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Lattice gauge theory

As indicated by its title, at this conference people involved
with popular strands of purely theoretical activity and with
experiment oriented theory were put together. I think this is a
good thing.

What the LHC does and will continue to do to model building,
lattice gauge theory has been doing to strong interactions
oriented nonperturbative formal theory for almost 30 years.
The lattice provides a source of facts constraining the space
of theory ideas. Thus, theoretical QCD has become relatively
well disciplined.

I shall start with a simple lattice result and then let it take us
to a new qualitative nonperturbative fact about 4D pure YM
SU(N) gauge theory at N � 1.
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Single eigenvalue density
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blue: single eigenvalue density of a square Wilson loop of side ∼ 0.5 fermi, in
SU(11) pure gauge theory obtained numerically.

red: single eigenvalue density given by the heat-kernel eigenvalue density,
ρHK

N=11(θ ,τ= 3.995) (a known function dependent on a single parameter).
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Definition of continuum observables

Wilson loop matrix associated with a closed spacetime curve C :

Wr(C , x , s) =P exp

 

i

∮ x

x;C
Ar
µ
(y, s)d yµ

!

∈ SU(N)

r denotes a SU(N) representation and x is a point on C
s > 0 denotes a “smearing parameter” of dimension length squared; smearing is
required to make all Wr(C , x , s) finite SU(N) matrices with operator valued
entries

The blue line on the previous plot shows

ρN (θ ;C , s) =
1

2πN

N
∑

i=1




δ(θ − θi(C , s)
�

The θi(C , s) are angles locating the eigenvalues of Wf (C , x , s) on the unit circle;
they do not depend on the choice of x and on rigid translations or rotations of C .
The CP violating θC P parameter is set to 0; hence ρN is invariant under
θ → 2π− θ .

Smearing is defined on the next slide
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Smearing

The gauge fields are five dimensional living on R4×R+, the smearing parameter s
lives on the R+
The usual quantum fields are denoted by B f

µ(x) and the Af
µ(x , s) are defined for

s ≥ 0 by

Fµ,s = Dν Fµ,ν Af
µ(x , s = 0) = B f

µ(x)

The 5D gauge freedom is reduced to a 4D one by Af
s (x , s) = 0

At s > 0 all divergences coming from coinciding spacetime points in products of
renormalized elementary fields are eliminated by a limitation on the resolution of
the observer, parametrized by s
Renormalization of the boundary, quantum, fields B f

µ
(x) proceeds as usual

The definition of smearing easily extends to any finite UV cutoff including the
lattice: replace Dν Fµ,ν by the variation of the UV-cutoff–action. The loop in the
figure had s ∼ 0.01 fermi2

Smearing extends formally to loop space, with C parametrized by σ

∂ Tr
¬

Wf

¶

(C , s)

∂ s
=

∮

dσ
δ2Tr

¬

Wf

¶

(C , s)

δx2
µ
(σ)

RHS : Lévy Loop Laplacian
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Heat Kernel in SU(N)

The HK probability density (w.r.t. Haar measure) for an SU(N) matrix W is

P HK
N (W, t) =

∑

all r

drχr(W )e
− t

N C2(r),



χr(W )
�

= dr e−
t
N C2(r)

t is a “diffusion time” and dr , C2(r) are the dimension and the quadratic Casimir
invariant of the irreducible representation r; in the plot t → τ= t(1+ 1/N)

the heat kernel represents a multiplicative random walk on the SU(N) group
manifold emanating from the identity

The HK single eigenvalue distribution is given by

ρHK
N (θ , t) =

1

2π

 

1+
2

N

N−1
∑

p=0

(−1)p
∞
∑

q=0

cos((p+ q+ 1)θ)d(p, q)e−
t
N C(p,q)

!

C(p, q) =
1

2
(p+ q+ 1)

�

N −
p+ q+ 1

N
+ q− p

�

d(p, q) =
(N + q)!

p!q!(N − p− 1)!
1

p+ q+ 1
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Casimir dominance

Looking at the structure of the HK, the goodness of the approximation in the plot
can be explained by “Casimir dominance” (at arbitrary fixed N ):

Tr



Wr(C , x , s)
�

≈ dr e−C2(r)X(C ,x ,s)

r dependence correct to order g4 in perturbation theory (small loops)

r dependence approximately correct for loops dominated by the area law but
smaller than ∼ 2 fermi (moderately large loops): σr ∝ C2(r)

r dependence cannot be correct for asymptotically large loops but this talk is
restricted to square loops of side l < 2 fermi and no screening effects will be seen

