 to S5.

Flux sensitivity F P value Best-fitting flux F

Diffuse Galactic plane analysis
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

p0 5.98 1.26 × 10–6 (4.71s) 21:8þ5:3
"4:9.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

KRA5g 0.16 × MF 6.13 × 10–6 (4.37s) 0:55þ0:18
"0:15 # MF

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

KRA50g 0.11 × MF 3.72 × 10–5 (3.96s) 0:37þ0:13
"0:11 # MF

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Catalog stacking analysis
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

SNR 5.90 × 10"4 (3.24s)*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

PWN 5.93 × 10"4 (3.24s)*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

UNID 3.39 × 10"4 (3.40s)*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Other analyses
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Fermi bubbles 0.06 (1.52s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Source list 0.22 (0.77s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Hotspot (north) 0.28 (0.58s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Hotspot (south) 0.46 (0.10s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

*Significance values that are consistent with the diffuse Galactic plane template search results.
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Figure S9: Neutrino emission models used as templates in the Galactic plane search. The
spatial templates for the ⇡0 (A-C) and KRA

5
� (D-F) models of diffuse Galactic neutrino emis-

sion are shown. Each panel shows the Galactic plane in a band of ±30
� in latitude (b) and

±180
� longitude (l) in Galactic coordinates. The models are first convolved with the IceCube

detector acceptance (A, D) and then smeared with a Gaussian corresponding to the event uncer-
tainty. Two example analysis templates are shown for a smearing of 7

� (B, E) and 15
� (C, F).

The spatial distribution of the KRA
50
� model is similar to the KRA

5
� one shown here and it is

available in the IceCube data archive.

S19

 [IceCube Science 380 (2023)]  [templates: Fermi'12; Gaggero, Grasso, Marinelli, Urbano & Valli '15]
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Point-Source Significance Map

Figure S10: All-sky search significance as a function of direction with tested sources. Same
as in Figure 4, but with an additional 30

�-cutout (indicated by grey lines) in galactic coordinates
(longitude and latitude indicated by l and b, respectively). Teal contours enclose 20% and 50%
of the acceptance-corrected and smeared Fermi Bubbles template (FBs). Also shown are the
sources of each of the three stacking catalogs, where the locations of sources are indicated by
star, triangle, and circle symbols. The sources in the stacking catalogs follow the Galactic plane,
indicated by a dark line. The Galactic plane cutout (B) also shows the central 20% and 50%
contours of the ⇡0 model (⇡0

s ) convolved with detector acceptance and smeared with a Gaussian
corresponding to the uncertainty of a typical signal event (7�), as shown in Figure 1E.

S20

 [IceCube Science 380 (2023)]

No significant PS emission but local fluctuations align  with Galactic Plane.

ν

Point-Source (PS)  

p-value map
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Segmented Fit

IceCube Segmented Galactic Neutrino Flux

(a) The 3 segments “generic” segmentation scheme. (b) Scheme aligning with the LHAASO GP analysis region.

Figure 1: Two of the eight used segmentation schemes of the galactic plan shown in equatorial coordinates
in the Mollweide projection.

is defined by the ratio of the likelihood where all parameters 𝐿𝐿 , 𝑀𝐿 (𝑁 = 1, . . . ,𝑂) are optimized
to maximize the likelihood, compared to the null hypothesis of no neutrino emission 𝐿𝑀 = 0.

2.1 Segmentation Schemes

Overall, eight di!erent segmentation schemes are used to analyze the data. This will result in
eight test statistics. First, three “generic” segmentation schemes are defined, which are chosen to
obtain insights into the changing flux and spectrum at di!erent galactic longitudes. All three generic
segmentation schemes have segments that extend in galactic latitude from →8↑ to 8↑, which means
they have a height of 16↑. This aligns with the inner galactic analysis region of the Fermi-LAT
telescope in Reference [5], but is also a value which fits this analysis. Since the cascades used in
this analysis have an average angular uncertainty of 7↑ [4], choosing a smaller height than around
14↑ does not improve the sensitivity of this analysis. The first generic segmentation scheme divides
the galaxy into an inner region from galactic longitude →60↑ to 60↑ and one outer region →180↑

to →60↑, 60↑ to 180↑. The second generic segmentation scheme divides the galaxy into an inner
region from →40↑ to 40↑, a left arm from →180↑ to →40↑ as well as a right arm from 40↑ to 180↑.
This “3 Segments scheme” is visualized in Figure 1a in equatorial coordinates. Then, to stress the
analysis method, a segmentation scheme with six equal-size, adjacent segments is defined, each
spanning a width in galactic longitude of 60↑. The central segment of that scheme is centered
around the galactic center from →30↑ to 30↑ in galactic longitude. An overview of the di!erent
generic segmentation schemes along with their unblinding results is provided in Table 1.

In order to compare IceCube’s GP results in a more model-independent way than previously
possible, five segmentation schemes aligning with analysis regions of high energy 𝑀 ray observa-
tories are defined. These are HAWC [3], H.E.S.S. [13], LHAASO[1, 14] and Tibet AS𝑀 [2], an
overview is provided in Table 2. The two analysis regions of Tibet AS𝑀 overlap and must therefore
be split into two di!erent segmentation schemes. The chosen segmentation schemes are constructed
by having the first segment(s) aligning with the analysis region(s) of the experiments and the last
segment is the remaining GP. This is illustrated in Figure 1b for the LHAASO segmentation scheme
in equatorial coordinates. There, Segment 3 covers the part of the GP which is not observed by
LHAASO. The obtained results can then be compared to a neutrino equivalent flux of the 𝑀-fluxes.
Under simple assumptions they evaluate to 𝑃2

𝑁
d𝑂All-Flavor

𝐿
d𝑃𝐿

= 3/2𝑃2
𝑄

d𝑂𝑀

d𝑃𝑀
and 𝑃𝑄 = 2𝑃𝑁 [15, 16].

4

Overview of the 3 Segment Result

Compact way of visualizing the result:

• Higher emission from
the galactic center

• 68% 1D intervals
assuming Wilks’
theorem

• Flux @4 TeV per
steradian

Ludwig Neste 8

• Fit of power-law emission (spectral index & normalization) along GP. 

• Evidence for enhanced emission in inner region ( ) 

• Significance:  (pre-trial) for three-segment fit

−40∘ ≤ ℓ ≤ 40∘

3.84σ

Fit of Galactic flux in segments  
using DNNcascade

[IceCube, PoS(ICRC2025)1130 & PoS(ICRC2025)1219]
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 [IceCube Science 380 (2023)]

yield at each DOM. Symmetries (such as rota-
tion, translation, and time invariance of the
neutrino interaction) and detector-specific do-
main knowledge are exploited by directly in-
cluding them in thenetwork architecture,which
is analogous to how a Monte Carlo simulation
would exploit this information. This differs
from previous CNN-based methods used in
neutrino telescopes (15), which inferred the
event properties directly from the observed
data. However, the observed IceCube data
are already convolved with detector effects,
making it difficult to exploit the underlying
symmetries. Our hybrid method is intended
to provide a more complete use of available
information. A description of the hybridmeth-
od has been published previously (16), and
we discuss its application to our dataset (30).
We found that this deep learning event se-

lection retains more than 20 times as many
events as that retainedwith the selectionmeth-
od used in the previous cascade-based Galactic
plane analysis of IceCube data (Fig. 2) (12). It
also provides improved angular resolution, by
up to a factor of 2 at tera–electron volt energies
(fig. S5) (16). The increased event rate ismostly
due to the reduced energy threshold and the
inclusion of events near the boundaries of
the instrumented volume (fig. S3). We analy-
zed 10 years of IceCube data, collected be-
tween May 2011 and May 2021. A total of
59,592 events were selected over the entire
sky in the energy range of 500 GeV to several
peta–electron volts, comparedwith 1980 events
from 7 years in the previous selection (12). We
estimate that the remaining sample has an
atmospheric muon contamination of about 6%
(30), whereas the astrophysical neutrino con-
tribution is estimated to about 7%, assuming

the observed flux (22). The remaining 87% of
the events are atmospheric neutrinos. These
fractions are not used in the analysis directly;
instead, we used the entire sample to derive a
data-driven background estimate.

Searches for Galactic neutrino emission

We used this event selection to perform
searches based on several neutrino emission
hypotheses (30). For each hypothesis, we used
a previously described maximum likelihood–
based method (31), modified to account for
signal contamination in the data-derived back-
groundmodel (11, 12). These techniques, decided
a priori and blind to the reconstructed event
directions, infer the background from the data
itself, avoiding the uncertainties introduced by
background modeling. We calculated P values
by comparing the experimental results with
mock experiments performed on randomized
experimental data. The backgrounds for these
searches—consisting of atmospheric muons,
atmospheric neutrinos, and the flux of ex-
tragalactic astrophysical neutrinos—are each
largely isotropic. The rotation of Earth ensures
that for a detector located at the South Pole,
the detector sensitivity to neutrinos at differ-
ent right ascensions is fairly uniform in each
declinationband. Therefore,we estimated back-
grounds by scrambling the right ascension
value of each event, preserving all detector-
specific artifacts in the data. Any systematic
differences between the modeling of signal
hypotheses and the true signal could reduce
the sensitivity of our search but would not
invalidate the resulting P values.
The source hypothesis tests were defined a

priori. They include tests for the diffuse emis-
sion expected from cosmic rays interacting

with the interstellar medium in the Galactic
plane, tests that use catalogs of known Galac-
tic sources of tera–electron volt gamma rays,
and a test for neutrino emission from the
Fermi Bubbles (large areas of diffuse gamma-
ray emission observed above and below the
Galactic Center) (32). We also performed an all-
sky point-like source search and a test for emis-
sion from a catalog of known giga–electron volt
(mostly extragalactic) gamma-ray emitters (sup-
plementary text). The results for each test (30)
are summarized in Table 1.

Galactic plane neutrino searches

We tested three models of Galactic diffuse
neutrino emission, extrapolated from the ob-
servations in gamma rays (Fig. 1B). These mod-
els are referred to as p0, KRA5

g, andKRA
50
g (33)

and are each derived from the same under-
lying gamma-ray observations (1). The model
predictions depend on the distribution and
emission spectrum of cosmic-ray sources in
the Galaxy, the properties of cosmic-ray diffu-
sion in the interstellar medium, and the spa-
tial distribution of target gas. Each neutrino
emission model was converted to a spatial tem-
plate, then convolved with the detector ac-
ceptance and the event’s estimated angular
uncertainty, to produce an event-specific spatial
probability density function (shown for a typical
event angular uncertainty of 7° in Fig. 1D).
The p0model assumes that themega–electron

volt–to–giga–electron volt p0 component, infer-
red from the gamma-ray emission, follows a
power law in photon energy (E) of E–2.7 and
can be extrapolated to tera–electron volt en-
ergies with the same spatial emission profile.
The KRAg models include a variable spectrum
in different spatial regions, use a harder (on
average) neutrino spectrum than that of the p0

model, and include a spectral cutoff at the
highest energies (33). In this analysis, the KRAg

models are tested with a template that uses a
constant, model-averaged spectrum over the
sky, roughly corresponding to an E–2.5 power
law, with either a 5 or 50 PeV cosmic-ray en-
ergy cutoff for the KRA5

g and KRA50
g models,

respectively. The KRAg models predict more
concentrated neutrino emission from the Ga-
lactic Center region, whereas the p0 model
predicts events more evenly distributed along
the Galactic plane. The corresponding neutrino
spectrumpredicted by each of thesemodels has
a cutoff at about 10 times lower energies.
We performed Galactic template searches

with the same methods as those of previous
Galactic diffuse emission searches (11, 12).
Because of the uncertainties in the expected
distribution of sources, and their emission spec-
trum and cosmic-ray diffusion, we make no
assumption about the absolute model nor-
malization. Instead, the analyses include an
unconstrained free parameter for the number
of signal events (ns) in the entire sky, which
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Fig. 2. Neutrino effective area and event selection comparison. (A) The all-flavor southern sky effective area
(AEff) of the IceCube dataset, averaged over a solid angle in the declination (d) range between –90° and –5°
as a function of Ev, the true neutrino energy. Results are shown for the deep learning event selection used in this
work (dark blue), a previous cascade event selection (light blue) (12), and a previous track event selection (gray)
(20) applied to the IceCube data. (B) The number of expected signal events (NAstro) in the Southern sky per
energy bin per year for each event selection, assuming an isotropic astrophysical flux (22). Calculations are based
on equal contributions of each neutrino flavor at Earth because of neutrino oscillations.
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Figure S5: Cascade event angular resolution. The angular resolution, defined as quantiles of
the distribution of opening angles (� ) between true and reconstructed directions, as a function
of neutrino energy (E⌫) is shown for simulated events in this work (solid, black line and shaded
regions) and the previous cascade selection (12) (dashed-dotted). The dashed, orange curve
shows the angular resolution of contained events. Systematic uncertainties are not included.

as demonstrated in Figure S5. This is accomplished by the hybrid reconstruction method (16),

which exploits more information than the CNN-based method (15, 48) used in the previous

cascade selection. The energy resolution of this sample is illustrated in in Figure S6.

Combining maximum-likelihood with deep learning

The hybrid reconstruction method is a likelihood-based reconstruction algorithm that utilizes

deep learning to approximate the underlying probability density function (PDF), i.e. the pulse

arrival time distribution at each of the 5160 DOMs for any given light emitter-receiver con-

figuration. In previous reconstruction methods (19, 29), this PDF was incorporated by di-

mensionality reductions and other approximations. Our hybrid method uses neural networks

to model these high-dimensional and complex dependencies. It is constructed to exploit the

available physical symmetries and domain knowledge. Details on how the neural network ar-

S12

typical angular 
resolution 

 σPSF ≃ 7∘

Analysis is based on novel cascade event selection and  
reconstruction using deep neutral networks (DNNcascade).
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The detector was in this configuration from 23 September 2022 until 11 
September 2023, when seven further lines were installed. After remov-
ing data acquired in the detector commissioning phase and during 
detector calibration periods, 287.4 days of data taking were selected for 
analysis with this configuration. During this period, about 110 million 
events were triggered and KM3-230213A is the highest-energy event 
observed. KM3-230213A is visualized in Fig. 1. A total of 28,086 hits 
were registered by the 21 detection lines. Owing to the large amount of 
detected light, the PMTs closest to the muon trajectory are saturated. 
As expected for very-high-energy muons, at least three large showers, 
probably because of energy-loss processes, are observed along the 
track (more details are provided in the Supplementary Materials).

The muon trajectory is reconstructed from the measured times and 
positions of the first hits recorded on the PMTs, using a maximum- 
likelihood algorithm, described in Methods. KM3-230213A is the event 
with the best track log-likelihood among all those collected in this detec-
tor configuration, indicative of a highly relativistic muon travelling 
several hundreds of metres through the detector. The direction of KM3-
230213A is reconstructed as near-horizontal, originating 0.6° above 
the horizon at an azimuth of 259.8° (azimuth angles increase clock-
wise, with north at 0°). The uncertainty on the direction is estimated  
to be 1.5° (68% confidence level), dominated by the present systematic 
uncertainty on the absolute orientation of the detector. The origin of 
this uncertainty is described in Methods. A dedicated sea campaign 

N
100 m

N

100 m

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

Ti
m

e 
(n

s)

23
24

25

15

10 11
16

20

26 27

22

12

5

32

28

23

24

20

30

25

19

14

15

13

9

10

11
12

5

16

21

26

22

27 28

32

21

13

19

14

9

30

a

b

Fig. 1 | Views of the event. a, Side and top views of the event. The reconstructed 
trajectory of the muon is shown as a red line, along with an artist’s representation 
of the Cherenkov light cone. The hits of individual PMTs are represented by 
spheres stacked along the direction of the PMT orientations. Only the first  
five hits on each PMT are shown. As indicated in the legend, the spheres are 
coloured according to the detection time relative to the first triggered hit. The 
size of the spheres is proportional to the number of photons detected by the 

corresponding PMT. The locations of the secondary cascades, discussed in 
the Supplementary Material, are indicated by the black spheres along the muon 
trajectory. The north direction is indicated by a red arrow. A 100-m scale and 
the Eiffel Tower (330 m height, 125 m base width) are shown for size comparison. 
b, Zoomed-in view of the optical modules that are close to the first two observed 
secondary showers in the event. Here light-blue spheres represent hits that 
arrive within −5 to 25 ns of the expected Cherenkov arrival times.

•  muon reaching ARCA-21 from  above the horizon 

• For -flux, corresponds to  neutrino (90% C.L.) 

• Flux is in tension with upper limits of IceCube and Auger ( )

120 PeV 0.6∘

E−2
νμ

72 PeV − 2.6 EeV
2.5 − 3σ

[KM3NeT, Nature 638 (2025) 8050; arXiv:2502.08173]

ARCA-21 
February 13, 2023
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•  muon reaching ARCA-21 from  above the horizon 

• For -flux, corresponds to  neutrino (90% C.L.) 

• Flux is in tension with upper limits of IceCube and Auger ( )

120 PeV 0.6∘

E−2
νμ

72 PeV − 2.6 EeV
2.5 − 3σ
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observed at the coordinates of KM3-230213A and 90% confidence level 
upper limits on the one-flavour neutrino flux normalization at 1 GeV, 
Φν ν+

1GeV, assuming a neutrino spectrum of Φ E Φ E( ) = ( (GeV))ν ν ν ν+ +
1GeV −2,  

were set and are reported in Methods. The most stringent limit on the 
point-source origin is 1.2 × 10−9 GeV−1 cm−2 s−1. Although these searches 
are also sensitive to very-high-energy events, the signal for an E−2 spec-
trum is expected in the TeV–PeV range and the reported limits are 
therefore applicable in this area.

Cosmic neutrino flux
To associate a flux to the event, the exposure of the detector for very- 
high-quality and high-energy tracks is computed through simulations. 
The exposure corresponds to selection criteria that require a good 
track-reconstruction likelihood (log-likelihood ratio larger than 500), 
a long track length within the detector (larger than 250 m) and 
N > 1,500trig

PMT .
Considering the central (90%) 72 PeV–2.6 EeV energy range, the 

steady isotropic flux that would produce one event is

E Φ E( ) = 5.8 × 10 GeV cm s sr ,2
−3.7
+10.1 −8 −2 −1 −1

for which the confidence intervals are computed according to  
ref. 26. The 95% and 99.7% confidence level intervals are [0.30–29.8] 
and [0.02–47.7] × 10−8 GeV cm−2 s−1 sr−1, respectively. This represents 
the KM3NeT standalone flux measurement in the 335 days of livetime 
of ARCA with 19 and 21 detection lines.

In Fig. 5, the flux measurement is compared with measured and 
predicted neutrino fluxes and limits. The KM3NeT standalone flux 
measurement exceeds present limits from IceCube27 and Auger28. A pos-
sible interpretation is that the KM3NeT event is an upward fluctuation.  

In such a scenario, described in Methods, one event such as KM3-
230213A would be expected in 70 years of observation with this detec-
tor configuration, and the event is an upward fluctuation at the level 
of 2.2σ.

The expected event rates in ARCA for various extrapolations of the 
flux measured by IceCube are discussed in the Supplementary Mate-
rial. Considering extrapolations of the power-law fit of the IceCube 
measurements, these would yield at most 0.12 events in the 335 days of 
analysed KM3NeT data with 19 and 21 detection lines after the selection 
for track events described above. The observation of KM3-230213A, 
marginally consistent with such expectation, may hint at the emergence 
of a new component in the flux.

A viable alternative hypothesis is cosmogenic neutrino produc-
tion8,29,30, in which neutrinos are generated by the interaction of cosmic 
rays with extragalactic background light or the cosmic microwave back-
ground. The expected number of cosmogenic events in the selected 
data varies between 1.5 × 10−3 (ref. 31) and 0.47 (ref. 32), depending on 
the assumed injection spectrum and cosmic-ray mass composition, 
as well as the cosmological evolution of sources31–40. The envelope of 
a selection of cosmogenic models is shown as a grey-shaded band in 
Fig. 5. Other scenarios of diffuse emission from neutrino production 
in the source environment are shown as the yellow-shaded band in 
Fig. 5. Among these are transient emitters such as gamma-ray-bursts 
and tidal-disruption events34,39,41–44, low-luminosity BL Lacs45 and 
flat-spectrum radio quasars46.

Overall, the detection of a muon neutrino with an energy greater 
than 100 PeV provides evidence for the existence of ultra-high-energy 
neutrinos in nature. The new multiPMT optical module design and the 
excellent optical properties of Mediterranean seawater have allowed 
the characterization of the neutrino interaction and have facilitated 
this breakthrough in neutrino astronomy.
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Fig. 5 | Comparison with models and earlier measurements. Shown is the 
energy-squared per-flavour astrophysical flux derived from the observation  
of KM3-230213A with measurements and theoretical predictions, assuming 
equipartition (νe:νµ:ν% = 1:1:1). The blue cross corresponds to the flux needed  
to achieve one expected event after the track selection described in the text,  
in the central 90% neutrino energy range associated with KM3-230213A, 
illustrated with the horizontal span; the vertical bars represent the 1σ, 2σ and 3σ 
Feldman–Cousins confidence intervals on this estimate. The purple and pink 
shaded regions represent the 68% confidence level contours of the IceCube 
single-power-law (SPL) fits (Northern Sky Tracks, NST5) and High-Energy 
Starting Events (HESE)7, respectively: the darker-shaded regions are the 
respective 90% central energy range at the best fit (dashed line), whereas the 

lighter-shaded regions are extrapolations to higher energies. The purple and 
pink crosses are the piece-wise fit from the same analyses, whereas the orange 
cross corresponds to the IceCube Glashow resonance event11. The dotted lines 
are upper limits from ANTARES (95% confidence level47), Pierre Auger (90% 
confidence level, for an E−2 neutrino spectrum28, corrected to convert from 
limits in half-decade to one-decade bins) and IceCube (90% confidence level, 
estimated assuming an E−1 neutrino spectrum in sliding one-decade bins27). The 
grey-shaded band comprises a variety of cosmogenic neutrino expectations 
following several models of cosmic-ray acceleration and propagation, whereas 
the yellow-shaded band comprises several scenarios of diffuse transient and 
variable extragalactic sources, both reported in the Supplementary Material.

[KM3NeT, Nature 638 (2025) 8050; arXiv:2502.08173]
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24Figure 2: The sky region around the most significant spot in the Northern Hemisphere

and NGC 1068. The left plot shows a fine scan of the region around the hottest spot. The spot
itself is marked by a yellow cross and the red star shows the position of NGC 1068. In addition,
the solid and dashed contours show the 68% (solid) and 95% (dashed) confidence regions of
the hot spot localization. The right plot shows the distribution of the squared angular distance
between NGC 1068 and the reconstructed event direction. From Monte Carlo we estimate the
background (orange) and the signal (blue) assuming the best-fit spectrum at the position of
NGC 1068. The superposition of both components is shown in gray and provides an excellent
match to the data (black). Note that this representation of the result neglects all the information
on the energy and angular uncertainty of the events that is used in the unbinned maximum
likelihood approach.

This results in a local significance of 3.7�, a small increase with respect to what was reported

in (25) that is independent of the increase of the significance at the location of NGC 1068.

