Holographic fixed points in $\mathrm{D}=3$

Gordon W. Semenoff

University of British Columbia

Strings, Gauge Theory and the LHC
Niels Bohr International Academy, August 2011

Construct a holographic model of 2+1-dimensional relativistic fermions

Construct a holographic model of 2+1-dimensional relativistic fermions

Condensed matter applications

- p-wave high T_{c} superconductors
- graphene
- topological insulators
- optical lattices

Graphene is a 2-dimensional array of carbon atoms

Jannik C. Meyer, C. Kisielowski, R. Erni, Marta D. Rossell, M. F. Crommie, and A. Zettl, Nano Letters 8, 3582 (2008).

Graphene with Coulomb interaction up to $\sim 1 e v$

$$
\begin{aligned}
S= & \int d^{3} x \sum_{k=1}^{4} \bar{\psi}_{k}\left[\gamma^{t}\left(i \partial_{t}-A_{t}\right)+v_{F} \vec{\gamma} \cdot(i \vec{\nabla}-\vec{A})\right] \psi_{k} \\
& +\frac{\epsilon}{2 e^{2}} \int d^{3} x F_{0 i} \frac{1}{2 \sqrt{-\partial^{2}}} F_{0 i}-\frac{1}{4 e^{2}} \int d^{3} x F_{i j} \frac{1}{2 \sqrt{-\partial^{2}}} F_{i j}
\end{aligned}
$$

$\mathrm{U}(4)$ symmetry
Speeds of light differ, $v_{F} \sim c / 300(c=1), \quad \rightarrow$ non-relativistic
Graphene fine structure constant

$$
\alpha_{\text {graphene }}=\frac{e^{2}}{4 \pi \hbar \epsilon v_{F}}=\frac{e^{2}}{4 \pi \hbar c} \frac{c}{v_{F}} \frac{1}{\epsilon} \approx \frac{300}{137} \frac{1}{\epsilon}
$$

Chiral symmetry breaking? .. $\langle\bar{\psi} \psi\rangle$

Integer Hall effect in Graphene

K. Novoselov et. al. Nature 438, 197 (2005)
Y. Zhang et. al. Nature 438, 201 (2005)

Splitting of $\nu=0$ Landau level Zhang et.al. arXiv:1003.2738

QHE data as a function of the gate voltage V_{g}, for $\mathrm{B}=18 \mathrm{~T}$ at T $=0.25 \mathrm{~K}$

Graphene

with Coulomb interaction

$$
\begin{aligned}
S= & \int d^{3} x \sum_{k=1}^{4} \bar{\psi}_{k}\left[\gamma^{t}\left(i \partial_{t}-A_{t}\right)+v_{F} \vec{\gamma} \cdot(i \vec{\nabla}-\vec{A})\right] \psi_{k} \\
& +\frac{\epsilon}{2 e^{2}} \int d^{3} x F_{0 i} \frac{1}{2 \sqrt{-\partial^{2}}} F_{0 i}-\frac{1}{4 e^{2}} \int d^{3} x F_{i j} \frac{1}{2 \sqrt{-\partial^{2}}} F_{i j}
\end{aligned}
$$

Kinetic terms have $\mathrm{U}(4) \times \mathrm{SO}(2,1)$ symmetry, $v_{F} \sim c / 300(c=1)$ Interaction is non-relativistic with $\mathrm{U}(4)$ symmetry Graphene fine structure constant

$$
\alpha_{\text {graphene }}=\frac{e^{2}}{4 \pi \hbar \epsilon v_{F}}=\frac{e^{2}}{4 \pi \hbar c} \frac{c}{v_{F}} \frac{1}{\epsilon} \approx \frac{300}{137} \frac{1}{\epsilon}
$$

Chiral symmetry breaking? .. $\langle\bar{\psi} \psi\rangle$

2-component relativistic fermion in 2+1-D

$$
S=\int \sum_{k=1}^{N} \bar{\psi}_{k}\left[\gamma^{\mu} i \partial_{\mu}-m\right] \psi_{k}+\text { interactions }
$$