χ2 goodness of fit estimates rule out exact Casimir dominance for loops in the
crossover region 0.3 fermi< l < 0.7 fermi

single eigenvalue distribution depends only on a subset of r ’s, namely those given
by “hook” shaped Young tableaux; so, strictly speaking, “ Casimir dominance”
could be restricted to only this subset of r ’s
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Structure of single-eigenvalue distribution

Determined by two main forces: kinematical eigenvalue repulsion and dynamic
attraction to unity

Repulsion produces N peaks at locations consistent with unit determinant

Attraction to unity squeezes the peaks towards unity

Depth of valley at minus unity determined by the balance of the two forces

Adjacent peak-valley swings of order 1/N

At infinite N local peaks and valleys merge and ρ becomes monotonic in the 2
segments (0,π), (π, 2π); also, a flat global valley centered at π develops for
small loops with zero probability eigenvalue density there. For large loops the
valley disappears and ρ is non-zero on the entire unit circle

Thus, at N =∞ a non-analyticity develops in ρ, separating small from large loops

Durhuus and Olesen (DO) discovered this effect by studying 2D YM gauge theory.
In 2D Casimir dominance is exact; so, for the world of eigenvalues they found a
phase transition in the limit of large N

DO found their phase transition by deriving an inviscid Burgers’ equation at
N =∞ using the 2D YM Makeenko-Migdal loop equations; this PDE determined
the single eigenvalue density
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Single eigenvalue distribution at infinite N
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τ= 1/4, 1/2, 1,2, 3,4,5, 10

Many of the detailed features of the single eigenvalue distribution at finite N are
washed out; one can easily imagine how slowly the finite N eigenvalue distributions
evolve with increasing N to their limiting form
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From approximate Casimir dominance to something exact

With Narayanan we conjectured 5 years ago that in d=3,4 DO transitions occur
and obey a certain large N universality

A test in 3D was supportive, but in 4D only indirect arguments could be given

4D testing had to wait for a major hardware upgrade of my cluster – an
unreasonably onerous task at Rutgers. Later, my talk will focus on first results
obtained on the upgraded hardware

Blaizot and Nowak (BN) conjectured that the large N universality could be
understood from the full (not inviscid) Burgers’ equation and this proved to be
correct

Thus, the success of the simple fit of the single eigenvalue distribution I showed
on my first slide is attributed to an extension of the large-N–DO transition to
higher dimensions than 2, inclusive of a large–N universality. This is an exact
feature of continuum pure SU(N), asymptotically at large N

The large–N universal part has to do with eigenvalues close to -1; we need a new
observable and a direct definition of the parameter τ
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The new observable

The variable playing the role of τ is chosen to be an overall scale of the loop C ;
for square loops of side l it is l

In general, a loop has an infinite number of shape parameters, invariant under
dilatations, translations and rotations; the location and overall orientation do not
enter and the overall scale is singled out for variation

We also need a new observable, closer related to the spectrum at -1; start from

ON (y,C ) =
D

det
�

e
y
2 + e−

y
2 Wf (C )

�E

=
N
∑

k=0

e(
N
2 −k)y ¬χasym

k (Wf (C ))
¶

At the transition point l = lc , logON will have a non-analyticity at y = 0 when
N =∞; so, we consider the expansion

ON (y,C ) = a0(C ) + a1(C )y2 + a2(C )y4 +O
�

y6
�

, ωN (C ) =
a0a2

a2
1

.

ωN (C ) is similar to a Binder cumulant; many nonuniversal factors cancel out; this
is our new observable.
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Burgers’ equation

More recently it was noted that for the HK, the new observable is determined by a
function that obeys the full Burgers’ equation exactly, in agreement with the
suggestion of BN:

O HK
N (y,τ) = e−

Nτ
8

N
∑

k=0

�

N

k

�

e(k−
N
2 )y e

τ
2N (k− N

2 )
2

φHK
N (y,τ) =−

1

N

�

∂

∂ y
logO HK

N (y,τ)
�

Burgers′ eq : ∂τφ
HK
N +φ

HK
N ∂yφ

HK
N =

1

2N
∂ 2

y φ
HK
N

The initial condition is φHK
N (y, 0) =− 1

2
tanh y

2
and represents the force pushing

the eigenvalues toward unity while the PDE itself reflects their spreading as a
result of repulsion

The non-analyticity at N =∞ is a consequence of the compactness of the space
the diffusion takes place on; for finite N it is smoothed out by the minimal viscous
term present in the PDE.
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Non-analytic behavior with Burgers’ equation

At N =∞, Burgers’ equation produces a ’shock-wave’ singularity at y = 0 when
τ reaches the critical value τc = 4.

-1.0 -0.5 0.5 1.0
y
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Τ=0

At finite N the viscous term in Burgers’ equation limits the steepness at y = 0 :

∂τ
1

∂yφ
HK
N |y=0

= 3ωHK
N (τ)−

1

2
.