After correcting for having tested three different spectral index hypotheses, we obtain a final

post-trial significance of 3.4� for the binomial test. Besides NGC 1068, the other two objects

contributing to the excess are the blazars PKS 1424+240 and TXS 0506+056, for which we

find potential neutrino emission with local significance of 3.7� and 3.5�, respectively. We

emphasize that the significance of TXS 0506+056 reported here relates to a time-integrated
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Figure 9: The spectral flux (�) of neutrinos inferred from the eight-year upgoing track analysis (red fit) and the six-

year HESE analysis (magenta fit) compared to the flux of unresolved extragalactic �-ray sources [100] (blue data)

and ultra-high-energy cosmic rays [101] (green data). The neutrino spectra are indicated by the best-fit power-law

(solid line) and 1� uncertainty range (shaded range). We highlight the various multimessenger interfaces: A: The

joined production of charged pions (⇡±
) and neutral pions (⇡0

) in cosmic-ray interactions leads to the emission of

neutrinos (dashed blue) and �-rays (solid blue), respectively. B: Cosmic ray emission models (solid green) of the

most energetic cosmic rays imply a maximal flux (calorimetric limit) of neutrinos from the same sources (green

dashed). C: The same cosmic ray model predicts the emission of cosmogenic neutrinos from the collision with

cosmic background photons (GZK mechanism).

Note, that the relative production rates of pionic gamma rays and neutrinos only depend on the

ratio of charged-to-neutral pions produced in cosmic-ray interactions, denoted by K⇡ = N⇡±/N⇡0 .

Pion production of cosmic rays in interactions with photons can proceed resonantly in the processes

p + � ! �+ ! ⇡
0 + p and p + � ! �+ ! ⇡

+ + n. These channels produce charged and

neutral pions with probabilities 2/3 and 1/3, respectively. However, the additional contribution

of nonresonant pion production changes this ratio to approximately 1/2 and 1/2. In contrast,

cosmic rays interacting with matter, e.g., hydrogen in the Galactic disk, produce equal numbers

of pions of all three charges: p + p ! N⇡ [ ⇡0 + ⇡
+ + ⇡

�] +X, where N⇡ is the pion multiplicity.

From above arguments we have K⇡ ' 2 for cosmic ray interactions with gas (pp) and K⇡ ' 1 for

interactions with photons (p�).

With this approximation we can combine Eqs. (1) and (2) to derive a simple relation between
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[IceC
ube, Science 378 (2022)]

TXS 0506+056 NGC 1068

• High neutrino intensity 
compared to other 
cosmic backgrounds. 

• Open questions: 
★ origin? 
★ spectral features? 
★ consistent MM emission? 

• Some strong indications 
for individual sources: 
★ blazar TXS 0506+056 
★ active galaxy NGC 1068 
★ Seyfert galaxy catalogues 
★ Galactic plane 

• Many interesting (but 
weak) correlations with 
other candidate sources.
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The IceCube Observatory

• Giga-ton Cherenkov

telescope at the South Pole
• Collaboration of about 300

people at 47 intl. institutions
• 60 digital optical modules

(DOMs) per string
• 78 IceCube strings

125 m apart on triangular grid
• 8 DeepCore strings

DOMs in particularly clear ice
• 81 IceTop stations

two tanks per station, two
DOMs per tank

• 7 year construction phase
(2004-2011)

• price tag: e0.25 per ton

Markus Ahlers (NBI) Deciphering Cosmic ⌫s with MM Astronomy May 22, 2018 slide 4

• Giga-ton optical Cherenkov 
telescope at the South Pole 

• 86 IceCube strings of 60 
DOMs instrumenting 1 km3 
of clear glacial ice 

• 81 IceTop stations for cosmic 
ray shower detections 

• running in full IC86 
configuration since 2011 

• >99% detector uptime 

• trigger rate about 2.7 kHz 

• about 100 GB/day data 
transferred via satellite
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• 7 new strings in the DeepCore 
region (~20m inter-string spacing)  

• New sensor designs, optimized for 
ease of deployment, light 
sensitivity & effective area 

• New calibration devices, 
incorporating lessons from a 
decade of IceCube calibration 
efforts 

• In parallel, IceTop surface 
enhancements (scintillators & 
radio antennas) for CR studies. 

• Scheduled for deployment at the 
end of this year.

D-Egg

IceCube Upgrade Aya Ishihara

1. What’s the IceCube Upgrade?

The IceCube Neutrino Observatory was completed at the South Pole in 2011. IceCube has
led to many new findings in high-energy astrophysics, including the discovery of an astrophysical
neutrino flux and the temporal and directional correlation of neutrinos with a flaring blazar [1].
It has defined a number of upper-limits on various models of the sources of ultra-high energy
cosmic rays, as well as measurements on the fundamental high-energy particle interactions, such
as neutrino cross sections in the TeV region [2].

IceCube uses glacial ice as a Cherenkov medium for the detection of secondary charged par-
ticles produced by neutrino interactions with the Earth. The distribution of Cherenkov light mea-
sured with a 1 km3 array of 5160 optical sensors determines the energy, direction, and flavor of
incoming neutrinos. Although the South Pole is considered one of the world’s most harsh envi-
ronments, the glacial ice ⇠2 km below the surface is a dark and solid environment with stable
temperature/pressure profiles ideal for noise sensitive optical sensors. IceCube has recorded de-
tector uptime of more than 98% in the last several years. While it has been 15 years since the
first installation of the sensors, an extremely low failure rate of the optical modules has also been
observed, demonstrating that the South Pole is a suitable location for neutrino observations.

The IceCube Upgrade will consist of seven new columns of approximately 700 optical sensors,
called strings, embedded near the bottom center of the existing IceCube Neutrino Observatory. As
illustrated in Fig. 1, the "Upgrade" consists of a 20 m (horizontal) ⇥ 3 m (vertical) grid of photon

Figure 1: The Upgrade array geometry. Red marks on the left panel shows the layout of the 7 IceCube
Upgrade strings with the IceCube high-energy array and its sub-array DeepCore. The right panel shows
the depth of sensors/devices for the IceCube Upgrade array (physics region). The different colors represent
different optical modules and calibration devices. The Upgrade array extends to shallower and deeper ice
regions filled with veto sensors and calibration devices (special calibration regions).
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Alexander Kappes, PAHEN Workshop, Berlin, 26.9.2019

New sensor designs feature one or more  
of the following qualities 

• Upgraded electronics 
• Smaller diameter 
• Increased UV sensitivity 
• Larger and/or pixelated effective area 

!6

clear ice

dusty  ice

3m vertical separation

special calibration region

Dual optical sensor in an Ellipsoid 
Glass for Gen2 

3 

Φ = 300 mm 

D-Egg	  
(277	modules)

 30 cm 

PDOM	  
(14	modules)

 33 cm 36 cm

mDOM	  
(403	modules)

A new generation of sensors

“Physics region”

Alexander Kappes, PAHEN Workshop, Berlin, 26.9.2019

New sensor designs feature one or more  
of the following qualities 

• Upgraded electronics 
• Smaller diameter 
• Increased UV sensitivity 
• Larger and/or pixelated effective area 
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clear ice

dusty  ice

3m vertical separation

special calibration region

Dual optical sensor in an Ellipsoid 
Glass for Gen2 

3 

Φ = 300 mm 

D-Egg	  
(277	modules)

 30 cm 

PDOM	  
(14	modules)

 33 cm 36 cm
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(403	modules)

A new generation of sensors

“Physics region”

mDOM LOM-16/18

Optical Module for IceCube-Gen2

5

312 mm 318 mm

54
0 

m
m

44
4 

m
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• Two design candidates; 16 and 18 PMT models  

‣ 18 PMT model: Max effective area with a 12.5’’ vessel

‣ 16 PMT model: Relatively simple, smaller size & weight


• Technologies & concepts inherited from Upgrade R&D


• 4’’ PMTs to maximize effective area

‣ Largest possible for back-to-back layout


• Gel pads for optical coupling & light collector 

‣ Avoid complex holder structure (mDOM, Km3Net DOM)

‣ Similar idea tried in P-ONE DOM (PoS (ICRC2023) 1219)


• Custom electronics designed for Gen2 needs

‣ Single p.e. events to high energy neutrino events

‣ Low power consumption & compact design

16 PMT model 18 PMT model

32 cm
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Vision: IceCube-Gen2
• Multi-component facility (low- and high-energy & multi-messenger) 
• In-ice optical Cherenkov array with 120 strings and 240m spacing 
• Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto 
• Askaryan radio array for >10 PeV neutrino detection 
• price: mostly comparable to IceCube-Gen1 when corrected for inflation

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

THE ICECUBE-GEN2 NEUTRINO OBSERVATORY

Figure 12: Top view of the envisioned IceCube-Gen2 Neutrino Observatory facility at the South Pole station, Antarc-
tica. From left to right: The radio array consists of 361 stations (shallow and hybrid) in the reference design. The
optical high-energy array features 120 new strings (shown as orange points) that are spaced 240 m apart and in-
strumented with 80 newly developed optical modules each, over a vertical length of 1.25 km. The total instrumented
volume of the optical detector in this design is 7.9 times larger than the current IceCube detector array (blue points).
On the far right, the layout for the seven IceCube Upgrade strings relative to existing IceCube strings is shown.

3. Revealing the sources and propagation of the highest energy particles in the Milky
Way and the Universe: This includes studying Galactic and extragalactic cosmic-
ray sources and their neutrino emission, cosmic ray interactions in the interstel-
lar medium, the properties of cosmic rays in the galactic-extragalactic transition
region above 100 PeV, as well as the propagation of extragalactic cosmic rays
through the measurement of cosmogenic neutrinos.

4. Probing fundamental physics with high-energy neutrinos and cosmic rays: This
entails studying hadronic interactions in the PeV domain, measuring neutrino
cross sections at energies far beyond the reach of terrestrial particle accelera-
tors, searching for new physics from neutrino flavor mixing over cosmic baselines,
and searching for heavy dark matter particles, monopoles and other particles pre-
dicted by SUSY or theories with extra dimensions.

1.6 The IceCube-Gen2 neutrino telescope

The IceCube-Gen2 facility designed to achieve the goals outlined in the previous sec-
tion will encompass the currently operating IceCube detector, including the 7 new
strings in the center of the IceCube array that are scheduled for a 2025/2026 deploy-
ment in the IceCube Upgrade. Three new components will be added to the existing
detector: an in-ice optical array, a surface air shower array, and an extended radio de-
tector array. Figure 12 presents a top view of the IceCube-Gen2 facility, with its various
components, each utilizing optimized technologies for the targeted energy ranges. The
surface array will be installed on the footprint of the optical array.

The optical array, optimized for the detection of TeV and PeV neutrinos, will feature 120
new strings, each equipped with 80 photosensors that collect 4 times more light than
current IceCube DOMs. These 9600 new photosensors will be distributed along each
string with a vertical spacing of ⇥17 m at depths ranging from 1.35 km to 2.7 km below

18

+ Surface array

http://icecube-gen2.wisc.edu/science/publications/tdr/
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• ARCA : 2 building blocks of 115 
detection units (DUs) each 

• ORCA : 115 DUs optimized for 
low-energy (GeV) and oscillation 
analyses 

• status May 2025 : 33 DUs in 
ARCA and 28 DUs in ORCA 

• Improved angular resolution for 
water Cherenkov emission. 

• 5  discovery of diffuse flux with 
full ARCA within one year 

• Complementary field of view 
ideal for the study of point 
sources.

σ
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2.3. Localization

The position of each source was determined by maximizing
the likelihood starting from the seed position, using gtfindsrc.
We used gtfindsrc rather than pointlike (used in 3FGL) in order
to benefit from the full power of PSF event types introduced
in Pass 8. The gtfindsrc tool works in unbinned mode,
automatically selecting the appropriate PSF for each event as a
function of its event type and off-axis angle (the PSF broadens
at large off-axis angles). The gtfindsrc run was integrated into
the main iterative procedure (Section 2.4), starting with the
brightest sources. This ensures that the surrounding sources
were correctly represented. The main drawback is that gtfindsrc
provides only a symmetric (circular) error radius, assuming a
Gaussian distribution, not the full TS map and an ellipse as
pointlike does. There is no reason to believe that this is a
serious limitation. For example, in 3FGL the average ratio
between the two axes of the error ellipses was 1.20, so most
ellipses were close to circular. At higher energies (1FHL) this
ratio was even smaller, 1.12.

The systematic uncertainties associated with localization
were not calibrated on 3FHL itself, but on the larger (and more
precise) preliminary source list derived from an analysis over
all energies greater than 100MeV. The absolute precision at the
95% confidence level was found to be 0°.0075 (it was 0°.005 in
3FGL, but the statistical precision on localization was not
good enough to constrain the absolute precision well). The
systematic factor was found to be 1.05, as in 3FGL. We
checked that the 3FHL localizations were consistent with the
same values. Consequently, we multiplied all error estimates by
1.05 and added 0°.0075 in quadrature.

2.4. Significance and Spectral Characterization

The framework for this stage of the analysis was inherited
from the 3FGL catalog analysis pipeline (Acero et al. 2015). It
splits the sky into regions of interest (RoIs), each with typically

half a dozen sources whose parameters are simultaneously
optimized. The global best fit is reached iteratively, by
including sources in the outer parts of the RoI from the
neighboring RoIs at the previous step. Above 10 GeV the PSF
is narrow, so the cross-talk is small and the iteration converges
rapidly. The diffuse emission model had exactly one free
normalization parameter per RoI (see the Appendix for details).
We used unbinned likelihood with PSF event types over the
full energy range, neglecting energy dispersion. Extended
sources (Section 2.5) were treated just as point sources, except
for their spatial templates. Whenever possible, we applied the
new RadialDisk and RadialGaussian analytic spatial templates
for the likelihood calculation. They are not pixelized and hence
are more precise than the map-based templates used in 3FGL.
Sources were modeled by default with a power-law (PL)

spectrum (two free parameters, a normalization and a spectral
photon index). At the end of the iteration, we kept only sources
with TS> 25 with the PL model, corresponding to a
significance of just over 4σ evaluated from the χ2 distribution
with 4 degrees of freedom (position and spectral parameters,
Mattox et al. 1996). We also enforced a minimum number of
model-predicted events Npred� 4 (only two sources were
rejected because of this limit, and only two have Npred< 5).
We ended up with 1556 sources with TS> 25, including 48
extended sources.
The alternative curved LogParabola (LP) spectral shape

dN
dE

K
E
E

1
E E

0

log 0

=
a b- -⎛

⎝⎜
⎞
⎠⎟ ( )

( )

was systematically tested, and adopted when
Signif_Curve= 2 ln LP PL 3L L >( ( ) ( )) , corresp-
onding to 3-σ evidence in favor of the curved model (the
threshold was 4σ in 3FGL). Among 1556 sources, only 6 were
found to be significantly curved at the 4σ level. Lowering the
threshold to 3σ added 26 curved sources, whereas an average

Figure 1. Adaptively smoothed Fermi-LAT counts map in the 10 GeV–2 TeV band represented in Galactic coordinates and Hammer–Aitoff projection. The image has
been smoothed with a Gaussian kernel whose size was varied to achieve a minimum signal-to-noise ratio under the kernel of 2.3. The color scale is logarithmic and the
units are counts per (0.1 deg)2 pixel.
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The Astrophysical Journal Supplement Series, 232:18 (23pp), 2017 October Ajello et al.
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Isotropic Diffuse Flux
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Figure 5. Summary of astrophysical neutrino-flux measurements. Best-fit parameters and uncertainty contours for the single
power-law hypothesis are drawn for studies based on high-energy starting events (Abbasi et al. 2021), cascade-like events (Aartsen
et al. 2020c), and an inelasticity study (Aartsen et al. 2019) by IceCube. ANTARES observes a mild excess of events over the
expected atmospheric backgrounds in a combined study of tracks and cascades (Fusco & Versari 2019).

atmospheric flux, but crucially also introduce energy-
dependent flux variations (Stettner 2021). The corre-
lations between the nuisance parameters are shown in
Figure 6.

Figure 6. Pearson correlation coefficients between the signal
and nuisance parameters are shown for the parameters of the
single power-law fit.

Figure 7. The upper figure shows the statistical pull per
bin between the experimental data and the MC expectation
assuming the best-fit energy spectrum obtained in Section 4.
The lower figure shows the pull density distribution for the
1048 analysis bins containing data events.

• Diffuse flux level agrees across analyses 
(within their overlapping energy regions). 

• However, mild tension between spectral 
indices for a single power-law flux .E−γ
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FIG. 17. The per flavor astrophysical neutrino flux shown
as a function of energy. The black points are the segmented
power law flux measurement assuming a spectral index of -
2. The blue line with error bands corresponds to the SPL
measurement as shown in Fig. 13. The blue shaded region is
the 90% sensitive energy range. The gray line is a fit to data
assuming a broken power law flux. We include results from
recent IceCube publications for direct comparison [49–51].

rameters from Tab. IV, and it allows us to quantify en-
ergy dependent e!ects on the flux in a model-independent
way.

Bini Energyω,i Energy Range ωi (±1ε)
εi,GP→εi

εi

1 1.78 TeV [1 - 3.16 TeV] 0.0+10.2
→0 0%

2 5.62 TeV [3.16 - 10 TeV] 13.33.67→3.67 -3.99%

3 17.8 TeV [10 - 31.6 TeV] 3.86+0.85
→0.85 -14.44%

4 56.2 TeV [31.6 - 100 TeV] 2.60+0.43
→0.43 -7.57%

5 178 TeV [100 - 316 TeV] 0.97+0.33
0.33 -7.22%

6 562 TeV [316 TeV - 1 PeV] 1.020.49→0.49 -1.96%

7 1.78 PeV [1 - 3.16 PeV] 0.00+0.28
→0 0%

8 5.62 PeV [3.16 - 10 PeV] 0.82+1.04
→0.82 -26.83%

TABLE V. The results of the segmented power law fit as show
in Fig. 17. All normalization components are fit simultane-
ously including all systematic uncertainties from Tab. IV.
The uncertainties are the 68% confidence intervals assuming
Wilks’ thereom. The rightmost column compares the seg-
mented power law fit with a refit done using a galactic plane
Gaussian prior term described in Sec. VIID.

For each ωi, a range of neutrino energies is used. When
plotting each normalization in Fig. 17, the median energy
for these energy ranges in log-space is used to compute

the total astrophysical flux per flavor. When the best-
fit ωi = 0, a 68% upper limit is quoted. All segments
are consistent with the single power law flux measure-
ment, indicating a lack of evidence for energy dependent
structure beyond a single power law. Previous IceCube
measurements are shown for direct comparison [49–51],
and they also did not find any evidence beyond the single
power law. We note each dataset used di!erent bins for
their analysis given their various strengths and weakness,
further discussed in Sec. VII F. An analysis of IceCube
cascade events [49] found hints of a hardening of the flux
towards lower energies but we do not observe this harden-
ing in this sample. The compatibility of the data samples
is discussed in greater detail in Sec. VII F.
At the highest energies, a non-zero flux was observed

from 3-10 PeV. This measurement is consistent with the
Glashow Resonance (GR) [108] flux measurement from
IceCube [109]. Monte Carlo only studies found the most
likely GR event topology is from ε̄e+e → W → µ+εµ or
ε̄e+e → W → ϑ+εω where the ϑ decays leptonically ϑ →
εω + µ+ εµ. This starting track would have no hadronic
shower but would still contain an energetic muon track
[110]. The resulting muon would only carry about 100 -
500 TeV of the initial neutrino energy preventing us from
identifying the single data event using the data sample
as presented in this work.

C. Measurement of the di!use flux assuming a
broken power law

We now characterise the astrophysical flux with an
isotropic, broken power law (BPL),

”Total
Astro = ω0 ↑ (

Ebreak

100TeV
)→ε2 ↑ C0,

ω0 =





ωAstro

per→flavor
↑ ( E

Ebreak
)→ε1(E < Ebreak),

ωAstro

per→flavor
↑ ( E

Ebreak
)→ε2(E > Ebreak).

(7)

This model assumes there are two spectral indexes, one
for neutrino energies below an energy break and a second
spectral index that extends to higher energies with the
normalization defined at the energy break. The parame-
ters to be fit are the flux normalization ωAstro

per→flavor
(ε : ε̄),

the energy break Ebreak, and two spectral indices ϖ1 and
ϖ2 with the following best fits:

ωAstro

per→flavor
= 1.7+0.19

→0.22, log10(
Ebreak

1GeV
) ↓ 4.36,

ϖ1 = 2.79+0.30
→0.50, ϖ2 = 2.52+0.10

→0.09.
(8)

The BPL model allows a model independent probe of
structure in the flux. Structure is expected in some mod-
els towards lower energies. For example in some scenar-
ios, the neutrino flux is expected to continue towards
lower energies [28, 111] until it reaches an energy break
and falls o! rapidly to ϖ ↓ 0 [112] below this break.
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Very-High Energy Cosmic Rays

⟨Eν⟩ ≃ 1
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IceCube Alert IC-170922A

lower limit of 183 TeV, depending onlyweakly on
the assumed astrophysical energy spectrum (25).
The vast majority of neutrinos detected by

IceCube arise from cosmic-ray interactions within
Earth’s atmosphere. Although atmospheric neu-
trinos are dominant at energies below 100 TeV,
their spectrum falls steeply with energy, allowing
astrophysical neutrinos to be more easily identi-
fied at higher energies. The muon-neutrino as-

trophysical spectrum, together with simulated
data, was used to calculate the probability that a
neutrino at the observed track energy and zenith
angle in IceCube is of astrophysical origin. This
probability, the so-called signalness of the event
(14), was reported to be 56.5% (17). Although
IceCube can robustly identify astrophysical neu-
trinos at PeV energies, for individual neutrinos
at several hundred TeV, an atmospheric origin

cannot be excluded. Electromagnetic observations
are valuable to assess the possible association of
a single neutrino to an astrophysical source.
Following the alert, IceCube performed a

complete analysis of relevant data prior to
31 October 2017. Although no additional excess
of neutrinoswas found from the direction of TXS
0506+056 near the time of the alert, there are
indications at the 3s level of high-energy neutrino

The IceCube Collaboration et al., Science 361, eaat1378 (2018) 13 July 2018 2 of 8

Fig. 1. Event display for
neutrino event IceCube-
170922A. The time at which a
DOM observed a signal is
reflected in the color of the hit,
with dark blues for earliest hits
and yellow for latest. Times
shown are relative to the first
DOM hit according to the track
reconstruction, and earlier and
later times are shown with the
same colors as the first and
last times, respectively. The
total time the event took to
cross the detector is ~3000 ns.
The size of a colored sphere is
proportional to the logarithm
of the amount of light
observed at the DOM, with
larger spheres corresponding
to larger signals. The total
charge recorded is ~5800 photoelectrons. Inset is an overhead perspective view of the event. The best-fitting track direction is shown as an arrow,

consistent with a zenith angle 5:7þ0:50
"0:30 degrees below the horizon.

Fig. 2. Fermi-LATand MAGIC observations of IceCube-170922A’s
location. Sky position of IceCube-170922A in J2000 equatorial coordinates
overlaying the g-ray counts from Fermi-LAT above 1 GeV (A) and the signal
significance as observed by MAGIC (B) in this region. The tan square
indicates the position reported in the initial alert, and the green square
indicates the final best-fitting position from follow-up reconstructions (18).
Gray and red curves show the 50% and 90% neutrino containment regions,
respectively, including statistical and systematic errors. Fermi-LATdata are
shown as a photon counts map in 9.5 years of data in units of counts per

pixel, using detected photons with energy of 1 to 300 GeV in a 2° by 2°
region around TXS0506+056. The map has a pixel size of 0.02° and was
smoothed with a 0.02°-wide Gaussian kernel. MAGIC data are shown as
signal significance for g-rays above 90 GeV. Also shown are the locations of
a g-ray source observed by Fermi-LAT as given in the Fermi-LAT Third
Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-LAT
Sources (3FHL) (24) source catalogs, including the identified positionally
coincident 3FGL object TXS 0506+056. For Fermi-LAT catalog objects,
marker sizes indicate the 95% CL positional uncertainty of the source.
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IceCube EHE (“extremely-high energy”) alert IC-170922A
Up-going muon track (5.7� below horizon) observed on September 22, 2017.