$\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle=\int \frac{d^{3} q e^{i q x}}{(2 \pi)^{3}}\left[\Delta_{\mathrm{T}}(q)\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right)+\Delta_{\mathrm{CS}}(q) i \epsilon_{\mu \nu \lambda} q^{\lambda}\right]$

At one loop order

$$
\begin{gathered}
q \gg m: \quad \Delta_{\mathrm{CS}}(q)=\frac{N}{4} \frac{m}{q}+\ldots \quad, \quad \Delta_{T}(q)=\frac{N}{16 q}+\ldots \\
q \ll m: \quad \Delta_{\mathrm{CS}}(q)=\frac{N}{4 \pi} \frac{m}{|m|}+\ldots \quad, \quad \Delta_{T}(q)=\frac{N}{12 \pi|m|}+\ldots
\end{gathered}
$$

No charge gap: $\Delta_{\mathrm{CS}}(q \sim 0)=$ const. $+\ldots, \Delta_{\mathrm{T}}(q \sim 0) \sim \frac{\text { const. }}{|q|}$
Charge gap: $\Delta_{\mathrm{CS}}(q \sim 0)=\frac{N}{4 \pi} \operatorname{sign}(m)+\ldots, \Delta_{\mathrm{T}}(q \sim 0) \sim$ const.
Higgs: $\Delta_{\mathrm{CS}}(q \sim 0)=$ const. $+\ldots, \Delta_{\mathrm{T}}(q \sim 0) \sim \frac{\text { const. }}{q^{2}}$

D3-D7 system

	0	1	2	3	4	5	6	7	8	9
$D 3$	X	X	X	X	O	O	O	O	O	O
$D 7$	X	X	X	O	X	X	X	X	X	O

brane extends in directions X
brane sits at single point in directions O
$\# N D=6$ system - no supersymmetry - no tachyon - only zero
modes of 3-7 strings are in R -sector and are 2-component fermions (N_{7} flavors and N_{3} colors).
Mass $=$ separation in x_{9}-direction.

$$
S=\int d^{3} x \sum_{\sigma=1}^{N_{7}} \sum_{\alpha=1}^{N_{3}} \bar{\psi}_{\alpha}^{\sigma}\left[i \gamma^{\mu} \partial_{\mu}-m\right] \psi_{\alpha}^{\sigma}+\text { interactions }
$$

$N_{3} \rightarrow \infty, \lambda=4 \pi g_{s} N_{3}$ fixed \rightarrow replace D3's by $A d S_{5} \times S^{5}$, large λ

D3-D7 system

	0	1	2	3	4	5	6	7	8	9
$D 3$	X	X	X	X	O	O	O	O	O	O
$D 7$	X	X	X	O	X	X	X	X	X	O

brane extends in directions X
brane sits at single point in directions O
$A d S_{5} \times S^{5}$ metric is $\left(R^{2}=\sqrt{\lambda} \alpha^{\prime}\right)$
$d S^{2}=\frac{r^{2}}{R^{2}}\left(-d t^{2}+d x^{2}+d y^{2}+d z^{2}\right)+\frac{R^{2}}{r^{2}} d r^{2}+R^{2}\left(d \Theta^{2}+\cos ^{2} \Theta d \Omega_{4}^{2}\right)$

Embed D7-brane as $d s^{2}=\frac{r^{2}}{R^{2}}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\frac{R^{2}}{r^{2}}\left(1+\frac{r^{2}}{R^{2}}\left(\Theta^{\prime}\right)^{2}\right) d r^{2}+R^{2} \cos ^{2} \Theta(r) d \Omega_{4}^{2}$
As $r \rightarrow \infty, \Theta \sim \frac{m}{r^{\Delta_{-}}}+\frac{\langle\bar{\psi} \psi\rangle}{r^{\Delta_{+}}}+\ldots$