ωHK
N (τ), our observable in the HK case, is designed to capture the N =∞

non-analyticity at τ= 4, as we show on the next slide
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About omega

The inverse slope of φHK
∞ at y = 0 increases linearly from −4 at τ= 0 to 0 at

τ= 4

ωHK
∞(τ) =

(

1/2, 0≤ τ < 4

1/6, τ > 4

resulting in a discontinuous jump in φ∞(y) for τ > 4.
Singularity is absent at any finite N and develops very slowly as N →∞
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Universal “critical exponents”

The full relations below come from Burgers’ equation in the HK-case, and are expected
to hold in 3,4D SU(N) YM too.
From Burgers’ equation:

lim
N→∞

N−
3
2

a1

a0

�

�

�

�

τ=4

=
1

8

r

3

2

1

K
, K ≡

1

4π
Γ2

�

1

4

�

≈ 1.046,

lim
N→∞

N−
3
2

a2

a1

�

�

�

�

τ=4

=
1

24

r

3

2
K ,

lim
N→∞

ωN

�

�

τ=4 =
1

3
K2,

lim
N→∞

N−
1
2

dωN

dτ

�

�

�

�

τ=4

=−
1

6

r

3

2
K(K2 − 1).

Roots of ON (y,τ) are all on the imaginary axis (an application of the Lee-Yang

theorem); in the critical regime (around y = 0, τ= 4) they scale like N−
3
4 .
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Setup

This talk will focus on a preliminary subset of data

On the lattice we look at square smeared loops smeared with the same action
used to generate the gauge configurations (single plaquette Wilson) by an amount
S kept in a fixed ratio to the loop lattice area L2, S = L2/110
(∂S Uµ =−

�

Vµ − V †
µ −

1
N

Tr
�

Vµ − V †
µ

��

Uµ, with Vµ given by a sum over open 1x1 loops in directions

µ,ν ,ν 6= µ; Uµ are lattice link variables, and the Vµ ’s sum over “staples”.

To extrapolate to the continuum, we compute sequences of square Wilson loops
of sides 1≤ L ≤ 9 for inverse ’t Hooft couplings 0.348≤ b = 1

g2N
≤ 0.374 at

N = 11, 19,29

Depending on N , we use lattice volumes 84, 104, 124, 144, 184 and generate
gauge fields by a combination of heat-bath and overrelaxation updates; care is
taken to ensure statistical independence of the gauge configurations and to
identify the portion of data that has numerically insignificant finite volume
dependence

The coefficients a0, a1, a2 are numerically extracted for each orientation and
location of the loop; after averaging one gets one set of a0,1,2 for each gauge
configuration; subsequent averaging over configurations produces the a0,1,2 which
determine the estimate for ωN (b, L).
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Raw data

Numerical results for N = 19 (with cubic spline interpolation between measurements):
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Reminder:
D

det
�

e
y
2 + e−

y
2 W
�E

= a0 + a1 y2 + a2 y4 + . . . , ω= a0a2
a2
1

.
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Map from ω to τ

Slow convergence to N =∞ in the HK case indicates that to directly exhibit the
N =∞ singularity in 4D prohibitively large N ’s would be needed

We adopt a less direct strategy. In continuum language we first define maps for
each N from the physical loop size l to τN (l) which are smooth at all N and
remain so at N =∞; these maps are shown numerically to converge rapidly as
N →∞, remaining unaffected by the singularity at infinite N in ωN (l).

On the lattice these maps take us from ωN (b, L)→ τN (b, L):

ωN (b, L) =ωHK
N (τN (b, L)).

The maps are well defined without any precise assumptions, except an
expectation that approx imate Casimir dominance holds.

While formation of the jump in ωN (b, L) is slow, we show numerically that
τN (b, L) converges rapidly to τ∞(b, L)

Now, ω∞(b, L) =ωHK
∞ (τ∞(b, L)) = limN→∞ω

HK
N (τ∞(b, L)). In 4D continuum

we have then ω∞(l) = limN→∞ω
HK
N (τ∞(l)). τ∞(l) is invertible at l = lc and C∞

there. ωHK
N (τ) is known analytically to become singular and this establishes the

result also for the 4D case.
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Raw data remapped
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As N is increased the ωN (b, L) curves show a steeper variation

We see relatively rapid convergence of the map from b to τ at fixed L as N
increases

The physical loop size increases with the lattice loop size and decreases with the
lattice coupling b; different intervals of physical size are captured by the different
L-labeled curves

The crossover is identified as the vicinity of ω≈ 0.36,τ≈ 4 and we have data
falling in that range
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Continuum limit for τ

Continuum limit of τN is determined by extrapolating τN (b, L) to L→∞ and
b→∞ correlated by keeping the physical loop size l = L/Lc(b) fixed. This
amounts to taking the lattice spacing a = l

L
to zero

1/Lc(b) is the critical deconfinement temperature in lattice units

Lc(b) = 0.26
�

11

48π2 bi(b)

�
51

121
e

24π2
11 bi (b), bi(b) =

b

N



Tr W1x1
�

.