The best-fit neutrino energy for an E�2-spectrum is 311 TeV.

Markus Ahlers (NBI) Neutrino Sources in Light of Recent IceCube Results September 5, 2018 slide 18

up-going muon track (  below horizon) observed September 22, 2017 
best-fit neutrino energy is about 300 TeV
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Active galaxy powered by accretion onto a supermassive 
black hole with relativistic jets pointing into our line of sight.  

[Credit: DESY, Science Communication Lab]
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• IC170922A observed in coincident with flaring blazar TXS 0506+056. 
• Chance correlation can be rejected at the 3 -level. 
• TXS 0506+056 is among the most luminous BL Lac objects in gamma-rays.
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First Multi-Messenger Blazar: TXS 0506+056

RESEARCH ARTICLE SUMMARY
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NEUTRINO ASTROPHYSICS

Multimessenger observations of a
flaring blazar coincident with
high-energy neutrino IceCube-170922A
The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S.,
INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR,
VERITAS, and VLA/17B-403 teams*†

INTRODUCTION: Neutrinos are tracers of
cosmic-ray acceleration: electrically neutral
and traveling at nearly the speed of light, they
can escape the densest environments andmay
be traced back to their source of origin. High-
energy neutrinos are expected to be produced
in blazars: intense extragalactic radio, optical,
x-ray, and, in somecases, g-ray sources
characterized by relativistic jets of
plasma pointing close to our line of
sight. Blazars are among the most
powerful objects in the Universe and
are widely speculated to be sources
of high-energy cosmic rays. These cos-
mic rays generate high-energy neutri-
nos and g-rays, which are produced
when the cosmic rays accelerated in
the jet interact with nearby gas or
photons. On 22 September 2017, the
cubic-kilometer IceCube Neutrino
Observatory detected a ~290-TeV
neutrino from a direction consistent
with the flaring g-ray blazar TXS
0506+056. We report the details of
this observation and the results of a
multiwavelength follow-up campaign.

RATIONALE:Multimessenger astron-
omy aims for globally coordinated
observations of cosmic rays, neutri-
nos, gravitational waves, and electro-
magnetic radiation across a broad
range of wavelengths. The combi-
nation is expected to yield crucial
information on the mechanisms
energizing the most powerful astro-
physical sources. That the produc-
tion of neutrinos is accompanied by
electromagnetic radiation from the
source favors the chances of a multi-
wavelength identification. In par-
ticular, a measured association of
high-energy neutrinos with a flaring
source of g-rays would elucidate the
mechanisms and conditions for ac-
celeration of the highest-energy cos-

mic rays. The discovery of an extraterrestrial
diffuse flux of high-energy neutrinos, announced
by IceCube in 2013, has characteristic prop-
erties that hint at contributions from extra-
galactic sources, although the individual sources
remain as yet unidentified. Continuously mon-
itoring the entire sky for astrophysical neu-

trinos, IceCube provides real-time triggers for
observatories around the world measuring
g-rays, x-rays, optical, radio, and gravitational
waves, allowing for the potential identification
of even rapidly fading sources.

RESULTS: A high-energy neutrino-induced
muon trackwas detected on22 September 2017,
automatically generating an alert that was

distributed worldwide
within 1 min of detection
and prompted follow-up
searchesby telescopesover
a broad range of wave-
lengths. On 28 September
2017, theFermiLargeArea

Telescope Collaboration reported that the di-
rection of the neutrino was coincident with a
cataloged g-ray source, 0.1° from the neutrino
direction. The source, a blazar known as TXS
0506+056 at a measured redshift of 0.34, was
in a flaring state at the time with enhanced
g-ray activity in the GeV range. Follow-up ob-
servations by imaging atmospheric Cherenkov
telescopes, notably the Major Atmospheric

Gamma ImagingCherenkov (MAGIC)
telescopes, revealed periods where
the detected g-ray flux from the blazar
reached energies up to 400GeV.Mea-
surements of the source have also
been completed at x-ray, optical, and
radio wavelengths. We have inves-
tigated models associating neutrino
and g-ray production and find that
correlation of the neutrino with the
flare of TXS 0506+056 is statistically
significant at the level of 3 standard
deviations (sigma). On the basis of the
redshift of TXS 0506+056, we derive
constraints for the muon-neutrino
luminosity for this source and find
them to be similar to the luminosity
observed in g-rays.

CONCLUSION: The energies of the
g-rays and the neutrino indicate that
blazar jetsmay accelerate cosmic rays
to at least several PeV. The observed
association of a high-energy neutrino
with a blazar during a period of en-
hanced g-ray emission suggests that
blazarsmay indeed be one of the long-
sought sources of very-high-energy
cosmic rays, andhence responsible for
a sizable fraction of the cosmic neu-
trino flux observed by IceCube.▪
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Multimessenger observations of blazar TXS 0506+056.The
50% and 90% containment regions for the neutrino IceCube-
170922A (dashed red and solid gray contours, respectively),
overlain on a V-band optical image of the sky. Gamma-ray sources
in this region previously detected with the Fermi spacecraft are
shown as blue circles, with sizes representing their 95% positional
uncertainty and labeled with the source names. The IceCube
neutrino is coincident with the blazar TXS 0506+056, whose
optical position is shown by the pink square. The yellow circle
shows the 95% positional uncertainty of very-high-energy g-rays
detected by the MAGIC telescopes during the follow-up campaign.
The inset shows a magnified view of the region around TXS 0506+056
on an R-band optical image of the sky. IM
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◥

NEUTRINO ASTROPHYSICS

Neutrino emission from the direction
of the blazar TXS 0506+056 prior to
the IceCube-170922A alert
IceCube Collaboration*†

A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in
direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by
this association, we investigated 9.5 years of IceCube neutrino observations to search for
excess emission at the position of the blazar. We found an excess of high-energy neutrino
events, with respect to atmospheric backgrounds, at that position between September 2014
and March 2015. Allowing for time-variable flux, this constitutes 3.5s evidence for neutrino
emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring
episode. This suggests that blazars are identifiable sources of the high-energy astrophysical
neutrino flux.

T
he origin of the highest-energy cosmic rays
is believed to be extragalactic (1), but their
acceleration sites remain unidentified. High-
energy neutrinos are expected to be pro-
duced in or near the acceleration sites when

cosmic rays interact with matter and ambient
light, producing charged mesons that decay into
neutrinos and other particles. Unlike cosmic rays,
neutrinos can travel through the Universe un-
impeded by interactions with other particles and
undeflected bymagnetic fields, providing ameans
to identify and study the extreme environments
producing cosmic rays (2). Blazars, a class of active
galactic nuclei with powerful relativistic jets
pointed close to our line of sight (3), are prom-
inent candidate sources of such high-energy
neutrino emission (4–9). The electromagnetic
emission of blazars is observed to be highly var-
iable on time scales from minutes to years (10).
The IceCube Neutrino Observatory (11) is a

high-energy neutrino detector occupying an in-
strumented volume of 1 km3within the Antarctic
ice sheet at the Amundsen-Scott South Pole Sta-
tion. The detector consists of an array of 86
vertical strings, nominally spaced 125 m apart
and descending to a depth of approximately
2450m in the ice. The bottom 1 km of each string
is equipped with 60 optical sensors that record
Cherenkov light emitted by relativistic charged
particles passing through the optically transpar-
ent ice. When high-energy muon neutrinos in-
teract with the ice, they can create relativistic
muons that travel many kilometers, creating a
track-like series of Cherenkov photons recorded
when they pass through the array. This allows the
reconstruction of the original neutrino direction

with a median angular uncertainty of 0.5° for a
neutrino energy of ~30 TeV (or 0.3° at 1 PeV)
(12, 13).
IceCube discovered the existence of a diffuse

flux of high-energy astrophysical neutrinos in
2013 (14, 15). Measurements of the energy spec-
trum have since been refined (16, 17), indicating
that the neutrino spectrum extends above several
PeV. However, analyses of neutrino observations
have not succeeded in identifying individual
sources of high-energy neutrinos (12, 18). This
suggests that the sources are distributed across
the sky and that even the brightest individual
sources contribute only a small fraction of the
total observed flux.
Recently, the detection of a high-energy neutri-

no by IceCube, together with observations in
gamma rays and at other wavelengths, indicates
that a blazar, TXS0506+056, located at right ascen-
sion (RA) 77.3582° anddeclination (Dec) +5.69314°
(J2000 equinox) (19) may be an individually iden-
tifiable source of high-energy neutrinos (20). The
neutrino-candidate event, IceCube-170922A, was
detected on 22 September 2017, selected by the
Extremely High Energy (EHE) online event filter
(21), and reported as a public alert (22). EHE
alerts are currently sent at a rate of about four
per year, and are based on well-reconstructed,
high-energy muon-track events. The selection
threshold is set so that approximately half of
the events are estimated to be astrophysical neu-
trinos, the rest being atmospheric background
events. After the alert was sent, further studies
refined the directional reconstruction, with best-
fitting coordinates of RA 77:43þ0:95

"0:65 and Dec
þ5:72þ0:50

"0:30 (degrees, J2000, 90% containment
region). The most probable neutrino energy was
estimated to be 290 TeV, with a 90% confidence
level lower limit of 183 TeV (20).
It was soon determined that the direction of

IceCube-170922A was consistent with the loca-

tion of TXS 0506+056 and coincident with a
state of enhanced gamma-ray activity observed
since April 2017 (23) by the Large Area Telescope
(LAT) on the Fermi Gamma-ray Space Telescope
(24). Follow-up observations of the blazar led to
the detection of gamma rays with energies up to
400 GeV by the Major Atmospheric Gamma
Imaging Cherenkov (MAGIC) Telescopes (25, 26).
IceCube-170922A and the electromagnetic obser-
vations are described in detail in (20). The sig-
nificance of the spatial and temporal coincidence
of the high-energy neutrino and the blazar flare
is estimated to be at the 3s level (20). On the
basis of this result, we consider the hypothesis
that the blazar TXS 0506+056 has been a source
of high-energy neutrinos beyond that single event.

Searching for neutrino emission

IceCube monitors the whole sky and has main-
tained essentially continuous observations since
5 April 2008. Searches for neutrino point sources
using two model-independent methods, a time-
integrated and a time-dependent unbinned max-
imum likelihood analysis, have previously been
published for the data collected between 2008
and 2015 (12, 18, 27). Here, we analyze the same
7-year data sample supplemented with additional
data collected from May 2015 until October 2017
(21). The data span 9.5 years and consist of six
distinct periods, corresponding to changing detec-
tor configurations, data-taking conditions, and
improved event selections (Table 1).
The northern sky, where TXS 0506+056 is

located, is observed through Earth by IceCube.
Approximately 70,000 neutrino-induced muon
tracks are recorded each year from this hemi-
sphere of the sky after passing the final event
selection criteria. Fewer than 1% of these events
originate from astrophysical neutrinos; the vast
majority are background events caused by neu-
trinos ofmedian energy ~1 TeV created in cosmic
ray interactions in the atmosphere over other
locations on Earth. However, for an astrophysical
muon-neutrino flux where the differential num-
ber of neutrinos with energy E scales as dN/dE ~
E–2, the distribution of muon energies is different
than for the background atmospheric neutrino
flux, which scales as ~E–3.7 (17). This allows for
further discriminating power in point source
searches besides directional-only excesses.
A high-significance point source detection

(12, 18) can require as few as two or three, or as
many as 30, signal events to stand out from the
background, depending on the energy spectrum
and the clustering of events in time. To search
for a neutrino signal at the coordinates of TXS
0506+056, we apply the standard time-integrated
analysis (28) and time-dependent analysis (29)
that have been used in past searches (12, 18, 27).
The time-integrated analysis uses an unbinned
maximum likelihood ratio method to search for
an excess number of events consistent with a
point source at a specified location, given the
angular distance and angular uncertainty of each
event. Energy information is included in the def-
inition of the likelihood, assuming a power-law
energy spectrum E–g , with the spectral index g

RESEARCH
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• Independent 3.5  evidence for 
a neutrino flare (13±5 excess 
events) in 2014/15. 

• Neutrino luminosity over 158 
days is about four times that of 
Fermi-LAT -rays.

σ

γ

as a fitted parameter. Themodel parameters are
correlated and are expressed as a pair, (F100, g),
where F100 is the flux normalization at 100 TeV.
The time-dependent analysis uses the same for-
mulation of the likelihood but searches for
clustering in time aswell as space by introducing
an additional time profile. It is performed sep-
arately for two different generic profile shapes: a
Gaussian-shaped timewindow and a box-shaped
time window. Each analysis varies the central
time of the window, T0, and the duration TW
(from seconds to years) of the potential signal to
find the four parameters (F100, g, T0, TW) that
maximize the likelihood ratio, which is defined
as the test statistic TS. (For the Gaussian time
window, TW represents twice the standard de-
viation.) The test statistic includes a factor that
corrects for the look-elsewhere effect arising
from all of the possible time windows that could
be chosen (30).
For each analysis method (time-integrated and

time-dependent), a robust significance estimate is
obtained by performing the identical analysis on
trialswith randomizeddatasets. These areproduced
by randomizing the event times and recalculating

theRAcoordinateswithin eachdata-takingperiod.
The resultant P value is defined as the fraction of
randomized trials yieldinga valueofTSgreater than
or equal to the one obtained for the actual data.
Because the detector configuration and event

selections changed as shown in Table 1, the time-
dependent analysis is performed by operating on
each data-taking period separately. (A flare that
spans a boundary between two periods could be
partially detected in either period, but with re-
duced significance.) An additional look-elsewhere
correction then needs to be applied for a result in
an individual data segment, given by the ratio of
the total 9.5-year observation time to the obser-
vation time of that data segment (30).

Neutrinos from the direction of
TXS 0506+056

The results of the time-dependent analysis per-
formed at the coordinates of TXS 0506+056 are
shown in Fig. 1 for each of the six data periods.
One of the data periods, IC86b from2012 to 2015,
contains a significant excess, which is identified
by both time-window shapes. The excess consists
of 13 ± 5 events above the expectation from the
atmospheric background. The significancedepends
on the energies of the events, their proximity to
the coordinates of TXS 0506+056, and their
clustering in time. This is illustrated in Fig. 2,
which shows the time-independent weight of
individual events in the likelihood analysis during
the IC86b data period.
The Gaussian time window is centered at 13

December 2014 [modified Julianday (MJD) 57004]
with an uncertainty of ±21 days and a duration
TW = 110þ35

"24 days. The best-fitting parameters for
the fluence J100 = ∫F100(t)dt and the spectral
index are givenbyE2J100=2:1þ0:9

"0:7 # 10"4 TeVcm–2

at 100 TeV and g = 2.1 ± 0.2, respectively. The
joint uncertainty on these parameters is shown
in Fig. 3 along with a skymap showing the result
of the time-dependent analysis performed at the
location of TXS 0506+056 and in its vicinity
during the IC86b data period.
The box-shaped time window is centered

13 days later with duration TW = 158 days (from
MJD 56937.81 to MJD 57096.21, inclusive of

contributing events at boundary times). For the
box-shaped time window, the uncertainties are
discontinuous and not well defined, but the un-
certainties for the Gaussian window show that it
is consistent with the box-shaped time window
fit. Despite the different window shapes, which
lead to different weightings of the events as a
function of time, bothwindows identify the same
time interval as significant. For the box-shaped
time window, the best-fitting parameters are sim-
ilar to those of the Gaussianwindow, with fluence
at 100 TeV and spectral index given by E2J100 =
2:2þ1:0

"0:8 # 10"4 TeV cm–2 and g = 2.2 ± 0.2. This
fluence corresponds to an average flux over
158 days of F100 = 1:6þ0:7

"0:6 # 10"15 TeV–1 cm–2 s–1.
Whenwe estimate the significance of the time-

dependent result by performing the analysis at
the coordinates of TXS 0506+056 on randomized
datasets, we allow in each trial a new fit for all
the parameters: F100, g, T0, TW. We find that the
fraction of randomized trials that result in a more
significant excess than the real data is 7 × 10–5 for
the box-shaped time window and 3 × 10–5 for the
Gaussian time window. This fraction, once cor-
rected for the ratio of the total observation time
to the IC86b observation time (9.5 years/3 years),
results in P values of 2 × 10–4 and 10–4, respec-
tively, corresponding to 3.5s and 3.7s. Because
there is no a priori reason to prefer one of the
generic timewindows over the other, we take the
more significant one and include a trial factor of
2 for the final significance, which is then 3.5s.
Outside the 2012–2015 time period, the next

most significant excess is found using the Gauss-
ian window in 2017 and includes the IceCube-
170922A event. This time window is centered
at 22 September 2017 with duration TW = 19 days,
g = 1.7 ± 0.6, and fluence E2J100 = 0:2þ0:4

"0:2 # 10"4

TeV cm–2 at 100 TeV. No other event besides the
IceCube-170922A event contributes significantly
to the best fit. As a consequence, the uncertainty
on the best-fitting window location and width
spans the entire IC86c period, because any win-
dow containing IceCube-170922A yields a similar
value of the test statistic. Following the trial cor-
rectionprocedure for different observationperiods
as described above, the significance of this excess
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Table 1. IceCube neutrino data samples.
Six data-taking periods make up the full
9.5-year data sample. Sample numbers
correspond to the number of detector
strings that were operational. During the
first three periods, the detector was still
under construction. The last three periods
correspond to different data-taking
conditions and/or event selections with the
full 86-string detector.

Sample Start End

IC40 5 April 2008 20 May 2009
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC59 20 May 2009 31 May 2010
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC79 31 May 2010 13 May 2011
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC86a 13 May 2011 16 May 2012
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC86b 16 May 2012 18 May 2015
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

IC86c 18 May 2015 31 October 2017
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ..

Fig. 1. Time-dependent analysis results. The orange curve corresponds
to the analysis using the Gaussian-shaped time profile. The central time T0

and width TW are plotted for the most significant excess found in each
period, with the P value of that result indicated by the height of the peak.
The blue curve corresponds to the analysis using the box-shaped time
profile. The curve traces the outer edge of the superposition of the best-

fitting time windows (durations TW) over all times T0, with the height
indicating the significance of that window. In each period, the most
significant time window forms a plateau, shaded in blue. The large blue
band centered near 2015 represents the best-fitting 158-day time window
found using the box-shaped time profile. The vertical dotted line in IC86c
indicates the time of the IceCube-170922A event.
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is 1.4s. If the IceCube-170922A event is removed,
no excess remains during this time period. This
agrees with the result of the rapid-response anal-
ysis (31) that is part of the IceCube alert program,
which found no other potential astrophysical
neutrinos from the same region of the sky during
±7 days centered on the time of IceCube-170922A.
We performed a time-integrated analysis at

the coordinates of TXS 0506+056 using the full
9.5-year data sample. The best-fitting parameters
for the flux normalization and the spectral index
areF100 = 0:8þ0:5

"0:4 # 10"16 TeV–1 cm–2 s–1 and g =
2.0 ± 0.3, respectively. The joint uncertainty on
these parameters is shown in Fig. 4A. The P value,
based on repeating the analysis at the same co-
ordinates with randomized datasets, is 0.002%
(4.1s), but this is an a posteriori significance
estimate because it includes the IceCube-170922A
event, whichmotivated performing the analysis at
the coordinates of TXS 0506+056. An unbiased

significance estimate including the event would
need to take into account the look-elsewhere effect
related to all other possible directions in the sky
that could be analyzed. It is expected that there
will be two or three directions somewhere in the
northern sky with this significance or greater,
resulting from the chance alignment of neutri-
nos (12). Here, we are interested in determining
whether there is evidence of time-integrated neu-
trino emission from TXS 0506+056 besides the
IceCube-170922A event.
If we remove the final data period IC86c, which

contains the event, and perform the analysis
again using only the first 7 years of data, we find
best-fitting parameters that are nearly unchanged:
F100 =0:9þ0:6

"0:5 # 10"16 TeV–1 cm–2 s–1 and g = 2.1 ±
0.3, respectively. The joint uncertainty on these
parameters is shown in Fig. 4B. The P value, using
only the first 7 years of data, is 1.6% (2.1s), based
on repeating the analysis at the same coordinates

with randomized datasets. These results indicate
that the time-integrated fit is dominated by the
same excess as found in the time-dependent
analysis above, having similar values for the
spectral index and total fluence (E2J100 = 2.0 ×
10–4 TeV cm–2 at 100 TeV over the 7-year period).
This excess is not significant in the time-integrated
analysis because of the additional background
during the rest of the 7-year period.

Blazars as neutrino sources

The signal identified during the 5-month period
in 2014–2015 consists of an estimated 13 ± 5
muon-neutrino events that are present in addi-
tion to the expected background. The analysis is
unbinned, but the mean background at the dec-
lination of TXS 0506+056 is useful for compar-
ison purposes; it is 5.8 events in a search bin of
radius 1° during a 158-day time window. (We use
the duration of the box-shaped time window re-
sult for convenience to calculate averages during
the flare.) The significance of the excess is due to
both the number of events and their energy
distribution, with higher-energy events increasing
the significance and leading to the best-fitting
spectral index of 2.1, in contrast to the lower-
energy atmospheric neutrino background with
spectral index ~3.7. At this declination in the sky,
the 68% central energy range inwhich IceCube is
most sensitive to point sources with E–2.1 spectra
is between 32 TeV and 3.6 PeV. Assuming that
the muon-neutrino fluence (E2J100 = 2:1þ1:0

"0:7#
10"4 TeV cm–2) is one-third of the total neu-
trino fluence, then the all-flavor neutrino energy
fluence is 4:2þ2:0

"1:4 # 10"3 erg cm–2 over this
energy range. With the recent measurement (32)
of the redshift of TXS 0506+056 as z = 0.3365 ±
0.0010, this energy fluence implies that the iso-
tropic neutrino luminosity is 1:2þ0:6

"0:4 # 1047 erg s–1

averaged over 158 days. This is higher than the
isotropic gamma-ray luminosity during the same
period, which is similar to the long-term luminosity
between 0.1 GeV and 100 GeV of 0.28 × 1047 erg
s–1 averaged over all Fermi-LAT observations of
TXS 0506+056 (20). Gamma rays are expected to
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Fig. 2. Time-independent weight of individual events during the IC86b period. Each vertical line
represents an event observed at the time indicated by calendar year (top) or MJD (bottom).
Overlapping lines are shifted by 1 to 2 days for visibility. The height of each line indicates the event
weight: the product of the event’s spatial term and energy term in the unbinned likelihood analysis
evaluated at the location of TXS 0506+056 and assuming the best-fitting spectral index g = 2.1
(30).The color for each event indicates an approximate value in units of TeVof the reconstructed muon
energy (muon energy proxy), which the analysis compares with expected muon energy distributions
under different hypotheses. [A distribution for the true neutrino energy of a single event can also
be inferred from the event’s muon energy (30).] The dashed curve and the solid bracket indicate the
best-fitting Gaussian and box-shaped time windows, respectively. The distribution of event weights
and times outside of the best-fitting time windows is compatible with background.