D3-D7 system

$\left.\begin{array}{rcccccccccc} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ D 3 & X & X & X & X & O & O & O & O & O & O \\ D 7 & X & X & X & O & X & X & X & X & X & O\end{array}\right] \frac{d s^{2}}{R^{2}}=r^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\frac{d r^{2}}{r^{2}}\left(1+r^{2}\left(\Theta^{\prime}\right)^{2}\right)+\cos ^{2} \Theta(r) d \Omega_{4}^{2}$.
S. J. Rey, Talk at Strings 2007;

Prog. Theor. Phys. Suppl. 177, 128 (2009) arXiv:0911.5295
D-brane construction of graphene
This embedding is unstable.
Fluctuation of Θ violates BF bound for AdS_{4}

$$
\Theta(r \rightarrow \infty) \sim \frac{m}{r^{\Delta_{-}}}+\frac{<\bar{\psi} \psi>}{r^{\Delta_{+}}}+\ldots
$$

$\Delta_{ \pm}$are complex
D. Kutasov, J. Lin, A.Parnachev, arXiv:1107.2324

D3-D7 system

	0	1	2	3	4	5	6	7	8	9
$D 3$	X	X	X	X	O	O	O	O	O	O
$D 7$	X	X	X	O	X	X	X	X	X	O

R. C. Myers and M. C. Wapler, JHEP 0812, 115 (2008) [arXiv:0811.0480 [hepth]].
Stabilize by putting instanton bundle on S^{4}.
O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, JHEP 1010 (2010) 063 [arXiv:1003.4965 [hep-th]].
$\mathrm{U}(1)$ fluxes f, \tilde{f} on 2 -spheres in

$$
d \Omega_{5}^{2}=d \psi^{2}+\sin ^{2} \psi d \Omega_{2}^{2}+\cos ^{2} \psi d \tilde{\Omega}_{2}^{2}
$$

Stable when f or \tilde{f} large enough.

D3-D7 system

	0	1	2	3	4	5	6	7	8	9
$D 3$	X	X	X	X	O	O	O	O	O	O
$D 7$	X	X	X	O	X	X	X	X	X	O

Embed D7-brane as

$$
\begin{array}{r}
\frac{d s^{2}}{R^{2}}=r^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+ \\
\frac{d r^{2}}{r^{2}}\left(1+r^{4} z^{\prime 2}+r^{2}\left(\psi^{\prime}\right)^{2}\right) \\
\\
+\sin ^{2} \psi d \Omega_{2}^{2}+\cos ^{2} \psi d \tilde{\Omega}_{2}^{2}
\end{array}
$$

with fluxes f, \tilde{f} on $\Omega_{2}, \tilde{\Omega}_{2}$.
Bergman et.al. constructed Hall states.
Hall plateaus described by "Minkowski" embeddings where brane does not reach horizon. Brane can end when one of the spheres shrinks, at $\psi=0$ or $\pi / 2 . \rightarrow$ Either f or \tilde{f} must be zero. However, to get discrete symmetries, we need $f=\tilde{f}$. J.Davis, H.Omid and G.S., arXiv:1107.4397 [hep-th]

One flavor, 2-component fermion in 2+1-D

$$
\begin{gathered}
S=\int \bar{\psi}\left[\gamma^{\mu}\left(i \partial_{\mu}+A_{\mu}\right)-m\right] \psi+\text { interactions } \\
\gamma^{0}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \gamma^{1}=i\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \gamma^{2}=i\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