We show one example from the N = 19 data below; the deviation from the
continuum limit is linear in a2, as expected
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1�L2
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Τ

LogHL�LcHbLL=-0.2
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Continuum limit, an example: τ19(l)

N = 19:

- 2.0 -1.5 -1.0 -0.5 0.5 1.0
Log@L2 � Lc

2 D
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τ19 has a nontrivial continuum limit.

The τ19(l) is a smooth function of the physical loop size l.
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Continuum limit: τ19(l)−1, τ11(l)−1

-1.0 -0.5
Log@L2�Lc

2D
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1�Τ

N=11

N=19

Weak dependence on N of continuum limit τN (l) for N = 11, 19.

Meaning of universality: in the vicinity of the critical point τ= 4, we can replace
ωN (l, s = f i xed) by ωHK

N (τ∞(l)) without changing the singular large-N
properties.

Dependence on l is consistent with asymptotic freedom.

If we extract a tree-level calculable, shape-dependent, factor from τ we obtain a
particular effective coupling constant at scale l

H. Neuberger, R. Lohmayer Analyticity in scale at leading order in 1/N in SU(N) gauge theory. Strings, Gauge Theory and the LHC 22 / 26



Universal exponent 3/2
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red, dashed: HK at N =∞
blue: data for L = 6 at N = 29, N = 19 and N = 11
(the data is extrapolated to τ= 4 using spline interpolation)
red, solid: HK at finite N , as a function of N , independent of data

Linear fit of log a1

a0
vs log N leads to exponent of 1.52.

The way of defining τ from ω makes the ratio a2
a1

dependent on the one plotted

and automatically guarantees the exponent 1/2 in the τ dependence at criticality.
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Universal exponent 3/4
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∆θ is the angular difference between the two peaks in the single eigenvalue
density closest to θ = π: red solid line is obtained from the the HK ; dashed line is
a straight line through the two data points

At fixed τ, ∆θ does not depend on L.

Linear fit of log∆θ(τ= 4) vs log N results in exponent of 0.73
(exponent for heat-kernel model: 3/4)
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Summary and Outlook

Confirmation that there is a large-N phase transition for smeared Wilson loops in
4D continuum SU(N) gauge theory at a critical loop size.

Confirmation that the transition has universal properties with universality class
defined in terms of the HK with characteristic exponents 3/2, 3/4 in the
characteristic polynomial and single eigenvalue density respectively

Having established a non-analyticity at N =∞ the main question is whether it
feeds into the S-matrix where each S-matrix element is taken as the first
non-vanishing term in the 1

N
expansion

If there is a physical non-analyticity in this S-matrix the assumption of “maximal
analyticity” of S-matrix theory of the 60’s is invalidated and the 60s’ program of
“dual topological unitarization” is either inconsistent or distinct from the 1

N
expansion

Non-analyticity in the S-matrix elements might provide process dependent, but
sharply defined, points where asymptotic freedom results at hard momenta
change into stringy behavior at soft momenta

If the S-matrix is shielded from the eigenvalue density non-analyticity, one needs
to understand the mechanism doing this and if maximal analyticity indeed does
hold at leading order in 1

N
one needs to decide whether far reaching

consequences, like exactly linear Regge trajectories, indeed are correct
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Side comments on smearing

It is essential to better understand the observable impact of smearing; some comments

Field theory: expansions in s→ 0 and s→∞ for a kink-free closed loop

log
�

Tr



Wr
��

(C , s) = g2
e f f (C )

�

A0(C )
l
p

s
+A1(C ) +O (

p
s

l
)

�

log
�

Tr



Wr
��

(C , s) = G2
e f f (C )

�

l4

s2B0(C ) +
l6

s3B1(C ) +O (
l8

s4 )

�

At fixed l, s→∞ produces an OPE with well defined “condensates”. s→ 0
produces a perimeter divergence. For QED, both effective coupling constants
become e2

0 andA1(C ) becomes Stodolsky’s “photon number”; when separated
kinks in the loop are allowed, the expansion s→ 0 also has a log lp

s
term

A variant of smearing works in the Hamiltonian framework

String theory: if the holy grail is found, we shall have a definition of loop space
functionals, the loop Laplacian acting on them and a solution to the
Makeenko-Migdal equations. Then, smearing is guaranteed to extend to this loop
space because it is the solution of the diffusion equation on it.
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