Fig. 3. Time-dependent analy-
sis results for the IC86b data
period (2012–2015).
(A) Change in test statistic,
DTS, as a function of the spectral
index parameter g and the fluence
at 100 TeV given by E2J100. The
analysis is performed at the
coordinates of TXS 0506+056,
using the Gaussian-shaped time
window and holding the time
parameters fixed (T0 = 13
December 2014, TW = 110 days).
The white dot indicates the best-
fitting values. The contours at
68% and 95% confidence level
assuming Wilks’ theorem (36) are
shown in order to indicate the statistical uncertainty on the parameter
estimates. Systematic uncertainties are not included. (B) Skymap showing
the P value of the time-dependent analysis performed at the coordinates of
TXS 0506+056 (cross) and at surrounding locations.The analysis is

performed on the IC86b data period, using the Gaussian-shaped time window.
At each point, the full fit for (F, g, T0, TW) is performed.The P value shown
does not include the look-elsewhere effect related to other data periods. An
excess of events is detected, consistent with the position of TXS 0506+056.
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Fermi-LAT Blazar Stacking
Limits on Di↵use Blazar Flux
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LSPs 1.0 � 10�12 1.9 (1.2 � 2.6) � 10�12

ISPs/HSPs 1.8 � 10�12 2.6 (2.0 � 3.2) � 10�12

LSP-BL Lacs 1.1 � 10�12 1.4 (0.5 � 2.3) � 10�12

Spectrum: �0 · (E/GeV)�2.0
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�0

90%[GeV�1cm�2s�1sr�1]
�-weighting equal weighting

All 2LAC Blazars 1.5 � 10�9 4.7 (3.9 � 5.4) � 10�9

FSRQs 0.9 � 10�9 1.7 (0.8 � 2.6) � 10�9

LSPs 0.9 � 10�9 2.2 (1.4 � 3.0) � 10�9

ISPs/HSPs 1.3 � 10�9 2.5 (1.9 � 3.1) � 10�9

LSP-BL Lacs 1.2 � 10�9 1.5 (0.5 � 2.4) � 10�9

Spectrum: �0 · (E/GeV)�2.7

Blazar Class
�0

90%[GeV�1cm�2s�1sr�1]
�-weighting equal weighting

All 2LAC Blazars 2.5 � 10�6 8.3 (7.0 � 9.7) � 10�6

FSRQs 1.7 � 10�6 3.3 (1.6 � 5.1) � 10�6

LSPs 1.6 � 10�6 3.8 (2.4 � 5.2) � 10�6

ISPs/HSPs 1.6 � 10�6 4.6 (3.5 � 5.6) � 10�6

LSP-BL Lacs 2.2 � 10�6 2.8 (1.0 � 4.6) � 10�6

Table 3
90% C.L. upper limits on the di�use (�µ + �µ)-flux from the

di�erent blazar populations tested. The table contains results for
power-law spectra with spectral indices �1.5, �2.0, and �2.7.
The equal-weighting column shows the median flux upper limit

and the 90% central interval of di�erent sample realizations of the
Fermi-LAT source count contribution (in parentheses). All values

include systematic uncertainties.

Figure 4. Di�erential 90% C.L. upper limit on the (�µ +�µ)-flux
using equal weighting for all 2LAC blazars. The ±1� and ±2�
null expectation is shown in green and yellow, respectively. The
upper limit and expected regions correspond to the median SCD
sampling outcome.

a factor of about 2, than the median outcome in the en-
ergy range between 5 TeV and 10 TeV where the largest
excess is observed. This is the average behavior for a soft
flux with spectral index of about �3.0 65, if one assumes
a simple power-law fit to explain the data. While such a
physical interpretation can not be made yet, it will be in-

65 This can be read o� in figure 8. The ratio function indicates in
which energy range a given flux function appears first, on average.
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Figure 5. 90% C.L. flux upper limits for all 2LAC blazars in
comparison to the observed astrophysical di�use neutrino flux. The
latest combined di�use neutrino flux results from Aartsen et al.
(2015b) are plotted as the best-fit power-law with spectral index
�2.5 , and as a di�erential flux unfolding using 68% central and
90% U.L. confidence intervals. The flux upper limit is shown using
both weighting schemes for a power-law with spectral index �2.5
(blue). Percentages denote the fraction of the upper limit compared
to the astrophysical best fit value. The equal-weighting upper limit
for a flux with a harder spectral index of �2.2 is shown in green.

teresting to observe this excess with future IceCube data.
For information on the di�erential upper limits from the
other samples the reader is referred to appendix D.

5.4. The maximal contribution to the di�use
astrophysical flux

The astrophysical neutrino flux is observed between
10 TeV and 2 PeV (Aartsen et al. 2015b). Its spectrum
has been found to be compatible with a single power-law
and a spectral index of �2.5 over most of this energy
range. Accordingly, we use a power-law with the same
spectral index and a minimum neutrino energy of 10 TeV
for the signal injected into the simulated skymaps when
calculating the upper limit for a direct comparison. Fig-
ure 5 shows the flux upper limit for an E�2.5 power-law
spectrum starting at 10 TeV for both weighting schemes
in comparison to the most recent global fit of the astro-
physical di�use neutrino flux, assuming an equal compo-
sition of flavors arriving at Earth.

The equal-weighting upper limit results in a maximally
19%-27% contribution of the total 2LAC blazar sample
to the observed best fit value of the astrophysical neu-
trino flux, including systematic uncertainties. This limit
is independent of the detailed correlation between the
�-ray and neutrino flux from these sources. The only as-
sumption is that the respective neutrino and �-ray SCDs
have similar shapes (see section 5.2 for details on signal
injection). We use the Fermi-LAT blazar SCD as pub-
lished in Abdo et al. (2010c) as a template for sampling.
However, we find that even if the shape of the SCD dif-
fers from this template, the upper limit still holds and
is robust. In appendix A we discuss the e�ect of di�er-
ent SCD shapes and discuss how the combination with
existing point source constraints (Aartsen et al. 2015c)
leads to a nearly SCD-independent result, since a point
source analysis and a stacking search with equal weights
e�ectively trace opposite parts of the available parameter
space for the dN/dS distribution.

In case we assume a proportionality between the �-ray
and neutrino luminosities of the sources, the �-weighting
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teresting to observe this excess with future IceCube data.
For information on the di�erential upper limits from the
other samples the reader is referred to appendix D.

5.4. The maximal contribution to the di�use
astrophysical flux

The astrophysical neutrino flux is observed between
10 TeV and 2 PeV (Aartsen et al. 2015b). Its spectrum
has been found to be compatible with a single power-law
and a spectral index of �2.5 over most of this energy
range. Accordingly, we use a power-law with the same
spectral index and a minimum neutrino energy of 10 TeV
for the signal injected into the simulated skymaps when
calculating the upper limit for a direct comparison. Fig-
ure 5 shows the flux upper limit for an E�2.5 power-law
spectrum starting at 10 TeV for both weighting schemes
in comparison to the most recent global fit of the astro-
physical di�use neutrino flux, assuming an equal compo-
sition of flavors arriving at Earth.

The equal-weighting upper limit results in a maximally
19%-27% contribution of the total 2LAC blazar sample
to the observed best fit value of the astrophysical neu-
trino flux, including systematic uncertainties. This limit
is independent of the detailed correlation between the
�-ray and neutrino flux from these sources. The only as-
sumption is that the respective neutrino and �-ray SCDs
have similar shapes (see section 5.2 for details on signal
injection). We use the Fermi-LAT blazar SCD as pub-
lished in Abdo et al. (2010c) as a template for sampling.
However, we find that even if the shape of the SCD dif-
fers from this template, the upper limit still holds and
is robust. In appendix A we discuss the e�ect of di�er-
ent SCD shapes and discuss how the combination with
existing point source constraints (Aartsen et al. 2015c)
leads to a nearly SCD-independent result, since a point
source analysis and a stacking search with equal weights
e�ectively trace opposite parts of the available parameter
space for the dN/dS distribution.

In case we assume a proportionality between the �-ray
and neutrino luminosities of the sources, the �-weighting

• Blazar stacking limits derived from Fermi-LAT AGN catalogue (2LAC).
[Astrophys.J. 835 (2017) no.1, 45]

• Upper limit on the di↵use flux at the level of 30% assuming all blazar classes
contribute.

• Energy of IC-170922A in the region of strongest di↵erential upper limit.
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• Combined contribution of Fermi-LAT blazars (2LAC) below 30% of the 
isotropic TeV-PeV neutrino observation. 

• MeV-detected (1FLE) below 1%; "hard" emitters (3FHL) below 17%

[IceCube, ApJ 835 (2017) 45]

[IceCube, ApJ 938 (2022) 1;  PoS ICRC2019 (2020) 916]
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Hadronic Gamma-Ray Emission

‹ Inelastic collisions of cosmic rays (CR)

with radiation or gas produce
g-rays and neutrinos via pion decay:

p0
! g + g

p+
! µ+ + nµ ! e+ + ne + nµ + nµ

• relative production rates comparable

8 TeV g-rays scatter in cosmic microwave
background (CMB) and initiate
electromagnetic cascades:

g + gCMB ! e+ + e�

e± + gCMB ! e± + g
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EM cascades from interactions in 
cosmic radiation backgrounds:

γ + γbg → e+ + e−

e± + γbg → e± + γ
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Muon track reconstruction in  
BAIKAL-GVD

Grigory Safronov 
JINR (Dubna), ITEP (Moscow) 

on behalf of BAIKAL-GVD collaboration

VLVNT 2018, 2-4/10/2018, Dubna, Russia
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Fig. 1 Left: schematic view of the Baikal-GVD detector. The yearly progression of the detector deployment is shown in the legend. Right: the
Baikal-GVD cluster layout (vertical scale compressed)

The clusters are arranged on the lakebed in a hexago-
nal pattern, with a ≈ 300 m distance between the cluster
centers. A common synchronization clock allows for sub-
sequent merging of the physics event data collected from
the different clusters. Additional technical strings equipped
with high-power pulsed lasers are installed in-between the
GVD clusters. These are used for detector calibration [6]
and light propagation studies [8]. The lake is covered with
thick ice (up to ≈ 1 m) from February to mid-April, provid-
ing a convenient solid platform for detector deployment and
maintenance operations.

According to a study made with a specialized device, the
light absorption length in the deep lake water reaches max-
imal values, ≈ 24 m, at a wavelength of 488 nm [9]. The
effective light scattering length is ≈ 480 m (at 475 nm; see
[9] for details). Both the absorption and scattering character-
istics show variations with depth and over time.

The optical modules detect the Cherenkov light from sec-
ondary charged particles resulting from neutrino interactions.
The times of the pulses are used to reconstruct the neutrino
direction, and the integrated charges (or amplitudes) provide
a measure of the neutrino energy. The detector layout is opti-
mized for the measurement of astrophysical neutrinos in the
TeV–PeV energy range. Events resulting from charged cur-
rent (CC) interactions of muon (anti-)neutrinos will have a
track-like topology, while the CC interactions of the other
neutrino flavors and neutral current (NC) interactions of all

flavors will typically be observed as nearly point-like events.
Hence the observed neutrino events are classified into two
event classes: tracks and cascades.

The first cluster of Baikal-GVD was deployed in 2016.
Two more clusters were added in 2017 and 2018, followed
by two more in 2019, another two in 2020, and one more
in 2021. As of April 2021, the detector consists of 8 clus-
ters, occupying a water volume of ≈ 0.4 km3. As it stands,
Baikal-GVD is currently the largest neutrino telescope in the
Northern Hemisphere. The construction plan for the period
from 2022 to 2024 anticipates the deployment of six addi-
tional GVD clusters.

All Baikal-GVD clusters generally show stable operation.
Occasional failures of individual optical or electronics mod-
ules, e.g. due to water leaks, are fixed during the regular
winter campaigns. Each detector string can be recovered and
re-deployed without the need to recover the whole cluster.

3 The dataset

In this work we use a dataset collected from the first five oper-
ational clusters of Baikal-GVD in the early part of the 2019
season, between April 1 and June 30. This period is charac-
terized by relatively quiet optical noise levels (see [10,11] for
a review of the optical noise conditions at the Baikal-GVD
site). The average measured rate of noise hits observed by
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• GVD Phase 1: 8 clusters with 8 
strings each were completed in 2021 

• status May 2025: 14 clusters 

• final goal: 27 clusters ( )∼ 1.4 km3
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• Detection principle of ANITA, ARA & 
ARIANNA (Antarctica) 

• Under construction: Radio Neutrino 
Observatory-Greenland (RNO-G) 

• status March 2024: 7 of 35 stations deployed

Figure 5. Schematic of the detection of the radio emission following a neutrino interaction (not to scale).
The emission is strongest at the Cherenkov angle (blue cone) and can follow straight and bent trajectories
to the receiving station depending on the profile of the index of refraction of the ice. The signal is usually
detected at large distances and is strongly polarized as illustrated in the insets.

the Askaryan e�ect. The geomagnetic emission stems from the charge separation induced by
the Lorentz force in the Earth’s magnetic field. The di�erent signatures of the two contributions
can be disentangled by their polarization. While still mostly linearly polarized, the main axis of
the polarization from geomagnetic emission is aligned with the cross-product of shower axis and
magnetic field [192, 193].

Due to their larger extent and the resulting consequences for coherence, air shower signals
typically contain more low frequencies than those from showers in dense media [206]. Nevertheless,
signals from air showers and denser in-ice showers are remarkably similar, which makes the much
more abundant air shower signals a suitable calibration signal. Since the cosmic ray energy spectrum
is well-known (e. g. [70]) and the radio energy scale understood [37, 207], measuring air showers
will allow any detector to be calibrated in-situ, which includes checking the sensitivity simulations
on an absolute scale. This will lend confidence to the signal identification and reconstruction [19].

The remarkable similarity can of course also be a reason for concern. The in-air signal will
be (partly) refracted into the ice, where it may be picked-up by antennas and incorrectly identified
as neutrino induced signal. While the signal will clearly be down-going, so may be signals from
neutrino interactions, due to the ray bending properties of the ice [196]. It has also been argued
that an incompletely developed air shower may cause transition radiation and other phenomena
observable in deep detector stations [208]. In addition, stochastic energy losses by high energy
muons in an air shower penetrating the ice may mimic the interaction of a neutrino [195]. Without
additional detectors, the muons themselves are invisible to radio detectors, while the energy losses
are detectable. Depending on the exact detector configuration and trigger, these background events
may limit the analysis e�ciency, albeit dropping sharply in number with energy.

– 11 –

Figure 7. Left: Map of the planned RNO-G array at Summit Station; grid spacing is approximately 1 km.
Right: A single RNO-G station consists of three strings of antennas (Hpol and Vpol) plus surface antennas
(LPDAs), as well as three calibration pulsers located both deep in the ice and also at the surface. The string
containing the phased array trigger is designated as the power string, while the two additional strings are
designated as support strings.

neutrino properties. Building on these requirements, a station and array design as schematically
depicted in Fig. 7 was developed.

The design of RNO-G combines the experience gained with all prior in-ice radio neutrino
experiments, especially ARA [5] and ARIANNA [210], and also builds on lessons learned with
radio air shower arrays that have first demonstrated the experimental power of the radio detection
technique, e.g. [37, 38].

As outlined above, a location is needed with thick, homogeneous and cold ice to yield the
best experimental results. An additional requirement is the availability of a su�ciently developed
infrastructure to allow for installation, running and maintenance of the detector. While the instru-
mented stations can be fully autonomous, the amount of cargo and personnel needed for installation
requires accessibility by plane or large vehicle. The number of accessible research stations fit-
ting these requirements in either Antarctica or Greenland is limited. The host institutions of the
RNO-G collaboration members and their access to national infrastructure additionally excludes
some obvious candidate sites (Dome A, Dome C and Vostok in Antarctica, e.g.), leaving essentially
South Pole Station and Summit Station in Greenland. South Pole station already houses a premier
CMB instrument (the South Pole Telescope [211]), as well as the world’s largest neutrino telescope
(IceCube), which is in the process of installing the IceCube-Upgrade [212]. The logistical burden

– 13 –

[RNO-G JINST 16 (2021) 3]  

Askaryan effect: 
Neutrino emission above 
10 PeV can be observed 

via coherent radio 
emission of showers in 

radio-transparent media. 

station with nine 
deep & surface antennas
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B Antenna design

Giant Radio Array for Neutrino Detection

• Antenna optimized tor horizontal showers

• Bow-tie design, 3 perpendicular arms

• Frequency range: 50-200 MHz

• Inter-antenna spacing: 1 km

Radio emission Extensive air shower

5m

10 km

Cosmic ray   

FIG. 16. GRAND detection principle, illustrated for one of the 10 000-antenna GRAND10k arrays located at a hotspot. See main
text for details. Ultra-high-energy cosmic rays and gamma rays (not shown) interact in the atmosphere, while ultra-high-energy ⌫⌧
interact underground and create a high-energy tau that exits into the atmosphere and decays. The ensuing extensive air showers
emit a radio signal that is detected by the antennas. The inset shows a sketch of the HorizonAntenna designed for GRAND.

To address this problem, we have designed the GRAND
antennas to have a high detection e�ciency along the hori-
zon — we call the design HorizonAntenna. Because
the e↵ect of ground reflection decreases with h/�, where
h is the detector height above ground and � is the radio
wavelength, we place the HorizonAntenna at h = 5 m
— atop a wooden pole — and the frequency range to
f > 50 MHz (� < 6 m). Because we would like to de-
tect radio Cherenkov rings — which could help background
rejection and signal reconstruction (see Section IV E 3) —
we set the upper limit of the frequency range to 200 MHz,
instead of the 80 MHz or 100 MHz used in most existing
arrays. This is aided by the radio background dropping
significantly above 100 MHz; see Section IV D. Further, re-
cent studies made for other air-shower arrays confirm that
extending the frequency band to 200 MHz significantly im-
proves the signal-to-noise ratio and lowers the detection
threshold [266]. To confirm the validity of this result for
horizontal showers, we found the optimal frequency band
for GRAND by following a procedure similar to the one
in Ref. [266], using the response of a dipole antenna. We

based it on ZHAireS simulations of horizontal showers, us-
ing the physical conditions at the GRANDProto35 location;
see Section VA.

Figure 18 shows results from one of our simulated show-
ers. The determination of the signal-to-noise ratio (SNR)
in di↵erent frequency bands is based on the signals of the
North-South and East-West polarization. For the radio
noise, we assumed the average Galactic background plus
additional thermal noise of 300 K. We found the optimal
frequency band for a GRAND array to be 100–180 MHz,
consistent with the results obtained in Ref. [266].

The HorizonAntenna is an active bow-tie antenna
with a relatively flat response as a function of azimuthal
direction and frequency. Its design is inspired by the “but-
terfly antenna” [267] developed for CODALEMA, and later
used in AERA [268]. It has 3 perpendicular arms (X, Y, Z)
oriented along two horizontal directions and a vertical one.
The HorizonAntenna uses the same low-noise amplifier,
but its radiating element is half the size of that in CO-
DALEMA and AERA, in order to increase the sensitivity
to the 50–200 MHz range.
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Extended Data Fig. 1 | Geographical information of the TRIDENT site. The selected site is marked by the red star in this map56. The distance between the TRIDENT 
site and nearby cities are shown by the white lines. The nearest island with infrastructure, Yongxing Island, is 180km away.
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silicon photon multipliers (SiPMs) that can respond to photon hits 
within tens of picoseconds37, time digital converters that are capable 
of digitizing the sharp rising edge of a SiPM waveform38 and the White 
Rabbit system that can provide precise global time stamps39. With these 
state-of-the-art technologies, TRIDENT will build hybrid digital optical 
modules with both PMTs and SiPMs, called hDOMs40, yielding excellent 
light collection and timing resolution that are capable of accurately 
measuring the arrival time of unscattered photons. The advantages 
of using multiple small PMTs have been demonstrated by KM3NeT’s 
multi-PMT Digital Optical Module (mDOM) system41. Compared with 
IceCube’s single large PMT DOM, multiple small PMTs allow for an 
increased photocathode coverage, strong sensitivity to the incident 
photon direction and finer timing resolution, along with the capabil-
ity of coincidence triggering on a single DOM. In an effort to further 
improve angular resolution, the TRIDENT hDOM design adds SiPMs 
with excellent timing resolution, placed in the spaces between PMTs. 
The first-rate timing response and additional photocathode coverage of 
the SiPMs in TRIDENT’s hDOM design are expected to provide improve-
ment in angular resolution compared with traditional PMT-only DOMs, 
boosting the detector’s source searching ability.

In seawater, the absorption length for Cherenkov photons is a key 
parameter to consider when designing the detector geometry. Figure 2  
shows the anticipated layout of the future telescope, guided by the 
presented optical property measurements. The detector contains 
1,211 strings, each containing 20 hDOMs separated vertically by 30 m, 
ranging from approximately 2,800 m to 3,400 m below sea level. This 
arrangement will result in a world-leading instrumented geometric 
volume of ~7.5 km3. The strings’ pattern follows a Penrose tiling distribu-
tion with inter-string distances of 70 m and 110 m, adopting the golden 
ratio42. Preliminary simulation studies indicate that this uneven layout, 
compared with a regular distribution of strings, allows for an expanded  
geometry with a broader window of measurable neutrino energies. TRIDENT  
in this layout is expected to cover from sub-teraelectronvolt (TeV)  
to exaelectronvolt energies, optimizing the telescope’s potential for 
neutrino astronomy43. Building multiple, separated clusters of strings 
helps to ease the difficulties faced in the construction and maintenance 
of large telescopes on the seafloor. TRIDENT instead leaves several 
spiral pathways, allowing underwater robots to access the innermost 

strings for maintenance. This unsegmented geometry aims to reduce 
the number of clipping edge events, which are more likely to occur 
in segmented geometries with wide empty regions between string 
clusters. The spiral shape of the pathways also helps to reduce the 
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Fig. 3 | Projected point source sensitivities and discovery potentials of 
TRIDENT. All-sky point source 90% confidence-level median sensitivity (dashed 
dot lines) and 5σ discovery potential (solid lines) of TRIDENT with 10 years of 
data taking. The left panel corresponds to a source energy spectrum index of 
2 (labelled E−2) and minimum energy of 10 TeV, while the right panel assumes 
an index of 3 (E−3) and minimum energy of 1 TeV. The x axis represents the sine 
declination (sinδ) and the y axis is the neutrino flux (φ). KM3NeT, IceCube and 

IceCube-Gen2 sensitivities15,66,67 are also shown for comparison. IceCube, located 
at the South Pole, has increased sensitivity to the northern sky. For a source 
located in the southern sky with a spectral index of 3, TRIDENT will have 4 orders 
of magnitude improvement in sensitivity compared with IceCube. Similarly 
comparing to the future telescope KM3NeT located in the Northern Hemisphere 
yields an improvement factor of approximately 5.
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Fig. 4 | Projected exposure time for discovering potential neutrino sources 
with TRIDENT. The source fluxes used in this figure: NGC 1068 flux from 
IceCube best-fit result with spectrum index of 3.2 (ref. 13); diffuse neutrino flux 
from IceCube best-fit result68; Galactic Centre from conversion of High Energy 
Stereoscopic System (HESS) gamma-ray observation to neutrino flux upper limit 
with gamma-ray cut-off energy at 100 TeV (refs. 69,70); Large High Altitude  
Air Shower Observatory (LHAASO) J1825−1326 from conversion of LHAASO 
gamma-ray observation to neutrino flux upper limit with cut-off energy at 
286 TeV (refs. 71,72). The horizontal black dashed line indicates a significance 
level of 5σ. In the analysis, the diffuse astrophysical muon neutrinos68 and 
atmospheric muon neutrinos73 are considered as backgrounds. The minimum 
energies adopted for each source are shown in the legend.

Nature Astronomy | Volume 7 | December 2023 | 1497–1505 1500

Article https://doi.org/10.1038/s41550-023-02087-6

silicon photon multipliers (SiPMs) that can respond to photon hits 
within tens of picoseconds37, time digital converters that are capable 
of digitizing the sharp rising edge of a SiPM waveform38 and the White 
Rabbit system that can provide precise global time stamps39. With these 
state-of-the-art technologies, TRIDENT will build hybrid digital optical 
modules with both PMTs and SiPMs, called hDOMs40, yielding excellent 
light collection and timing resolution that are capable of accurately 
measuring the arrival time of unscattered photons. The advantages 
of using multiple small PMTs have been demonstrated by KM3NeT’s 
multi-PMT Digital Optical Module (mDOM) system41. Compared with 
IceCube’s single large PMT DOM, multiple small PMTs allow for an 
increased photocathode coverage, strong sensitivity to the incident 
photon direction and finer timing resolution, along with the capabil-
ity of coincidence triggering on a single DOM. In an effort to further 
improve angular resolution, the TRIDENT hDOM design adds SiPMs 
with excellent timing resolution, placed in the spaces between PMTs. 
The first-rate timing response and additional photocathode coverage of 
the SiPMs in TRIDENT’s hDOM design are expected to provide improve-
ment in angular resolution compared with traditional PMT-only DOMs, 
boosting the detector’s source searching ability.

In seawater, the absorption length for Cherenkov photons is a key 
parameter to consider when designing the detector geometry. Figure 2  
shows the anticipated layout of the future telescope, guided by the 
presented optical property measurements. The detector contains 
1,211 strings, each containing 20 hDOMs separated vertically by 30 m, 
ranging from approximately 2,800 m to 3,400 m below sea level. This 
arrangement will result in a world-leading instrumented geometric 
volume of ~7.5 km3. The strings’ pattern follows a Penrose tiling distribu-
tion with inter-string distances of 70 m and 110 m, adopting the golden 
ratio42. Preliminary simulation studies indicate that this uneven layout, 
compared with a regular distribution of strings, allows for an expanded  
geometry with a broader window of measurable neutrino energies. TRIDENT  
in this layout is expected to cover from sub-teraelectronvolt (TeV)  
to exaelectronvolt energies, optimizing the telescope’s potential for 
neutrino astronomy43. Building multiple, separated clusters of strings 
helps to ease the difficulties faced in the construction and maintenance 
of large telescopes on the seafloor. TRIDENT instead leaves several 
spiral pathways, allowing underwater robots to access the innermost 

strings for maintenance. This unsegmented geometry aims to reduce 
the number of clipping edge events, which are more likely to occur 
in segmented geometries with wide empty regions between string 
clusters. The spiral shape of the pathways also helps to reduce the 
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IceCube-Gen2 sensitivities15,66,67 are also shown for comparison. IceCube, located 
at the South Pole, has increased sensitivity to the northern sky. For a source 
located in the southern sky with a spectral index of 3, TRIDENT will have 4 orders 
of magnitude improvement in sensitivity compared with IceCube. Similarly 
comparing to the future telescope KM3NeT located in the Northern Hemisphere 
yields an improvement factor of approximately 5.
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energies adopted for each source are shown in the legend.
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λeff,att, which approximately describes the decrease in the total observ-
able photons ∝ e

−D/λ

eff,att

D

−2 over a propagation distance D31. Notably, 
λeff,att differs from the canonical attenuation length λatt as it also encom-
passes scattered photons in the observed light.

To decode all these optical parameters, precise in situ measure-
ments were conducted with T-REX, as shown in Extended Data Fig. 4. 
The core detection unit consists of three modules. At the middle is a 
light-emitter module equipped with light-emitting diodes (LEDs) of 
three wavelengths, which can emit photons isotropically with two 
modes: pulsing mode and steady mode. There are two light receiver 
modules located at 41.8 m and 21.7 m vertically above and below the 
light emitter, respectively, performing a near-far measurement. Both 
modules are equipped with two independent and complementary 
measurement systems, a photomultiplier tube (PMT) system and 
a camera system. The former primarily records PMT waveforms to 
extract the timing information of the detected photons emitted by 
pulsing LEDs, while the latter records images of the steady light emit-
ter to measure the angular distribution of the radiance (Methods and 
Extended Data Figs. 5 and 6).

Table 1 summarizes the measured canonical optical parameters 
using both the PMT and camera systems in the blue waveband, the 
optimal waveband for observing Cherenkov photons in water. The two 
systems work independently and obtain consistent results using differ-
ent measurement mechanisms. All of the data processing and analysis 
pipelines are presented in Methods in detail. In addition, measurement 
results at three different wavelengths, at various depths, are listed in 
Extended Data Tables 1 and 2.

Figure 1 summarizes the measurement results of optical property 
at TRIDENT’s site and other water-based neutrino telescopes’ sites. 
To compare with other similar measurements, we conducted another 
set of analyses to obtain λeff,att, as listed in Table 2, as definitions of the 
attenuation length in other experiments differ slightly. The results 
from Long Arm Marine Spectrophotometer (LAMS)32, ANTARES31 
and STRings for Absorption length in Water (STRAW-a)33 are effective 

attenuation lengths, which contain different proportions of scattered 
photons in their selected data acquisition time windows. The results 
from Baikal-5D34 and AC9 (ref. 35), however, made measurements of 
canonical attenuation lengths using specialized laser devices.

The measured optical properties and water current speeds are 
promising for operating a large-scale neutrino telescope at the selected 
site. T-REX’s camera system demonstrated its application as a fast, 
in situ calibration system, which is particularly important for pre-
cise angular reconstruction in underwater telescopes with dynamic 
environments. In addition, T-REX has been a valuable tool for testing 
some of TRIDENT’s electronic systems, such as time synchronization 
technologies and optical fibres for data transmission.

Design of TRIDENT
TRIDENT will be optimized to pinpoint astrophysical neutrino sources 
from the isotropic diffuse flux discovered by IceCube. The long scat-
tering lengths in deep-sea water allow the Cherenkov photons from 
a neutrino interaction vertex to propagate in long straight paths to 
the many optical sensors throughout the detector. Precisely measur-
ing the arrival times of these direct photons strongly improves the 
angular resolution of track-like events due to νµ (and a fraction of ντ) 
charged-current interactions, which neutrino telescopes rely primarily 
on for pointing36. TRIDENT aims to achieve this with the help of modern 
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Fig. 1 | Measured (effective) attenuation length at different neutrino 
telescope sites. Effective attenuation lengths measured by two independent 
optical systems, the PMT (black circle) and camera (black square) in T-REX for 
three wavelengths (405 nm, 450/460 nm, 525 nm), as summarized in Table 2. 
Data points and error bars indicate the best-fit results and 68% confidence-level 
regions in the χ2 fitting. The results obtained by the camera system use 20 images 
for each wavelength, while the results from the PMT system are measured using 
data samples with ~107 detected photons per wavelength. Measurements from 
KM3NeT32,35, P-ONE33, ANTARES31 and Baikal-GVD34 are shown for comparison. 
Also shown is the average observable Cherenkov spectrum from simulation, in 
which the optical properties measured by T-REX are used.

Table 2 | Effective attenuation lengths measured at various 
wavelengths

Wavelengths 405 nm 450 nm 460 nm 525 nm

PMT 15.3 ± 1.2 25.2 ± 3.7 − 19.0 ± 1.8

Camera
19.5

+3.3

−2.6

− 26.8 ± 2.8 16.7 ± 1.3

Effective attenuation lengths measured by the PMT and camera systems at different 
wavelengths. The table shows data along with error bars that indicate mean values and 68% 
confidence intervals. These error bars consider both statistical and systematic uncertainties.
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Fig. 2 | Geometrical layout of the TRIDENT array. The geometrical layout 
pattern follows a Penrose tiling distribution. Each black dot represents a string of 
length ~0.7 km and the dashed lines mark the paths for underwater maintenance 
by remotely operated underwater vehicles (ROV).

Nature Astronomy | Volume 7 | December 2023 | 1497–1505 1499

Article https://doi.org/10.1038/s41550-023-02087-6

λeff,att, which approximately describes the decrease in the total observ-
able photons ∝ e

−D/λ

eff,att

D

−2 over a propagation distance D31. Notably, 
λeff,att differs from the canonical attenuation length λatt as it also encom-
passes scattered photons in the observed light.

To decode all these optical parameters, precise in situ measure-
ments were conducted with T-REX, as shown in Extended Data Fig. 4. 
The core detection unit consists of three modules. At the middle is a 
light-emitter module equipped with light-emitting diodes (LEDs) of 
three wavelengths, which can emit photons isotropically with two 
modes: pulsing mode and steady mode. There are two light receiver 
modules located at 41.8 m and 21.7 m vertically above and below the 
light emitter, respectively, performing a near-far measurement. Both 
modules are equipped with two independent and complementary 
measurement systems, a photomultiplier tube (PMT) system and 
a camera system. The former primarily records PMT waveforms to 
extract the timing information of the detected photons emitted by 
pulsing LEDs, while the latter records images of the steady light emit-
ter to measure the angular distribution of the radiance (Methods and 
Extended Data Figs. 5 and 6).

Table 1 summarizes the measured canonical optical parameters 
using both the PMT and camera systems in the blue waveband, the 
optimal waveband for observing Cherenkov photons in water. The two 
systems work independently and obtain consistent results using differ-
ent measurement mechanisms. All of the data processing and analysis 
pipelines are presented in Methods in detail. In addition, measurement 
results at three different wavelengths, at various depths, are listed in 
Extended Data Tables 1 and 2.

Figure 1 summarizes the measurement results of optical property 
at TRIDENT’s site and other water-based neutrino telescopes’ sites. 
To compare with other similar measurements, we conducted another 
set of analyses to obtain λeff,att, as listed in Table 2, as definitions of the 
attenuation length in other experiments differ slightly. The results 
from Long Arm Marine Spectrophotometer (LAMS)32, ANTARES31 
and STRings for Absorption length in Water (STRAW-a)33 are effective 

attenuation lengths, which contain different proportions of scattered 
photons in their selected data acquisition time windows. The results 
from Baikal-5D34 and AC9 (ref. 35), however, made measurements of 
canonical attenuation lengths using specialized laser devices.

The measured optical properties and water current speeds are 
promising for operating a large-scale neutrino telescope at the selected 
site. T-REX’s camera system demonstrated its application as a fast, 
in situ calibration system, which is particularly important for pre-
cise angular reconstruction in underwater telescopes with dynamic 
environments. In addition, T-REX has been a valuable tool for testing 
some of TRIDENT’s electronic systems, such as time synchronization 
technologies and optical fibres for data transmission.

Design of TRIDENT
TRIDENT will be optimized to pinpoint astrophysical neutrino sources 
from the isotropic diffuse flux discovered by IceCube. The long scat-
tering lengths in deep-sea water allow the Cherenkov photons from 
a neutrino interaction vertex to propagate in long straight paths to 
the many optical sensors throughout the detector. Precisely measur-
ing the arrival times of these direct photons strongly improves the 
angular resolution of track-like events due to νµ (and a fraction of ντ) 
charged-current interactions, which neutrino telescopes rely primarily 
on for pointing36. TRIDENT aims to achieve this with the help of modern 
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Fig. 1 | Measured (effective) attenuation length at different neutrino 
telescope sites. Effective attenuation lengths measured by two independent 
optical systems, the PMT (black circle) and camera (black square) in T-REX for 
three wavelengths (405 nm, 450/460 nm, 525 nm), as summarized in Table 2. 
Data points and error bars indicate the best-fit results and 68% confidence-level 
regions in the χ2 fitting. The results obtained by the camera system use 20 images 
for each wavelength, while the results from the PMT system are measured using 
data samples with ~107 detected photons per wavelength. Measurements from 
KM3NeT32,35, P-ONE33, ANTARES31 and Baikal-GVD34 are shown for comparison. 
Also shown is the average observable Cherenkov spectrum from simulation, in 
which the optical properties measured by T-REX are used.

Table 2 | Effective attenuation lengths measured at various 
wavelengths

Wavelengths 405 nm 450 nm 460 nm 525 nm

PMT 15.3 ± 1.2 25.2 ± 3.7 − 19.0 ± 1.8

Camera
19.5

+3.3

−2.6

− 26.8 ± 2.8 16.7 ± 1.3

Effective attenuation lengths measured by the PMT and camera systems at different 
wavelengths. The table shows data along with error bars that indicate mean values and 68% 
confidence intervals. These error bars consider both statistical and systematic uncertainties.
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Fig. 2 | Geometrical layout of the TRIDENT array. The geometrical layout 
pattern follows a Penrose tiling distribution. Each black dot represents a string of 
length ~0.7 km and the dashed lines mark the paths for underwater maintenance 
by remotely operated underwater vehicles (ROV).
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THE ICECUBE-GEN2 NEUTRINO OBSERVATORY

Figure 17: Left: Discovery potential of IceCube and IceCube-Gen2 for neutrino flares similar to the one observed for
TXS0506+056 in 2014/15 which lasted 158 days. Shown is the projected significance of the observation as a func-
tion of the flare duration. The flux and spectral index of the assumed flare are the ones observed for TXS0506+056
(see Figure 16) and assumed constant within the flare duration, i.e., the neutrino fluence increases with flare du-
ration. Green dotted lines mark the 5� discovery threshold, as well as the lower threshold for sending alerts to
partner telescopes for follow-up observations. Right: Significance of the observations of NGC 1068 as a function of
observation time for IceCube and IceCube-Gen2, assuming the best-fit neutrino flux derived in [27].

IceCube-Gen2 will allow to firmly discover the brightest AGNs on the neutrino sky. Fig-
ure 17 (right side) shows the expected significance as a function of observation time
for NGC 1068. A detection at 10� significance is expected after 10 years, allowing
a precise measurement of the spectral shape of the neutrino emission that is key to
understanding the acceleration processes in the source. Figure 18 shows the differen-
tial sensitivity of IceCube-Gen2 in relation to the spectrum of NGC 1068 inferred from
the IceCube data, a model of the neutrino emission, and observations of the source in
gamma rays, underlining the strong gain in sensitivity with IceCube-Gen2 even for soft
spectrum sources. In addition to the direct observations, precise spectrum and flavor
ratio measurements (see Section 2.2.6) of the diffuse flux will support the study of the
acceleration processes and environmental conditions in AGN cores and/or jets.

2.2.2 Cosmic-ray production in tidal disruption events

Another proposed transient source of high-energy CR and neutrinos is the tidal disrup-
tion of stars by supermassive black holes [171–174]. Such TDEs occur when a star is
disintegrated by strong gravitational forces as it spirals towards the black hole. TDEs
have been detected across a range of wavelengths, and, in some cases, have been
observed to launch relativistic particle jets.

Observations of the first coincidences between TDE and high-energy neutrinos open
a great perspective for IceCube-Gen2. Figure 19 shows the expected rate of asso-
ciations between neutrinos and TDEs for IceCube-Gen2, based on current IceCube
observations. In combination with the much deeper survey depth that next-generation
optical survey telescopes will provide one can expect O(10) coincidences per year. The

30

THE ICECUBE-GEN2 NEUTRINO OBSERVATORY

Figure 19: Rate of associations of high-energy neutrinos to TDEs expected from multi-messenger observations
with IceCube and IceCube-Gen2. The redshift evolution of TDEs from [175] is used in the calculation, spurious
coincidences are marked by thin gray lines. The respective survey depths for the observations of TDEs by ZTF and
the Vera C. Rubin observatory are indicated.

flux from GRBs considering 1000-5000 GRBs (assuming 667 bursts/year). This can be
compared to three models that assume UHE cosmic rays are produced by GRBs [177]).

Low-luminosity GRBs and relativistic SNe might feature "choked” jets, where the rela-
tivistic jet fails to penetrate the progenitor star, and therefore no detectable gamma-ray
signal is present. Such jets would provide a unified picture of GRBs and SNe [192, 193].
This scenario could be physically probed by the detection of high-energy neutrinos in
coincidence with SNe containing relativistic jets [194, 195]. The neutrino emission is
expected in a relatively short time window (⇥100 s) after core-collapse. Thus, this sce-
nario predicts a high-energy neutrino signal followed by the appearance of a CCSN.

Two complementary search strategies have been applied to identify neutrino emission
from CCSNe with IceCube. First, the high-energy neutrino alerts released by IceCube’s
realtime program [196] are followed up with optical instruments to search for potential
optical counterparts of the signatures described above. Second, a catalog of optically
detected CCSNe, from instruments such as the All-Sky Automated Survey for Super-
novae (ASAS-SN) and the Zwicky Transient Facility (ZTF) [197, 198], has been used to
search for the combined neutrino signal from the entire source populations [199].

IceCube-Gen2 will yield about 5 times more alerts from high-energy track-like neutrino
events with improved angular resolution than IceCube. The increased pointing accu-
racy will reduce the fraction of alerts due to chance coincidences between neutrinos
and causally unconnected optical transients. Up to 6 coincident detections of high-
energy neutrinos and CCSNe can be expected per year from sources with a redshift
below z = 0.15. High-cadence all-sky observations performed by new survey facilities,
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Figure 13: Visualization of source detection capabilities expected for IceCube-Gen2. Source positions on the sky
and intensities have been selected randomly from an intensity distribution expected for sources with a constant
density in the local universe, and consistent with current IceCube neutrino flux constraints. Shown is the test statistic
value determined in a mock-simulation of track-like events that can be obtained at the source position after 10 years
of operation of IceCube-Gen2. For better visibility, the region around the sources (indicated by white dotted lines)
has been magnified. The position of the Galactic plane is shown as a dashed curve. Below the map, differential
sensitivities for the detection of point sources (5� discovery potential, and sensitivity at 90% CL) are shown for
two selected declinations, at the celestial horizon and at � = 30`. Absorption of neutrinos in the Earth limits the
sensitivity at PeV energies and above for higher declinations. The IceCube and IceCube-Gen2 sensitivities are
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radio array will ensure that individual neutrinos are well localized on the sky and can
be correlated with potential counterparts in the electromagnetic spectrum. This will
enable more sources to be distinguished from diffuse backgrounds. Details about the
instrumentation and performance can be found in Section 3.

IceCube-Gen2 will allow the observation of sources at least five times fainter than those
observable with currently operating detectors. An impression of the neutrino sky that
can be expected in the IceCube-Gen2 era is presented in Figure 13. It shows a test
statistic map obtained from the simulation of the arrival direction of muon neutrinos for
a detector as sensitive as IceCube-Gen2 searching for point sources of neutrinos. The
neutrino flux of the simulated sources has been chosen randomly from a model extra-
galactic source population that has a number density distribution expected of sources
having a uniform density and luminosity in the local universe. The intensity of the
model sources is consistent with current constraints from IceCube observations. Po-
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Figure 13: Visualization of source detection capabilities expected for IceCube-Gen2. Source positions on the sky
and intensities have been selected randomly from an intensity distribution expected for sources with a constant
density in the local universe, and consistent with current IceCube neutrino flux constraints. Shown is the test statistic
value determined in a mock-simulation of track-like events that can be obtained at the source position after 10 years
of operation of IceCube-Gen2. For better visibility, the region around the sources (indicated by white dotted lines)
has been magnified. The position of the Galactic plane is shown as a dashed curve. Below the map, differential
sensitivities for the detection of point sources (5� discovery potential, and sensitivity at 90% CL) are shown for
two selected declinations, at the celestial horizon and at � = 30`. Absorption of neutrinos in the Earth limits the
sensitivity at PeV energies and above for higher declinations. The IceCube and IceCube-Gen2 sensitivities are
calculated separately for each decade in energy, assuming a differential flux dN/dE ö E�2 in that decade only.
Neutrino fluxes are shown as the per-flavor sum of neutrino plus anti-neutrino flux, assuming an equal flux in all
flavors.
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Cosmic Rays

• Cosmic rays (CRs) are 
energetic nuclei and (at a 
lower level) leptons. 

• Spectrum follows a power-
law over many orders of 
magnitude, indicating a 
non-thermal origin. 

• direct observation with 
satellite and balloon-borne 
experiments up to TeV  

• indirect observation as air 
showers above 10 TeV
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Figure S11: All-sky search significance and spectral index as a function of direction. The
best-fitting spectral index, weighted by pre-trial significance, is shown as a function of direction,
in equatorial coordinates (J2000 equinox) and Aitoff projection, for the all-sky search. The pixel
opacity is scaled by the pre-trial significance so more opaque locations are more significant. All
excesses of neutrinos are consistent with background fluctuations, given the large trials factor.
The Galactic plane is indicated by a grey curve with a magenta band, and the region between
±15� in galactic latitude is highlighted in Panel B. Contours enclose 20% and 50% of the ⇡0

model convolved with detector acceptance and smeared with a Gaussian corresponding to the
uncertainty of a typical signal event (7�).
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Point-Source Significance Map

 [IceCube Science 380 (2023)]

ν
No significant PS emission but local fluctuations align  with Galactic Plane.
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Point-Source Discovery Horizon

Galactic Di↵use Neutrino Emission from Sources beyond the Discovery Horizon
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The IceCube Neutrino Observatory has recently reported strong evidence for neutrino emission
from the Galactic plane. The signal is consistent with model predictions of di↵use emission from
cosmic ray propagation in the interstellar medium. However, due to IceCube’s limited potential
of identifying individual neutrino sources, it is also feasible that unresolved Galactic sources could
contribute to the observation. We investigate the contribution of this quasi-di↵use emission and
show that the observed Galactic di↵use flux at 100 TeV could be dominated by hard emission of
unresolved sources. Particularly interesting candidate sources are young massive stellar clusters that
have been considered as cosmic-ray PeVatrons. We examine whether this hypothesis can be tested
by the upcoming KM3NeT detector or the planned future facility IceCube-Gen2 with about five
times the sensitivity of IceCube.

I. INTRODUCTION

Cosmic rays (CRs) with energies up to a few PeV
are expected to originate in Galactic sources; see
e.g. Refs. [1–3] for recent reviews. This hypothesis can
be indirectly tested by observing the emission of �-rays
and neutrinos associated with the collisions of CRs with
gas in the vicinity of their sources or while they prop-
agate through the interstellar medium. Indeed, �-ray
observatories have detected a plethora of Galactic �-ray
sources [4–7] as well as extended di↵use emission [8–
12], which can be attributed, in part, to the presence
of CRs. However, the interpretation of these observa-
tions requires a careful modeling of absorption processes
as well as the inclusion of �-rays from synchrotron emis-
sion, bremsstrahlung, or inverse-Compton scattering of
high-energy electrons.

In a recent study [14], the IceCube experiment re-
ported the first observation of high-energy neutrino emis-
sion from the Galactic plane (GP) with a significance of
4.5�. The result is based on a fit of neutrino emission
templates derived from models of CR propagation and
interaction in the Milky Way [8, 19]. The best-fit nor-
malization of the angular-integrated per-flavor neutrino
flux is at the level of E2

⌫� ' 2 · 10�8 GeVcm�2s�1 at a
neutrino energy E⌫ = 100 TeV and marginally consistent
with model predictions; see e.g. Ref. [19]. The IceCube
analysis [14] is based on a selection of cascade events,
i.e. events with compact Cherenkov-light features follow-
ing from a cascade of secondary short-ranged particles.
Since these events have a relatively high angular uncer-
tainty of typically 7�, the analysis has a limited ability
to resolve degree-scale emission from individual neutrino
sources.

In the following, we investigate the contribution of un-
resolved Galactic neutrino sources to the Galactic di↵use
flux [20–27]. Analogous to the case of Galactic TeV �-ray
sources [28–30], the relative contribution of unresolved

sources to the Galactic di↵use emission is expected to in-
crease with energy due to the relatively soft emission from
CRs in the interstellar medium [19, 20, 23, 24, 26, 31–
39]. We present here a novel model-independent formal-
ism that parametrizes the (quasi-)di↵use Galactic emis-
sion in terms of the e↵ective source surface density and
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FIG. 1. IceCube’s detection horizon for Galactic neutrino
sources with an E�2 emission spectrum (“IC Tracks” [13] and
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angle ✓ is degenerate with declination � as ✓ = � + ⇡/2,
this background a↵ects the DP for sources in the North-
ern Sky, including sources in the direction of the GC. In
contrast, the point-source DP of cascade events used in
the study [14] has a more uniform coverage in terms of
declination.

Note that the discovery horizons shown in Fig. 1 as-
sume point-like sources and have to be corrected for the
enlarged angular extension of nearby sources. Assuming
an (e↵ective) source radius Rsrc and distance D > Rsrc,
the source angular radius becomes �src = sin�1(Rsrc/D).
We assume then that the DP of extended sources can be
approximated as:

�DP(E⌫ , �,�src) '

s
�2

PSF
+ �2

src

�2

PSF

�DP(E⌫ , �) , (7)

where �PSF is the size of the point-spread function (PSF);
see e.g. Ref. [29]. While this parameter in general de-
pends on source declination and neutrino energy, we will
use �PSF ' 0.2� (�PSF ' 7�) for track (cascade) events at
100 TeV [13–15, 17]. Note that these angular resolutions
represent optimistic values of the data samples that lead
to conservative DP estimates from Eq. (7).

We can now evaluate the expected number Nobs of ob-
served sources as:

Nobs =

Z
d⌦

Z Dmax(�)

Rsrc

dDD2⇢(r� + Dn(⌦)) , (8)

where Dmax(�) accounts for the scaled DP of Eq. (7).
So far, no Galactic neutrino point sources have been
identified, which implies an upper limit Nobs . 1. Fig-
ure 2 shows the corresponding exclusion limits of neu-
trino sources using IC tracks (solid blue contour) and IC
cascades (solid red contour). We assume here that the
sources have an extension of Rsrc = 10 pc, motivated by
the typical size of a SNR at the end of the Sedov-Taylor
phase [50]. Interestingly, IceCube’s current source DPs
are not su�cient to exclude a 100% contribution to the
Galactic di↵use flux over a wide range of source surface
densities and luminosities.

Figure 1 also shows the expected discovery horizon for
KM3NeT ARCA [43] as well as the planned IceCube-
Gen2 [16] (using the 10 year DP with surface array)for
the same benchmark luminosity. Using track events, op-
tical Cherenkov telescopes in the Northern Hemisphere
are expected to have an increased discovery horizon for
sources towards the GC. Notably, a recent analysis by
ANTARES [51] finds a hint for TeV neutrino emission
from the Galactic Ridge, although with weak significance
and consistent with earlier upper limits [52]. The ex-
pected exclusion contours of KM3NeT and IceCube-Gen2
are shown in Fig. 2 as dashed contours. These detectors
will be able to probe the contribution of rare but power-
ful Galactic sources if they dominate (> 50%) the di↵use
emission at 100 TeV as long as the source extension is
limited to about 10 pc.
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FIG. 2. Comparison of the Galactic di↵use neutrino emission
to the e↵ective local surface density and luminosity of Galac-
tic neutrino source populations. The green dashed lines show
the contributions in terms of the observed angular-integrated
neutrino flux at 100 TeV. The solid contours indicate popula-
tions where bright sources with an extension of Rsrc = 10 pc
should have been discovered in IceCube’s point-source stud-
ies (“IC Tracks” [13] and “IC Cascades” [14]). The dashed
contours show the expected reach of KM3NeT [15, 49] and
the proposed IceCube-Gen2 facility [16, 17]. We also indicate
the required luminosity of pulsar wind nebulae (PWNe), su-
pernova remnants (SNRs), hypernovae remnants (HNRs) and
young massive star clusters (YMSCs) to saturate the di↵use
emission at 100 TeV.

Note that, to be conservative, the KM3NeT DP from
Ref. [15] shown in Fig. 1 excludes the region � & 50�

which is only visible above the horizon [15, 43]. However,
similar to IceCube, future event selections of KM3NeT
are also expected to probe neutrino sources via high-
energy track events at high declination angles. Like-
wise, KM3NeT is also expected to have a good sensi-
tivity and angular resolution to cascade events [43]; see
also Ref. [27]. Similarly, IceCube-Gen2 is also expected
to improve the detection prospects of Galactic neutrino
sources with the inclusions of cascade events as well as by
a surface veto for atmospheric background events [16, 17].

The discovery horizon of Galactic sources depends
strongly on the source extension. As an illustration,
Fig. 3 shows the exclusion limits of Galactic populations
(as compared to Fig. 2) for point-like sources (left panel)
and sources with a radius of Rsrc = 50 pc (right panel),
typical for YMSCs [53] and also an average value for the
radius of a Pulsar TeV Halo, which can extend up to
⇠ 100 pc [54]. Indeed, identifying PeVatrons of large ex-
tension will be challenging for the upcoming detectors,
even though dedicated multi-messengers analyses might
improve the discovery prospects. Note that the sources
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Template and Catalog Searches

 [IceCube Science 380 (2023)]
with individual source searches, because the
neutrino fluxes add together, whereas random
background adds incoherently (36). The ob-
jects in each catalog were selected according
to the observed gamma-ray emission above
100 GeV and the detector sensitivity, following
previously described methods (20). We chose
the 12 sources from each category with the
strongest expected neutrino flux andweighted

them under the hypothesis that each contrib-
utes equally to the flux (supplementary text).
The total number of signal events and the
spectral index are left as free parameters for
each catalog search. The resulting P value for
each catalog search is shown in Table 1. Each
result rejects the background-only hypothesis
at the 3s level or above. However, we do not
interpret these neutrino event excesses as a

detection because the objects in these Galactic
source catalogs overlap spatially with regions
that predict the largest neutrino fluxes in the
Galactic plane diffuse emission searches.

Implications of Galactic neutrinos

The neutrino flux we observed from the Galac-
tic plane could arise from several different
emission mechanisms. The predicted energy
spectra integrated over the entire sky is shown
in Fig. 5 for each of the Galactic plane models
and their best-fitting flux normalization. Model-
to-model flux comparisons depend on the
regions of the sky considered. The KRAg best-
fitting flux normalizations are lower than pre-
dicted, which could indicate a spectral cutoff
that is inconsistent with the 5 and 50 PeV
values assumed. The simpler extrapolation of
the p0 model from giga–electron volt energies
to 100 TeV predicts a neutrino flux that is a
factor of ~5 below our best-fitting flux. How-
ever, the best-fitting flux for the p0 model ap-
pear to be consistent with recent observations
of 100-TeV gamma rays by the Tibet Air Shower
Array (fig. S8) (37). The p0 model mismatch
could arise from propagation or spectral differ-
ences for cosmic rays in the Galactic Center
region, or from contributions from unresolved
neutrino sources.
We used model injection tests to quantify

the ambiguity between different source hy-
potheses. In these tests, the best-fitting neu-
trino signal from one source search was
simulated, then the expected results in all
other analyses were examined. Injecting a
signal from the p0 model analysis, with a flux
normalization equal to the best-fitting value
from the observations, produces a median sig-
nificance that is consistent with the best-fitting
values for all other tested hypotheses (within
the expected statistical fluctuations). This in-
cludes the 3s excess observed inGalactic source
catalog searches. Individually injecting the
best-fitting flux of any one of the tested Ga-
lactic source catalogs, at the flux level observed,
did not recover the observed p0 or KRAg model
results. However, the angular resolution of the
sample and the small number of equally
weighted sources included in these catalogs
does not constrain emissions from these broad
source populations. It is plausible that many
independently contributing sources from the
Galactic plane could show a similar result to
diffuse emission from interactions in the inter-
stellar medium. These tests favor a neutrino
signal from Galactic plane diffuse emission,
but we do not have sufficient statistical power
to differentiate between the tested emission
models or identify embedded point sources.
The neutrinos observed from the Galactic

plane contribute to the all-sky astrophysical
diffuse flux previously observed by IceCube
(Fig. 5) (21, 22, 38). The fluxes we infer for each
of the Galactic template models contribute

IceCube Collaboration, Science 380, 1338–1343 (2023) 30 June 2023 5 of 6

Fig. 5. Energy spectra for
each of the Galactic plane
models. Energy-scaled, sky-
integrated, per-flavor neutrino
flux is shown as a function of
neutrino energy (Ev) for each of
the Galactic plane models.
Dotted lines are the predicted
values for the p0 (dark blue),

KRA5g (orange), and KRA
50
g (light

blue) models. Solid lines are our
best-fitting flux normalizations
from the IceCube data. Shaded
regions indicate the 1s uncer-
tainties; they extend over the
energy range that contributes
to 90% of the significance.
These results are based on the
all-sky (4p sr) template and are
presented as an all-sky flux. For
comparison, the gray hatching
shows the IceCube total neu-
trino flux (22), scaled to an all-sky flux by multiplying by 4p, with its 1s uncertainty.
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Table 1. Summarized results of the neutrino emission searches. The flux sensitivity and best-fitting
flux normalization (F) are given in units of model flux (MF) for the KRAg templates and for the p

0 analyses
as E2 dN

dE at 100 TeV, in units of 10–12 TeV cm–2 s–1 (where dN
dE is the differential number of neutrinos per

flavor, N, and neutrino energy, E). P values and significances are calculated with respect to the
background-only hypothesis. Pretrial P values for each individual result are listed for the three diffuse
Galactic plane analyses and three stacking analyses, and posttrial P values are given for the other analyses
(supplementary text). Because of the spatial overlap of the stacking catalogs with the diffuse Galactic
plane templates, strong correlations between these searches are expected. More detailed results for each
search are provided in tables S1 to S5.

Flux sensitivity F P value Best-fitting flux F

Diffuse Galactic plane analysis
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

p0 5.98 1.26 × 10–6 (4.71s) 21:8þ5:3
"4:9.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

KRA5g 0.16 × MF 6.13 × 10–6 (4.37s) 0:55þ0:18
"0:15 # MF

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

KRA50g 0.11 × MF 3.72 × 10–5 (3.96s) 0:37þ0:13
"0:11 # MF

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Catalog stacking analysis
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

SNR 5.90 × 10"4 (3.24s)*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

PWN 5.93 × 10"4 (3.24s)*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

UNID 3.39 × 10"4 (3.40s)*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Other analyses
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Fermi bubbles 0.06 (1.52s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Source list 0.22 (0.77s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Hotspot (north) 0.28 (0.58s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Hotspot (south) 0.46 (0.10s)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

*Significance values that are consistent with the diffuse Galactic plane template search results.
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Neutrino Selection II
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• Outer layer of optical 
modules used as virtual 
veto region. 

• Atmospheric muons pass 
through veto from above. 

• Atmospheric neutrinos 
coincidence with 
atmospheric muons. 

• Cosmic neutrino events 
can start inside the 
fiducial volume. 

• High-Energy Starting 
Event (HESE) analysis

 pass 
through veto from above. 
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Stars are pulled apart by tidal forces in the vicinity of 
supermassive black holes. Accretion of stellar remnants 

can power plasma outflows.

stellar debris

black hole

(relativistic) plasma outflow
[Credit: DESY, Science Communication Lab]
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Figure 1: Multi-wavelength lightcurve of AT2019dsg. Error bars represent 1� intervals. The upper
panel shows the optical photometry from ZTF, alongside UV observations from Swift-UVOT. The
plateau luminosity is a factor of 10 brighter in UVW2 than the pre-disruption baseline of the host
galaxy. The lower panel shows the integrated X-ray energy flux, from observations with Swift-XRT
and XMM-Newton, in the energy range 0.3-10 keV. Arrows indicated 3� upper limits. The vertical
dotted line illustrates the arrival of IC191001A.

9

IC
19

10
01

A

• Association of alert IC191001A with radio-load TDE AT2019dsg 

• Chance for random correlation of TDEs and IceCube alerts is 0.5%.  

• Other associations with TDE candidates, e.g. IC200530A & AT2019fdr.

177 days (after discovery)

ZTF

SWIFT-UVOT

[Reusch et al. PRL 128 (2022) 221101; Walter & Lunardini ApJ 948 (2023) 1]

[Stein et al. Nature Astronomy 5 (2021) 5]

https://arxiv.org/abs/2005.05340
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Neutrinos from Optical Transient Populations Robert Stein

Figure 1: 90% confidence level upper limits on the contribution of jetted and non-jetted TDEs to the diffuse
neutrino flux [16], assuming standard candle behaviour. The shaded bands represent uncertainty in local rate
estimates of TDEs from [13, 17]

By assuming that these TDEs behave as standard candles, source class limits on neutrino
emission can be derived. The results are shown in Figure 1. Assuming the central value of rate
estimates from [13] and [17], and an E�2.5 astrophysical neutrino flux, we find that non-jetted and
jetted TDEs contribute less than 26% and 1.3% respectively to the astrophysical neutrino flux. As
the contribution from a population is directly proportional to the local population rate, the shaded
bands indicate the uncertainty in our limits arising from rate estimates. For TDEs, these rates are the
dominant source of uncertainty in neutrino flux constraints. It will require systematic evaluation of
observed TDE rates to enable more precise limits on neutrino emission. Any refined rate estimate
can be immediately used to directly recalculate limits, without requiring any additional IceCube
analysis.

An alternative hypothesis was tested for Jetted TDEs, in which the neutrino luminosity was
assumed to be proportional to the SMBH mass. This assumption was motivated by the Eddington
Limit, which limits the accretion and is proportional to black hole mass. Observational evidence
further suggests that TDE bolometric luminosities do tend to broadly follow such a relation [18].
In this case, the limits are directly proportional to the mean SMBH mass for the TDE population,
as illustrated in Figure 2. This mean mass was assumed to be 106.5M�, a value consistent with
observations of TDE hosts [18]. Under these assumptions, the contribution of jetted TDEs to the
diffuse neutrino is then limited to less than 0.4% of the total.

5

Limits derived based on stacking of 3 jetted and 13 non-jetted TDEs. 
Contribution to diffuse flux below 2% and below 26%, respectively. 

[IceCube, PoS (ICRC2019) 1016]
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[credit: NASA’s Goddard Space Flight Center] 

High-energy neutrino emission is predicted by cosmic ray 
interactions with radiation at various stages of the GRB evolution.
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• IceCube routinely follows up on -ray bursts. 

• Search is most sensitive to "prompt" (<100s) neutrino emission. 

• Contribution to diffuse flux below 1% for "prompt" phase and below 
27% for neutrino emission within 3h.

γ

10 M. G. Aartsen et al.
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Figure 7. Di�erential median sensitivity of the Northern

Hemisphere track, all-sky cascade (Aartsen et al. 2016a), and

Southern Hemisphere track stacked GRB analyses to a per-

flavor E≠2 ‹ quasi-di�use flux in half-decadal ‹ energy bins,

with the final combined analysis shown in the black line.

Integrated sensitivities are shown as dashed lines over the

expected 90% energy central interval in detected neutrinos

for a given analysis. The IceCube measured 68% CL astro-

physical per-flavor neutrino flux band is given for reference

from a global fit of IceCube analyses (Aartsen et al. 2015b)

and a recent 6-year Northern Hemispheres ‹µ track analysis

(light blue, Aartsen et al. (2016d)).

This combined test statistic is used to calculate limits
on the GRB neutrino models of Section 2 as it is less
sensitive to possible background fluctuations than the
per-GRB method.

The background-only and background-plus-signal ex-
pectations of both stacked and per-GRB analyses are
determined from Monte Carlo pseudo-experiments fol-
lowing the same methodology as described by Aartsen
et al. (2016a). The sensitivity, both di�erential and in-
tegrated, of the stacked method to a per-flavor quasi-
di�use E≠2 neutrino spectrum is shown in Figure 7.
This sensitivity is calculated for each individual search
channel, as well as the final combined sensitivity. The
Northern Hemisphere track analysis (combining the re-
sults of Aartsen et al. (2015d) with this paper’s exten-
sion to three additional years) is seen to be the most
sensitive neutrino detection channel. The all-sky cas-
cade and Southern Hemisphere track channels converge
in sensitivity to the Northern Hemisphere track within
a factor of a few at energies & 1 PeV, while the South-
ern Hemisphere track analysis is the most sensitive GRB
analysis to date for neutrinos & 10 PeV. Each individual
channel has su�cient sensitivity to detect a neutrino sig-
nal should the per-flavor quasi-di�use GRB neutrino flux
be comparable in magnitude to the measured IceCube
astrophysical neutrino flux of ≥10≠8 GeV cm≠2 sr≠1 s≠1.

6. RESULTS

The final event sample was searched in coincidence
with the 508 GRBs of the three-year Northern Hemi-
sphere sample and the 664 GRBs of the five-year South-
ern sample. Both per-GRB and stacked per-year and
channel test statistics were calculated to discover a neu-
trino signal from GRBs. The results of the per-GRB
analysis are presented for the Northern and Southern
Hemisphere analyses in Tables 1 and 2, respectively.
Here, basic information about the GRBs and coinci-
dent events are described, including their timing, an-
gular uncertainty ‡, angular separation ��, the mea-
sured “-ray fluence of the GRB, and the estimated en-
ergy of the coincident event. The significance of the
coincidences is summarized in two ways. Event signal-
to-background PDF ratio values used in the test statistic
calculation are provided to estimate relative event im-
portance. The significance of the per-GRB test statistic
is then given as a p-value calculated from that GRB’s ex-
pected background-only test statistic distribution, con-
stituting that GRB’s pre-trials p-value. In parentheses,
the post-trials p-value of this GRB coincidence is given,
calculated relative to the combined three-year Northern
Hemisphere track and five-year Southern track analy-
sis max({Tg}) test statistic distribution expected from
background, respectively.

The most significant coincidence (in both pre-trials
and post-trials p-value) was found in the Southern Hemi-
sphere analysis coincident with GRB110207A, a Swift-
localized long GRB (T100 = 109.32 s) observed at a dec-
lination of ≠10.8¶. This event occurred during the T100
of the GRB and had a reconstructed direction within
1¶ of the GRB, with a moderate reconstructed muon
energy of Eµ & 12 TeV, yielding a signal-to-background
PDF ratio of S/B = 271.6. The pre-trials significance
is p = 3.5 ◊ 10≠4, making it the single most significant
coincidence with a GRB to date in any IceCube GRB
neutrino search. Although the event was within 1¶ of the
GRB location, the angular uncertainty of this event and
GRB were 0.3¶ and 0.01¶, respectively. Combined, these
lead to a ≥3‡ o�set in the signal space PDF, reducing
the significance of the coincidence. Monte Carlo sim-
ulations and reconstructions were performed of muons
with similar energy, origin, and light deposition topol-
ogy to the measured event, establishing that the recon-
structed angular uncertainty of 0.3¶ is consistent with
the median angular resolution of the simulated muons of
0.24¶. Furthermore, a full likelihood scan of a more de-
tailed angular reconstruction, which accounts for muon
stochastic losses, was performed on this event to ver-
ify the quality of the reconstructed direction (Aartsen
et al. 2014a). It was found that the two reconstructions
are consistent with each other, while the GRB110207A
location is > 5‡ from the advanced reconstructed direc-
tion, supporting that this event is inconsistent with the

12 M. G. Aartsen et al.

Figure 8. Excluded regions for a given CL of the generic

double broken power law neutrino spectrum as a function of

first break energy Áb and per-flavor quasi-di�use flux normal-

ization �0 derived from the presented results combined with

previous Northern Hemisphere track (Aartsen et al. 2015d)

and all-sky cascade (Aartsen et al. 2016a) searches. Models

of neutrino production assuming GRBs are the sole source of

the measured UHECR flux either by neutron escape (Ahlers

et al. 2011) or proton escape (Waxman & Bahcall 1997) from

the relativistic fireball are provided for reference.
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Figure 9. Upper limits (90% CL, solid lines) to the predicted

per-flavor quasi-di�use flux of numerical neutrino production

models (dashed lines) for benchmark parameters fp = 10

and � = 300 over the expected central 90% central energy

containment interval of detected neutrinos for these models,

combining the presented analysis with the previously pub-

lished Northern Hemisphere ‹µ track (Aartsen et al. 2015d)

and all-sky cascade (Aartsen et al. 2016a) searches.

di�use flux. Both the internal shock and photospheric
fireball models are strongly constrained. The ICMART
model significantly reduces the expected neutrino pro-
duction in GRBs and remains beyond the sensitivity of
the combined analysis.

These limits are extended to arbitrary values for fb

and � in the numerical models. Assuming all GRBs in
the analyzed sample have identical values for fp and �,

limits are presented in Figure 10 as exclusion regions in
a scan of fp and � parameter space. Here, the inter-
nal shock and photospheric fireball models are shown to
be excluded at the 99% CL for benchmark model pa-
rameters. The 90% CL upper limits of all models are
improved by about a factor of two compared to those
presented in the all-sky cascade analysis (Aartsen et al.
2016a) with the inclusion of this new three year North-
ern Hemisphere and five year Southern sky ‹µ + ‹̄µ anal-
ysis. The primary regions in these models that still can-
not be constrained require small baryonic loading and
large bulk Lorentz factors. The ICMART model is lim-
ited in a much smaller interval of possible bulk Lorentz
factors (100 < � < 400) as this model is much less well
constrained; only regions of large baryonic loading and
small bulk Lorentz factors can be meaningfully excluded.

7. CONCLUSIONS
We have performed a search for muon neutrinos

and anti-neutrinos in coincidence with 1172 GRBs in
IceCube data. This analysis consisted of an exten-
sion of previous Northern Hemisphere track analyses
to three more years of data, and aa additional search
for ‹µ + ‹̄µ induced track events in the Southern Hemi-
sphere in five years of IceCube data, which improves
the sensitivity of the analysis to neutrinos with en-
ergy above a few PeV. Taken together, these searches
greatly improve IceCube’s sensitivity to neutrinos pro-
duced in GRBs when combined with previous analyses.
A number of events were found temporally coincident
with these GRBs, but were consistent with background
both individually and when stacked together. New lim-
its were therefore placed on prompt neutrino produc-
tion models in GRBs, which represent the strongest con-
straints yet on the proposal that GRBs are the primary
source of UHECRs during their prompt phase. General
models of neutrino emission were first constrained as a
function of spectral break energy and flux normaliza-
tion, excluding much of the current model phase space
where GRBs during their prompt emission are assumed
to be the sole source of UHECRs in the universe at
the 99% CL. Furthermore, models deriving an expected
prompt neutrino flux from individual GRB “-ray spec-
tral properties were constrained as a function of GRB
outflow hadronic content and Lorentz factor �. Models
of prompt neutrino production that have not yet been
excluded require GRBs to have much lower neutrino pro-
duction e�ciency, either through reduced hadronic con-
tent in the outflow, increased �-factor, or acceleration
regions much farther from the central engine than the
standard internal shock fireball model predicts. This
analysis also does not meaningfully address the possible
GRB production of neutrinos during their precursor or
afterglow phases.

model-dependent limits model-independent limits

based on 1172 GRBs

[Waxman & Bahcall ’97]

[IceCube, ApJ 843 (2017) 2]

[IceCube, ApJ 939 (2022) 2]

[IceCube, ApJ 843 (2017) 2]

https://arxiv.org/abs/1702.06868
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2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09
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+

:, when considering dimensionless spins with
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Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.
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Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.
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Binary neutron star merger GW170817 observed in gravitational waves and
electromagnetic emission.[Astrophys.J. 848 (2017) no.2, L13]

Markus Ahlers (NBI) IceCube Results July 16 & 17, 2018 slide 82[LVD, Fermi & INTEGRAL, ApJ 848 (2017) no.2, L13]
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Figure 4. Predicted fluence of muon neutrinos (⌫µ + ⌫̄µ) associ-
ated with the prompt emission in the best-fit structured jet model
of Ghirlanda et al. (2019). We show the predictions based on a
fixed photon peak in the shell frame (“fixed ✏ 0

peak
”, solid lines) us-

ing Eq. (32) and in the engine frame (“fixed ✏ ⇤
peak

”, dotted lines)

using Eq. (33). The thick black lines show the o↵-axis emission at a
viewing angle ✓v = 15

�. The blue lines show the corresponding pre-
diction for the on-axis emission, which has a strong dependence on
the internal photon spectrum. The thin green lines show the result
of an approximation based on the standard on-axis calculation of
uniform jets (Waxman & Bahcall 1997) with jet parameters from
the structured jet model at ✓⇤ = ✓v . The upper solid lines indicate
the 90% C.L. upper limit on the fluence from Albert et al. (2017).

✏peak ' 20 MeV, in tension with the peak distribution in-
ferred from GRBs observed by Fermi-GBM (Gruber et al.
2014). The phenomenological model (b) is motivated by the
discussion of Ioka & Nakamura (2019), who study the con-
sistency of the on-axis emission of GRB 170817A with the
E iso
� -✏peak correlation suggested by Amati (2006). Here, the

on-axis fluence is expected to peak at ✏peak ' 178 keV.

5.2 Neutrino Fluence

As we discussed in section 4, the neutrino emissivity of a
structured jet is expected to deviate from the angular dis-
tribution of the observable �-ray emission. For high opacity
(⌧p� � 1) regions of the shell the angular distribution of the
neutrino emission is expected to follow the distribution of in-
ternal energy (24) that takes into account the e�ciency of
dissipation in internal collisions. This is shown for our e�-
ciency model (A6) as the thick green line in Fig. 4. For low-
opacity (⌧p� � 1) regions, however, the energy distribution
has an additional angular scaling from the opacity (27), as
indicated by the thin green line. One can notice that a low
opacity environment has an enhanced emission at jet angles
10

�-20
�, which is comparable to our relative viewing angle.

Note that the angular distributions in Fig. 3 are normalized
to the value at the jet core and do not indicate the absolute
emissivity of neutrinos or �-rays, which depend on jet angle
✓⇤ and co-moving cosmic ray energy ✏ 0p.

At each jet angle ✓⇤ we estimate the maximal cosmic ray
energy based on a comparison of the acceleration rate to the

combined rate of losses from synchrotron emission, p� in-
teractions (Bethe-Heitler and photo-hadronic) and adiabatic
losses. Our model predictions assume a magnetic energy ra-
tio compared to �-rays of ⇠B = 0.1 and a non-thermal bary-
onic loading of ⇠p ' 1 (see Appendix B). We calculate the
neutrino emissivity j 0⌫↵ (✓

⇤, ✏ 0⌫) from p� interactions with the
photon background in sub-shells based on the Monte-Carlo
generator SOPHIA (Mücke et al. 2000), that we modified to
account for synchrotron losses of all secondary charged parti-
cles before their decay (Lipari et al. 2007). The uncertainties
regarding the photon target spectrum are estimated in the
following via the two models (a) and (b) of the peak photon
energy.

The expected fluence of muon neutrinos (⌫µ + ⌫̄µ) under
di↵erent model assumptions is shown in Fig. 4. The o↵-axis
fluence at a viewing angle of ✓v ' 15

� is indicated as thick
black lines. The o↵-axis prediction has only a weak depen-
dence on the angular scaling of the co-moving peak of the
photon spectrum, Eqs. (32) or (33), as indicated as solid and
dotted lines, respectively. This is expected from the normal-
ization of the model to the observed �-ray fluence under this
viewing angle. For comparison, we also show in Fig. 4 an
approximation (thin green lines) of the o↵-axis neutrino flu-
ence based on the on-axis top-hat jet calculation with Lorentz
factor and neutrino emissivity evaluated at ✓⇤ ' ✓v . This ap-
proximation has been used by Biehl et al. (2018) to scale the
o↵-axis emission of the structured jet. Note that this approx-
imation significantly underestimates the expected neutrino
fluence of GRB 170717A compared to an exact calculation.

Figure 4 also indicates the predicted neutrino fluence for an
on-axis observer of the source located at the same luminosity
distance. The extrapolated on-axis fluence shows a strong
dependence on the model of the internal photon spectrum;
model (33) predicts a strong neutrino peak at the EeV scale
that exceeds the prediction of model (32) by two orders of
magnitude. The relative di↵erence of the neutrino fluence at
the EeV scale follows from the ratio of ✏ 0

peak
(0) for the two

models (32) and (32): For a fixed co-moving energy density
of the shell, a lower peak photon energy corresponds to a
higher photon density and also a higher threshold for neutrino
production. One can also notice, that the on-axis neutrino
fluence in the TeV range depends only marginally on the
viewing angle. This energy scale is dominated by the emission
of the jet at ✓⇤ ' 10

�
� 20

� and reflects the strong angular
dependence of the neutrino emission in the rest frame of the
central engine (cf. Fig. 3).

The upper thin solid lines in Fig. 4 show the 90% confidence
level (C.L.) upper limits on the neutrino flux of GRB 170817A
from Antares, Auger and IceCube (Albert et al. 2017). The
predicted neutrino fluence is orders of magnitude below these
combined limits. However, our neutrino fluence predictions
are proportional to the non-thermal baryonic loading factor,
and we assume a moderate value of ⇠p = 1 for our calcula-
tions. In any case, the predicted neutrino flux at an observa-
tion angle of 15

� is many orders of magnitude larger than the
expectation from an o↵-axis observation of a uniform jet.

6 CONCLUSIONS

In this paper, we have discussed the emission of neutrinos
in the internal shock model of �-ray bursts. The majority of
previous predictions are based on the assumption of on-axis
observations of uniform jets with wide opening angles. Here,
we have extended the standard formalism of neutrino pro-

MNRAS 000, 1–10 (2019)

No detection of neutrinos in prompt phase 
consistent with off-axis emission.

[MA & Halser'19]

× 105
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"Limits on Neutrino Emission from 
GRB 221009A from MeV to PeV using 

the IceCube Neutrino Observatory"  
 [IceCube ApJL 946 (2023)] 

[IceCube PoS-ICRC2023-1511]

IceCube search for neutrinos from GRB 221009A

Figure 1: Time-integrated 90% CL differential upper limits on the neutrino flux from GRB 221009A with
the ELOWEN, GRECO, and GFU samples. We assume a time-integrated flux with a power-law spectrum
� (⇢) / ⇢�2 for the neutrino spectrum in each energy bin.
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Figure 2: Gamma-ray observations and time-integrated upper limits on the neutrino flux of GRB 221009A.
We show the gamma-ray observations reported by [11, Table S2] in the brightest period of the emission. We
show the total gamma-ray fluence observed by Fermi-GBM, as reported by [10], at W = 2.0 for visualization
purposes. We also plot the gamma-ray observations from Fermi-LAT as reported in realtime [12], although
this flux is known to be underestimated due to saturation effects. The right axis shows the differential isotropic
equivalent energy, with ⇢2� (⇢) = ⇢3E8B>/3⇢ ⇥ (1 + I)/4c⇡2

! .

accelerates baryons, producing ultra-high energy cosmic rays and neutrinos through photohadronic
interactions.

In this analysis, we investigate two different fireball models: the internal shock model [13,
14] and the Internal Collision-Induced Magnetic Reconnection and Turbulence (ICMART) model
[14, 15]. The two models use similar mechanisms, but ICMART predicts neutrino production from
magnetic reconnection at a larger radius from the source. In order to test these models, we generated
neutrino spectra using Fireballet [16] with varying baryon load and bulk Lorentz factors for the T90
time window. These spectra can be seen in Figure 3.

We assume that the proton spectrum follows a ⇢�2 power law. We used the redshift (I = 0.151),
isotropic-equivalent luminosity (!iso = 9.9 ⇥ 1053 erg/s), low-energy photon index (U = �1.583),
high-energy photon index (V = �3.77), and break energy (⇢break = 1387 keV) from the best-fit
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GRB seen by Fermi-LAT over 10h Neutrino Upper Limits from IceCube
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• "Brightest-Of-All-Time" GRB 221009A 
(  but ) 

• MM observations in ApJL focus issue 

•  predictions for internal shock model

DL ≃ 740 Mpc Eiso ≃ 1055erg

ν

 [ -ray observations by Fermi ApJL 952 (2023) & LHAASO Science 9 (2023)]γ
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• High rate of star formation and 
SN explosions enhances (UHE) 
CR production. 

• Low-energy cosmic rays remain 
magnetically confined and 
eventually collide in dense 
environment. 

• In time, efficient conversion of 
CR energy density into -rays 
and neutrinos. 

• Power-law neutrino spectra with 
high-energy softening from CR 
leakage and/or acceleration.

γ

C) Starburst Galaxies
• intense CR interactions (and acceleration) in dense starburst galaxies
• cutoff/break feature (0.1 � 1) PeV at the CR knee (of these galaxies), but very

uncertain
• plot shows muon neutrinos on production (3/2 of total)

3

olate the local 1.4 GHz energy production rate per unit
volume (of which a dominant fraction is produced in qui-
escent spiral galaxies) to the redshifts where most of the
stars had formed through the starburst mode, based on
the observed redshift evolution of the cosmic star forma-
tion rate [24], and calculate the resulting neutrino back-
ground. The cumulative GeV neutrino background from
starburst galaxies is then

E2
⌫�⌫(E⌫ = 1GeV) � c

4�
�tH [4�(dL⌫/dV )]⌫=1.4GHz

= 10�7�0.5 GeV cm�2 s�1 sr�1. (2)

Here, tH is the age of the Universe, and the factor
� = 100.5�0.5 incorporates a correction due to redshift
evolution of the star formation rate relative to its present-
day value. The value of �0.5 � 1 applies to activity that
traces the cosmic star formation history [6]. Note that
flavor oscillations would convert the pion decay flavor ra-
tio, �e : �µ : �� = 1 : 2 : 0 to 1 : 1 : 1 [11], so that
�⌫e = �⌫µ = �⌫� = �⌫/2.
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FIG. 1: The shaded region brackets the range of plausible
choices for the spectrum of the neutrino background. Its up-
per boundary is obtained for a power-law index p = 2 of
the injected cosmic-rays, and its lower boundary corresponds
to p = 2.25 for E⌫ < 1014.5 eV. The solid green line corre-
sponds to the likely value p = 2.15 (see text). Other lines: the
WB upper bound on the high energy muon neutrino intensity
from optically-thin sources; the neutrino intensity expected
from interaction with CMB photons (GZK); the atmospheric
neutrino background; experimental upper bounds of optical
Cerenkov experiments (BAIKAL [29] and AMANDA [30]);
and the expected sensitivity of 0.1 km2 and 1 km2 optical
Cerenkov detectors [1].

Equation (2) provides an estimate of the GeV neu-
trino background. The extrapolation of this background
to higher neutrino energies depends on the energy spec-
trum of the high energy protons. If the proton energy dis-
tribution follows a power-law, dN/dE � E�p, then the

neutrino spectrum would be, E2
⌫�⌫µ � E2�p

⌫ . The energy
distribution of cosmic-ray protons measured on Earth fol-
lows a power-law dN/dE � E�2.75 up to the ”knee” in
the cosmic-ray spectrum at a few times 1015 eV [23, 25].
(The proton spectrum becomes steeper, i.e. softer, at
higher energies [2].) Given the energy dependence of the
confinement time, � E�s [22], this implies a produc-
tion spectrum dN/dE � E�p with p = 2.75 � s � 2.15.
This power-law index is close to, but somewhat higher
than, the theoretical value p = 2, which implies equal
energy per logarithmic particle energy bin, obtained for
Fermi acceleration in strong shocks under the test par-
ticle approximation [26]. We note that the cosmic-ray
spectrum observed on Earth may not be representative
of the cosmic-ray distribution in the Galaxy in general.
The inferred excess relative to model predictions of the
> 1 GeV photon flux from the inner Galaxy, implies that
the cosmic-rays are generated with a spectral index p
smaller than the value p = 2.15 inferred from the local
cosmic-ray distribution, and possibly that the spectral
index of cosmic-rays in the inner Galaxy is smaller than
the local one [27]. The spectrum of electrons accelerated
in SNe is inferred to be a power law with spectral index
p = 2.1 ± 0.1 over a wide range energies, � 1 GeV to
� 10 TeV, based on radio, X-ray and TeV observations
(e.g. [28]).

For a steeply falling proton spectrum such as dN/dE �
E�2, the production of neutrinos of energy E⌫ is domi-
nated by protons of energy E � 20E⌫ [18], so that the
cosmic-ray ”knee” corresponds to E⌫ � 0.1 PeV. In anal-
ogy with the Galactic injection parameters of cosmic-
rays, we expect the neutrino background to scale as

E2
⌫�SB

⌫ � 10�7(E⌫/1GeV)�0.15±0.1GeV cm�2 s�1 sr�1(3)

up to � 0.1 PeV. In fact, the ”knee” in the proton spec-
trum for starburst galaxies may occur at an energy higher
than in the Galaxy. The steepening (softening) of the
proton spectrum at the knee may be either due to a
steeper proton production spectrum at higher energies, or
a faster decline with energy for the proton confinement
time. Since both the acceleration of protons and their
confinement depend on the magnetic field, we expect the
”knee” to shift to a higher energy in starbursts, where the
magnetic field is much stronger than the Galactic value.
The predicted neutrino intensity is shown as a solid line
in Fig. 1. The shaded region illustrating the range of
uncertainty in the predicted neutrino background. This
range is bounded from above by the intensity obtained
for p = 2, corresponding to equal proton energy per log-
arithmic bin, and from below by the intensity obtained
for p = 2.25, corresponding to the lower value of the
confinement time spectral index, s = 0.5.

The extension of the neutrino spectrum to energies
E⌫ > 1 PeV is highly uncertain. If the steepening of the
proton spectrum at the knee is due to a rapid decrease
in the proton confinement time within the Galaxy rather

[Loeb & Waxman’06]

Markus Ahlers (NBI) Deciphering Cosmic ⌫s with MM Astronomy February 23, 2018 slide 29

[Loeb & Waxman ’06]

M82

[Loeb & Waxman ’06]

[Romero & Torres'03; Liu, Wang, Inoue, Crocker & Aharonian'14; Tamborra, Ando & Murase'14] 
[Palladino, Fedynitch, Rasmussen & Taylor'19; Peretti, Blasi, Aharonian, Morlino & Cristofari'19] 

[Ambrosone, Chianese, Fiorillo, Marinelli, Miele & Pisanti'20]
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• UHE CR proton emission rate density: 

• Neutrino flux can be estimated as (  : redshift evolution factor) : 

• Limited by pion production efficiency:  

• Similar UHE nucleon emission rate density (local minimum at ) : 

• Competition between pion production efficiency (dense target) and CR 
acceleration efficiency (thin target).

ξz

fπ ≲ 1

Γ ≃ 2.04

E2
ν ϕν(Eν) ≃ fπ

ξzKπ

1 + Kπ

𝒪(1)

1.5 × 10−8GeV cm−2 s−1 sr−1

IceCube diffuse level

[E2
pQp(Ep)]1019.5eV ≃ 8 × 1043erg Mpc−3 yr−1

[E2
NQN(EN)]1019.5eV ≃ 2.2 × 1043erg Mpc−3 yr−1

[e.g. MA & Halzen'12]

[Waxman & Bahcall'98]

[Auger'16; see also Jiang, Zhang & Murase'20]
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• Cosmogenic (GZK) neutrinos 
produced in UHE CR interactions 
peak in the EeV energy range. 

• Target of proposed in-ice 
Askaryan (ARA & ARIANNA), air 
shower Cherenkov (GRAND) or 
fluorescence (POEMMA & Trinity) 
detectors. 

• Optimistic predictions based on 
high proton fraction and high 
maximal energies. 

• Absolute flux level serves as 
independent measure of UHE CR 
composition beyond 40EeV.

Alves Batista et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies
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Figure 17. Predicted fluxes of cosmogenic neutrinos and expected sensitivities of current, upcoming and
proposed UHECR and UHE neutrino experiments. Upper limits are from IceCube [71] and the Pierre
Auger Observatory [72]. Sensitivities are for POEMMA [400] (assuming full-sky coverage), GRAND
in its 10 000-antenna (GRAND10k) and 200 000-antenna configurations (GRAND200k) [392], ARA-37
[401] (trigger level), ARIANNA [402] (“optimal wind” sensitivity), and Trinity [403] (10 m2 mirror). M.
Bustamante for this review.

will detect air showers induced by taus or tau neutrinos by observing the Cherenkov or fluorescence light
produced by the EAS.

5 OUTLOOK

Despite revolutionary progress, some critical, long-standing questions in the field of UHECRs remain
unanswered, or only answered partially: What are the sources of UHECRs? What is the mass composition
of UHECRs at the highest energies? What mechanism accelerates CRs beyond PeV energies? What is the
flux of secondary messengers — neutrinos, gamma rays — associated with UHECRs, and what can we
infer from them about UHECR sources?

Observations performed by current and planned ultrahigh-energy facilities have an opportunity to give
definite answers to these questions. Yet, to fulfill this potential, it is necessary to undertake a number of
essential steps towards experimental and theoretical progress. Below, we list what we believe are the most
important of these. This list is, of course, non-exhaustive and only expresses our views.

• UHECR composition: Precise measurement of the UHECR mass composition near the end of the
spectrum is hindered by uncertainties in models of hadronic interaction, uncertainties in measuring
Xmax, and small statistics. The latter issue will be addressed by upgraded configurations of current

[Alves Batista et al.’19]
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Astrophysical Flavours
Cosmic neutrinos visible via their oscillation-averaged flavour. 7
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FIG. 4. Measured flavor composition of IceCube HESE events
with ternary topology ID and extended multi-dimensional
analysis of the double cascades (black). Contours show the 1�
and 2� confidence intervals assuming Wilks’ theorem holds.
The shaded regions show previously published results [28, 49]
without direct sensitivity to the tau neutrino component. Fla-
vor compositions expected from various astrophysical neu-
trino production mechanisms are marked, and the entire ac-
cessible range of flavor compositions assuming standard 3-
flavor mixing is shown.

flavor components for the first time, and the degeneracy438

between the ⌫e and ⌫⌧ fraction is broken. The small sam-439

ple size in this analysis leads to an increased uncertainty440

on the ⌫µ fraction as compared to [28] and [49].441

The test statistic TS = �2
�
lnL(�0

⌫⌧
) � lnL(�b.f.

⌫⌧
)
�

com-442

pares the likelihood of a fit with a ⌫⌧ flux normalization443

fixed at a value �0
⌫⌧

to the free fit where �⌫⌧ assumes444

its best-fit value �b.f.
⌫⌧

. Evaluated at �0
⌫⌧

= 0 and using445

Wilks’ theorem, it gives the significance at which a van-446

ishing astrophysical tau neutrino flux can be disfavored.447

The test statistic is expected to follow a half-�2
k distri-448

bution with k = 1 degree of freedom [50]. See the Sup-449

plemental Material for a discussion. The observed test450

statistic is TS = 6.5, which translates to a significance451

of 2.8�, or a p-value of 0.005. A one-dimensional scan452

of the astrophysical ⌫⌧ flux normalization is performed453

with all other components of the fit profiled over. The454

1� confidence intervals are defined by TS  1, and the as-455

trophysical tau neutrino flux normalization is measured456

to457

�⌫⌧ = 3.0+2.2
�1.8 · 10�18 GeV�1 cm

�2
s�1 sr�1. (5)458

This constitutes the first non-zero measurement of the459

astrophysical tau neutrino flux.460

461

Summary and outlook. 7.5 years of HESE events462

were analyzed with new analysis tools. The previously463

shown data set was reprocessed using an improved de-464

tector calibration. Using a ternary topology classifica-465

tion directly sensitive to tau neutrinos, a flavor compo-466

sition measurement was performed. This analysis found467

the first two double cascades, indicative of ⌫⌧ interac-468

tions, with an expectation of 1.5 ⌫⌧ -induced signal events469

and 0.8 ⌫e,µ-induced background events at the best-470

fit single-power-law spectrum with flavor equipartition,471

�6⌫ = 6.4·10�18·GeV�1 cm
�2

s�1 sr�1, and �astro = 2.87,472

[30]. The first event, “Big Bird,” has a short double cas-473

cade length for its energy, and an energy asymmetry at474

the boundary of the selected interval for double cascades.475

No firm conclusion can be drawn about the nature of the476

neutrino interaction. The second event, “Double Double”,477

shows an energy asymmetry and double cascade length478

expected from the simulation of ⌫⌧ . The photon arrival479

pattern is well described with a double cascade hypothe-480

sis, but not with a single cascade hypothesis. An a poste-481

riori analysis was performed to determine the compati-482

bility of each of the events with a background hypothesis,483

based on targeted MC. The a posteriori analysis confirms484

the compatibility of “Big Bird” with a single cascade, in-485

duced by a ⌫e interaction, at the 25% level. A “Big Bird”-486

like event is ⇠ 3 (15) times more likely to be induced by a487

⌫⌧ than a ⌫e (⌫µ), the result being only weakly dependent488

on the astrophysical spectral index. “Double Double” is489

⇠ 80 times more likely to be induced by a ⌫⌧ than either490

a ⌫e or a ⌫µ. All background interactions have a com-491

bined probability of ⇠ 2%, almost independent of the492

spectral index of the astrophysical neutrino flux. While493

the a posteriori analysis was ongoing, two complemen-494

tary analyses using the “double pulse” method to search495

for tau neutrinos have been performed. Both also iden-496

tify “Double Double” as a candidate tau neutrino event497

[51, 52].498

Using an extended likelihood for double cascades which499

allows for the incorporation of a multi-dimensional PDF500

as evaluated by a kernel density estimator, the flavor501

composition was measured. The best fit is ⌫e : ⌫µ : ⌫⌧ =502

0.20 : 0.39 : 0.42, consistent with all previously pub-503

lished results by IceCube [28, 49], as well as with the ex-504

pectation for astrophysical neutrinos assuming standard505

3-flavor mixing. The astrophysical tau neutrino flux is506

measured to:507

d�⌫⌧

dE
=3.0+2.2

�1.8

✓
E

100 TeV
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FIG. 4. Measured flavor composition of IceCube HESE events
with ternary topology ID and extended multi-dimensional
analysis of the double cascades (black). Contours show the 1�
and 2� confidence intervals assuming Wilks’ theorem holds.
The shaded regions show previously published results [28, 49]
without direct sensitivity to the tau neutrino component. Fla-
vor compositions expected from various astrophysical neu-
trino production mechanisms are marked, and the entire ac-
cessible range of flavor compositions assuming standard 3-
flavor mixing is shown.

flavor components for the first time, and the degeneracy438

between the ⌫e and ⌫⌧ fraction is broken. The small sam-439

ple size in this analysis leads to an increased uncertainty440

on the ⌫µ fraction as compared to [28] and [49].441
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⌫⌧

to the free fit where �⌫⌧ assumes444

its best-fit value �b.f.
⌫⌧

. Evaluated at �0
⌫⌧

= 0 and using445

Wilks’ theorem, it gives the significance at which a van-446

ishing astrophysical tau neutrino flux can be disfavored.447

The test statistic is expected to follow a half-�2
k distri-448

bution with k = 1 degree of freedom [50]. See the Sup-449

plemental Material for a discussion. The observed test450

statistic is TS = 6.5, which translates to a significance451

of 2.8�, or a p-value of 0.005. A one-dimensional scan452

of the astrophysical ⌫⌧ flux normalization is performed453

with all other components of the fit profiled over. The454

1� confidence intervals are defined by TS  1, and the as-455

trophysical tau neutrino flux normalization is measured456

to457

�⌫⌧ = 3.0+2.2
�1.8 · 10�18 GeV�1 cm

�2
s�1 sr�1. (5)458

This constitutes the first non-zero measurement of the459

astrophysical tau neutrino flux.460
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shown data set was reprocessed using an improved de-464

tector calibration. Using a ternary topology classifica-465

tion directly sensitive to tau neutrinos, a flavor compo-466

sition measurement was performed. This analysis found467
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the boundary of the selected interval for double cascades.475

No firm conclusion can be drawn about the nature of the476

neutrino interaction. The second event, “Double Double”,477

shows an energy asymmetry and double cascade length478
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the a posteriori analysis was ongoing, two complemen-494

tary analyses using the “double pulse” method to search495

for tau neutrinos have been performed. Both also iden-496

tify “Double Double” as a candidate tau neutrino event497

[51, 52].498
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vor compositions expected from various astrophysical neu-
trino production mechanisms are marked, and the entire ac-
cessible range of flavor compositions assuming standard 3-
flavor mixing is shown.
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• Tau neutrino 
charged current 
interactions can 
produce delayed 
hadronic cascades 
from tau decays. 

• Arrival time of 
Cherenkov photons 
is visible in 
individual DOMs.
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FIG. 3. Double cascade event #2 (2014). The reconstructed
double cascade vertex positions are indicated as grey circles,
the direction indicated with a grey arrow. The size of the cir-
cles illustrates the relative deposited energy, the color encodes
relative time (from red to blue). Bright DOMs are excluded
from this analysis.

photon count distributions for single and double cascade360

hypotheses. The DOMs labeled as “bright” have col-361

lected 10 times more light than the average DOM for an362

event. They were excluded from the analysis as they can363

bias the reconstruction at the highest measured energies,364

but are used for the comparison of predicted photon365

count PDFs in the figure. The predicted photon count366

PDFs differ remarkably between the single and double367

cascade hypothesis, with the single cascade hypothesis368

disfavored. For event #1, the predicted photon count369

PDFs differ less between the hypotheses, as can be seen370

in Figure 5 in the Supplemental Material.371

372

A posteriori analysis of ⌫⌧ candidates. To quantify the373

compatibility with a background hypothesis (i.e. not ⌫⌧ -374

induced) for the actual ⌫⌧ candidate events observed, a375

targeted MC simulation for each event was performed.376

See Table III in the Supplemental Material for details on377

the restricted parameter space. These new MC events378

were filtered and reconstructed in the same way as the379

initial MC and data events. In total, ⇠ 2 · 107 “Double-380

Double”-like events and ⇠ 1 · 106 “Big-Bird”-like events381

from the targeted simulation pass the HESE selection382

criteria.383

We define the tauness, P⌧ , as the posterior probability384

for each event to have originated from a ⌫⌧ interaction,385

which can be obtained with Bayes theorem:386

P (⌫⌧ | ~⌘evt) ⇡ N⌫⌧P⌫⌧ (~⌘evt)

N⌫⌧P⌫⌧ (~⌘evt) +N⇢⇢⌫⌧P⇢⇢⌫⌧ (~⌘evt)
⌘ P⌧ ,

(2)387

where N⌫⌧ and N⇢⇢⌫⌧ are the expected number of events388

stemming from ⌫⌧ and non-⌫⌧ interactions. P⌫⌧ and P⇢⇢⌫⌧389

are the PDFs for the ⌫⌧ and non-⌫⌧ components in the pa-390

rameter space vector of each event, ~⌘evt. The differential391

expected number of events at the point ~⌘evt, N⌫⌧P⌫⌧ (~⌘evt)392

and N⇢⇢⌫⌧P⇢⇢⌫⌧ (~⌘evt) is approximated from the targeted sim-393

ulation sets using a multidimensional kernel density es-394

timator (KDE) with a gaussian kernel and the Regular-395

ization Of Derivative Expectation Operator (rodeo) al-396

gorithm [47]. The eight dimensions used in evaluating397

the tauness include the six dimensions of the restricted398

parameter space that the resimulation was carried out399

in: total deposited energy Etot, three dimensions for the400

vertex position (x, y, z ) and two dimensions for the direc-401

tion (✓,�). Further, a region of interest is defined in the402

parameters not restricted during resimulation but used403

in the double cascade classification before: double cas-404

cade length Ldc and energy asymmetry AE [48]. Thus,405

~⌘evt = (Etot, x, y, z, ✓,�, Ldc, AE).406

We sample the posterior probability in the flavor com-407

position, obtained by leaving the source flavor compo-408

sition unconstrained and taking the uncertainties in the409

neutrino mixing parameters into account. When using410

the best-fit spectra given in [30] but varying the source411

flavor composition over the entire parameter space (i.e.412

⌫e : ⌫µ : ⌫⌧ = a : b : 1 � a � b with 0  a, b  1413

and a + b  1 at source) and the mixing parameters414

in the NuFit4.1 [14] 3� allowed range, the tauness is415

(97.5+0.3
�0.6)% for “Double Double” and (76+5

�7)% for “Big416

Bird.”417

To perform the flavor composition measurement using418

the multidimensional KDE, the likelihood is modified419

compared to the analyses in [30]. In the joint likelihood420

for the three topologies, LE↵ = LSC
E↵LT

E↵LDC
E↵ [30], LDC

E↵421

is replaced by the extended unbinned likelihood for the422

double cascade events,423

LDC
Rodeo = e�

P
c Nc

Y

evt

 
X

c

NcPc(~⌘evt)

!
, (3)424

where c are the flux components used in the fit, c =425

⌫astro,↵, ⌫conv,↵, ⌫prompt,↵, µatm for the flavors ↵ = e, µ, ⌧ .426

NcPc(~⌘evt) is computed using the rodeo algorithm intro-427

duced above.428429

The result of the flavor composition measurement is430

shown in Figure 4. The fit yields431

d�6⌫

dE
=7.4+2.4

�2.1 ·
✓

E

100 TeV

◆�2.87[�0.20,+0.21]

· 10�18 · GeV�1 cm
�2

s�1 sr�1,

(4)432

with a best-fit flavor composition of ⌫e : ⌫µ : ⌫⌧ = 0.20 :433

0.39 : 0.42. Comparing this result with previously pub-434

lished results of the flavor composition also shown in Fig-435

ure 4 clearly shows the advantages of the ternary topol-436

ogy classification. The best-fit point is non-zero in all437

two distinct energy 
depositions visible

[IceCube, EPJ C (2022) 82]
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MOTIVATION TO DEVELOP NEW TECHNIQUES 
A gift from nature – Glashow resonance at 6.3 PeV

E= M2
W /(2me) = 6.3 PeV

A boost of cross-section by a factor of 300!

At ~68% in hadronic cascade channel 

10

6.3 PeV

Resonant interaction of electron anti-
neutrinos with electrons at 6.3PeV:

Figure 3: Upper: reconstructed posterior probability density of the visible energy for this event.

Lower: Expected MC event distributions in visible energy of hadrons from W� decay (blue), the

electron from W� decay (orange), CC (red) and NC (green) for a livetime of 4.6 years from PEPE

sample. We assume ⌫ : ⌫̄ = 1 : 1, a flavour ratio of 1 : 1 : 1 at Earth, and an astrophysical

spectrum measured from [26].

11

Glashow  
resonance  
candidate νe + e− → W− → X

[IceCube, Nature 591 (2021) 220-224]

Significance depends 

on spectral index of 

neutrino flux:  

 for  

 for  

 for 

E−γ

2.3σ γ = 2.49

2.7σ γ = 2.89

2.6σ γ = 2.28

https://www.nature.com/articles/s41586-021-03256-1
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6

itatively, larger normalizations, higher maximum accel-
erating energies, and stronger source evolutions generate
larger cosmogenic neutrino fluxes [11, 12, 56]. In con-
trast, when the injected cosmic-ray primaries are heavy
nuclei, photo-disintegration becomes the dominant pro-
cess over photo-pion production and the neutrino flux is
suppressed [6, 13, 57]. All model predictions shown in
Fig. 1 (except [20]) assume a pure-proton composition
with moderate source redshift evolutions comparable to
the SFR. The maximum acceleration energy varies be-
tween 1011 GeV and 1012 GeV.

For each aforementioned model, we performed a like-
lihood ratio test (Eq. 2). The resulting p-values, and
the upper limits at 90 % CL are presented in Tab. I. Al-
though three events were observed, the best fit ωGZK for
all tested models is zero. This indicates the data can
be su!ciently explained by astrophysical neutrinos. All
tested cosmogenic models assuming a pure proton com-
position of UHECRs are rejected at 95 % CL. This in-
dicates that regardless of the di”erences between those
models, if the SFR is driving the source evolution of
UHECRs, a proton-only composition can be excluded.

Proton fraction constraints — Given the measured
UHECR flux, the non-observation of neutrinos imposes
constraints on the sources. This approach is complemen-
tary to many existing models, which focus on accurately
describing the cosmic-ray energy spectrum and composi-
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FIG. 1. Di!erential upper limit (90% CL) on the neu-
trino flux. The di!erential limit is compared to the IceCube
9 year result [23], the limit by Auger [58], and cosmogenic
neutrino flux models [10, 11, 13, 20] and a UHE astrophys-
ical model [53]. The model from [20] assumes ω = 2.5,
Emax = 1020 eV, m = 3.4 and a 10% proton fraction. The
Auger limit is re-scaled to all-flavor, decade-wide bins for com-
parison.

TABLE I. A selection of cosmogenic neutrino models, the
model rejection factor (MRF [59]) at 90% CL, and associated
p-value. The analysis strongly (p < 0.05) constrains several
previously allowed models of the cosmogenic neutrino flux.
Cosmogenic models assuming a proton-only composition are
marked with a star.

Model MRF (90% CL) p-value

Ahlers 2010→ [10] (1 EeV) 0.28 0.003
Ahlers 2012→ [13] 0.65 0.043
Kotera SFR→ [11] 0.49 0.027
van Vliet [20]
(fp = 0.1,m = 3.4,ε = →2.5)

2.72 0.268

Murase AGN [53]
(ω = →2.0, ϑCR = 3)

0.47 0.057

Murase AGN [53]
(ω = →2.3, ϑCR = 100)

0.62 0.019

tion, and thus also obtain an estimation of the accompa-
nying cosmogenic neutrino flux [15, 19, 60, 61].

The CRPropa package [62] is used to model cosmogenic
fluxes (following [20]). In the simulation, protons and
secondary neutrinos are propagated to Earth including
energy losses from photo-pion production and pair pro-
duction on the CMB and EBL [63], neutron decay and
cosmological adiabatic losses. Identical sources are dis-
tributed homogeneously and isotropically with a power-
law injection spectrum (#(E) → Eω exp(↑E/Emax))
with spectral index ε ↓ [↑1.0, ↑3.0] and exponential cut-
o” at Emax ↓ [4 ↔ 1010 GeV, 1014 GeV]. Two di”erent
models for cosmological source evolution are tested

SE1(z) =

{
(1 + z)m, z ↗ z→

(1 + z→)m, z > z→ (3)

with z→ = 1.5 up to zmax = 4 [20], and a more conserva-
tive model of SE2(z) = (1 + z)m with zmax = 2, where
m denotes the source evolution parameter. The simu-
lation is normalized to the all-particle cosmic-ray flux
measured by Auger at 1010.55 GeV [64]. We normal-
ize to the highest energy data point below the observed
GZK-suppression, such that the cosmic-ray flux at the
suppression energy is saturated. This defines the flux
corresponding to a proton fraction at Earth (fp) of 100%
above energies of ↘ 30 EeV.

Fig. 2 shows the construction of the fp constraints
[65]. The light-colored histograms show the simulated
proton flux saturating the Auger measurement and the
secondary neutrino flux. The source parameters ε and
Emax are chosen to minimize the integral neutrino energy
flux to obtain a conservative prediction for a given value
of m. The flux shown in the figure is in tension with
IceCube data, and thus fp can be constrained based on
the determined upper limit.

This procedure is repeated for di”erent values of the
source evolution parameter m, and the resulting con-
straints are shown in Fig. 3 for the source evolution
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Markus Ahlers (NBI) High-Energy Astrophysical NeutrinosFigure 5: Design sketch of the Pencil Beam. Figure 6: Intensity profile as the PB sweeps over
a receiver given two di�erent anisotropy models.

adopted for its improvement in data-MC agreement. After including the absorption anisotropy,
crystal size and absorption & scattering correction were again fitted for all layers. Figure 4 depicts
the best fit stratigraphy of grain sizes. The overall grain size of ⇠1 mm as well as the increase in
older and cleaner ice are as generally expected in glaciology [12, 13]. As seen in Figure 2 the new
model significantly improves in matching the flasher data both in terms of timing and total intensity
with regards to older models and for the first time achieves an excellent data-MC agreement.

6 Future studies using the Pencil Beam in the IceCube Upgrade

The IceCube Upgrade [14], planned to be deployed during the 2022/23 season, marks the first
extension of the IceCube Detector. Over 700 additional modules, including a number of stand-
alone calibration devices[15], will be deployed on seven additional strings. Of particular interest for
the anisotropy are eleven so called Pencil Beam (PB) devices, as depicted in Figure 5. They allow for
a laser-like beam to be directed in arbitrary directions, enabling in particular sweeps over receiver
directions (see Figure 6). The birefringence induced deflection yields a unique signature, where
the emission direction of maximum received intensity is o�set from the geometric direction of the
receiver. Measuring sweeping profiles for several emitter-receiver pairs at di�erent orientations will
allow to disentangle absorption and birefringence contributions to the anisotropy at high precision.

7 Summary and Outlook

A model combining anisotropic absorption with light deflection resulting from propagation through
the birefringent ice polycrystal significantly improves on previous ice models. The model yields a
near perfect data-MC agreement for flasher data in timing and intensity variables and will improve
on event reconstructions while reducing systematic biases. In the fitting process the average crystal
size in the detector is deduced. While the birefringence model has been deduced from first principle,
the absorption contribution is so far unmotivated. Disentangling the absorption and birefringence
contributions will be the focus of future studies, in particular in the IceCube Upgrade.
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• Precision measurement of 
atmospheric neutrino oscillations 
and tau neutrino appearance 

• Improved systematics, in particular, 
ice models in event reconstructions
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Sensitivity of the IceCube Upgrade to Atm. Neutrino Oscillations

3.1 Atmospheric Oscillation Parameters

We follow a similar analysis procedure to existing IceCube measurements of the atmospheric
oscillation parameters [5]. Figure 5a shows the sensitivity at the 90% confidence level after 3 years
with the new strings. In Fig. 5b, one dimensional projections to the oscillation parameters are
shown. The new strings increase IceCube’s sensitivity to �<2

31 and \23 by about 20-30% and allow
for a significantly better constraint of the atmospheric neutrino oscillation parameters.

(a) Joint 90% CL sensitivity contours for the
mixing angle \23 and mass splitting �<2

31.
(b) One dimensional profile �j2 curves separately for both measurement
parameters

Figure 5: Sensitivity contours and profiles, respectively, for the standard atmospheric mixing analysis. The
solid black lines show the scenario where the IceCube Upgrade is in place, while the dashed lines show the
performance without additional hardware. The assumed true value is indicated in red.

3.2 Non-unitary Mixing: Tau Neutrinos

This analysis shows how well we can constrain the unitarity of the PMNS matrix in the tau
sector by scaling the amount of ag appearance. More information about how IceCube measures ag
appearance can be found in [4]. Figure 6a compares the sensitivity to the ag normalization with
and without IceCube Upgrade. With the 3 years of data including Upgrade strings, the uncertainty
can be almost reduced by a factor of two. To illustrate the evolution of this sensitivity, Fig. 6
shows the 1f uncertainty on the ag normalization as a function of the detector livetime. The new
instrumentation will significantly improve IceCube’s ability to constrain this parameter.

(a) Profile �j2 curves for 15 years of live-
time with and without including Upgrade

(b) Width of the 1f CL as a function of livetime

Figure 6: Sensitivity to the norm of the ag unitarity breaking parameter for the scenario with DeepCore only
(dashed line) and with the Upgrade included (solid lines).
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Sensitivity of the IceCube Upgrade to Atm. Neutrino Oscillations

3.1 Atmospheric Oscillation Parameters

We follow a similar analysis procedure to existing IceCube measurements of the atmospheric
oscillation parameters [5]. Figure 5a shows the sensitivity at the 90% confidence level after 3 years
with the new strings. In Fig. 5b, one dimensional projections to the oscillation parameters are
shown. The new strings increase IceCube’s sensitivity to �<2

31 and \23 by about 20-30% and allow
for a significantly better constraint of the atmospheric neutrino oscillation parameters.

(a) Joint 90% CL sensitivity contours for the
mixing angle \23 and mass splitting �<2

31.
(b) One dimensional profile �j2 curves separately for both measurement
parameters

Figure 5: Sensitivity contours and profiles, respectively, for the standard atmospheric mixing analysis. The
solid black lines show the scenario where the IceCube Upgrade is in place, while the dashed lines show the
performance without additional hardware. The assumed true value is indicated in red.

3.2 Non-unitary Mixing: Tau Neutrinos

This analysis shows how well we can constrain the unitarity of the PMNS matrix in the tau
sector by scaling the amount of ag appearance. More information about how IceCube measures ag
appearance can be found in [4]. Figure 6a compares the sensitivity to the ag normalization with
and without IceCube Upgrade. With the 3 years of data including Upgrade strings, the uncertainty
can be almost reduced by a factor of two. To illustrate the evolution of this sensitivity, Fig. 6
shows the 1f uncertainty on the ag normalization as a function of the detector livetime. The new
instrumentation will significantly improve IceCube’s ability to constrain this parameter.

(a) Profile �j2 curves for 15 years of live-
time with and without including Upgrade

(b) Width of the 1f CL as a function of livetime

Figure 6: Sensitivity to the norm of the ag unitarity breaking parameter for the scenario with DeepCore only
(dashed line) and with the Upgrade included (solid lines).
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Supernovae in IceCube Spencer Griswold

Figure 1: Top and side view of ⇠ 3.4⇥105 simulated supernova n interaction vertices registered by IceCube
DOMs. The dust layer between -1950m and -2050m and the denser DeepCore subarray are clearly visible.

Construction of IceCube finished in 2011, and since 2015 the trigger-capable uptime of the
detector has averaged 99.7% around the clock. Due to the non-Poissonian character of the dark
noise in the IceCube DOMs [4], the data acquisition system incorporates an artificial deadtime of
t = 250 µs to reduce the dark rate Rdark(t) by ⇡ 50%. The deadtime also lowers the detector count
rate by a factor 0.87/(1+Rdark(t)/NDOM · t), where NDOM is the number of participating optical
modules. DOM rates are counted in 1.6384 ms time bins. A dedicated online software system
(SNDAQ) rebins the data to 2 ms and searches the data stream for collective rate increases charac-
teristic of a supernova. SNDAQ computes a moving-average search for rate increases using fixed
time bins of 0.5, 1.5, 4, and 10 s based on the typical timescales of features in the supernova neu-
trino light curve [4]. Since October 2018, the online search has been supplemented by a Bayesian
Blocks algorithm, a dynamic self-learning histogramming method with variable bin widths [6].
The Bayesian Blocks search provides a model-independent trigger for signals exceeding a duration
of 0.5 s, with a trigger threshold that can be tuned to a chosen false positive rate.

Since the timing accuracy of the online monitor is limited to 2 ms, an improved readout system
has operated since 2014 to buffer and extract the full DOM waveforms if triggered by a supernova
candidate [7]. Since 2018, the automatic buffer has included triggers from the Supernova Early
Warning System (SNEWS) [8] and LIGO-Virgo gravitational wave alerts [9].

2. Detector Simulation and Expected Performance

Currently, three simulation schemes are used to estimate the expected rates in IceCube. In
increasing order of speed and decreasing order of sophistication, they are: a GEANT-4 based sim-
ulation of individual supernova neutrino interactions in the ice and a GPU raytracer for Cherenkov
photons; ASTERIA, a fast parameterized simulation of the detector response written in Python
[10]; and an implementation of the IceCube detector response in SNOwGLoBES [11], useful for
quick comparisons of IceCube with other supernova detectors.

The GEANT simulation uses the IceCube offline simulation software and produces recon-
structed events with an average rate of 15 events s�1; one of every 450 interactions in the sparsely

3

[IceCube, PoS (ICRC2019) 1177]

Inverse -decay β
νe + p → e+ + n
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THE ICECUBE-GEN2 NEUTRINO OBSERVATORY

Figure 23: Projected sensitivity to a burst of MeV neutrinos from a nearby CCSN as a function of progenitor distance,
assuming a 27 Mj progenitor [223]. The sensitivities of IceCube (black points) and Gen2+IceCube (red dashed line)
are displayed as the projected detection significance in units of �, and assume CCSN neutrinos are detected as a
correlated increase in PMT hit rates above background [224]. The IceCube Upgrade (blue dotted line) and IceCube-
Gen2 (red dotted line) sensitivities are based on an additional coincidence cut that requires > 6 coincident hits per
multi-PMT optical module [225]. The coincidence cut provides a substantial gain in sensitivity due to a corresponding
reduction in contamination from background hits. The gray histogram indicates the normalized progenitor density as
a function of distance from Earth [226], including stars in the Milky Way, LMC and SMC.

area will produce a corresponding increase in the recorded CCSN hit rate. Second,
the multi-PMT design of the IceCube-Gen2 optical modules will substantially reduce
the rate of accidental coincidences from background hits and improve the sensitivity to
CCSN neutrinos.

The projected neutrino flux from a supernova can easily vary by an order of magnitude
or more [228–230], with predictions affected by astrophysical uncertainties such as
the mass and equation of state of the stellar progenitor [231–233], the distance to
the progenitor [224, 234], and the details of supernova simulation codes. Thus, high
statistics are crucial to assure sensitivity to a broad range of models and distances.
Thanks to its effective volume, IceCube-Gen2 will identify CCSN neutrinos from the
Milky Way and the Magellanic clouds at 9 5� regardless of the details of the explosion
(Fig. 23). Moreover, coincident DOM hits in IceCube-Gen2 will improve constraints
on the shape of the SN neutrino spectrum by a factor of five compared to the current
detector design [225, 235].

The next Galactic supernova will produce copious amounts of electromagnetic radia-
tion, neutrinos, and gravitational waves, providing a unique opportunity for multimes-
senger observations [236–238]. Phenomena such as standing accretion shock in-
stabililities [239–242] and the rotational modes of rapidly rotating protoneutron stars
[243, 244] can produce gravitational waves and imprint temporal oscillations in the

36