Dicrete symmetries:
Parity P: $x=(t, x, y) \rightarrow x^{\prime}=(t,-x, y)$
$\mathbf{P}: \psi(x) \rightarrow \gamma^{1} \psi\left(x^{\prime}\right)\left(A_{0}, A_{1}, A_{2}\right) \rightarrow\left(A_{0}\left(x^{\prime}\right),-A_{1}\left(x^{\prime}\right), A_{2}\left(x^{\prime}\right)\right)$
Charge conjugation C: $\psi(x) \rightarrow \psi^{*}(x) A_{\mu} \rightarrow-A_{\mu}$
CP: $\psi(x) \rightarrow \gamma^{1} \psi^{*}\left(x^{\prime}\right)$
$\mathbf{P}: \mu \rightarrow \mu, B \rightarrow-B, \bar{\psi} \psi \rightarrow-\bar{\psi} \psi$
$\mathbf{C}: \mu \rightarrow-\mu, B \rightarrow-B, \bar{\psi} \psi \rightarrow \bar{\psi} \psi$
$\mathbf{C P}: \mu \rightarrow-\mu, B \rightarrow B, \bar{\psi} \psi \rightarrow-\bar{\psi} \psi$

DBI + WZ Action for D7-Brane

$$
\begin{gathered}
L=N_{7} T_{7}\left[-\sqrt{-\operatorname{det}\left(g+2 \pi \alpha^{\prime} F\right)}+F \wedge F \wedge \omega^{(4)}\right] \\
\frac{d s^{2}}{R^{2}}=r^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\frac{d r^{2}}{r^{2}}+d \psi^{2}+\sin ^{2} \psi d \Omega_{2}^{2}+\cos ^{2} \psi d \tilde{\Omega}_{2}^{2} \\
\frac{1}{R^{4}} \omega^{(4)}=r^{4} d t \wedge d x \wedge d y \wedge d z+\frac{1}{2} c(\psi) d \Omega_{2}^{2} \wedge d \tilde{\Omega}_{2}^{2} \\
c(\psi)=\psi-\frac{\pi}{4}-\frac{1}{4} \sin 4 \psi
\end{gathered}
$$

C: $F \rightarrow-F+$ reverse orientation of $\Omega_{2}, \tilde{\Omega}_{2}$ to preserve background $f d \Omega+\tilde{f} d \tilde{\Omega}$.
$\mathbf{P}:(t, x, y) \rightarrow(t,-x, y)$ also needs $c(\psi) \rightarrow-c(\psi)$ or $\psi \rightarrow \frac{\pi}{2}-\psi$ requires $f=\tilde{f}$.

Action for D7-Brane

With $2 \pi \alpha^{\prime} F=f d \Omega_{2}+\tilde{f} d \tilde{\Omega}_{2}$

$$
\begin{gathered}
\frac{d s^{2}}{R^{2}}=r^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\frac{d r^{2}}{r^{2}} \\
+d \psi^{2}+\sin ^{2} \psi d \Omega_{2}^{2}+\cos ^{2} \psi d \tilde{\Omega}_{2}^{2} \\
\frac{d s^{2}}{R^{2}}=r^{2}\left(-d t^{2}+d x^{2}+d y^{2}\right)+\frac{d r^{2}}{r^{2}}\left(1+r^{4}\left(z^{\prime}\right)^{2}+r^{2}\left(\psi^{\prime}\right)^{2}\right) \\
+\sin ^{2} \psi(r) d \Omega_{2}^{2}+\cos ^{2} \psi(r) d \tilde{\Omega}_{2}^{2} \\
L \sim r^{2} \sqrt{\left(f^{2}+4 \sin ^{4} \psi\right)\left(f^{2}+4 \cos ^{4} \psi\right)\left(1+r^{4} z^{\prime 2}+r^{2} \psi^{\prime 2}\right)}-f^{2} r^{4} z^{\prime}
\end{gathered}
$$

Parity invariant solution is constant $\psi=\pi / 4$

Defect conformal field theory with $S O(3,2)$ symmetry.

Defect conformal field theory

x,y,t	$\mathrm{SU}(\mathrm{N}+\mathrm{k})$	z 0
		SU(N)
		--> Z

$$
\langle\bar{\Psi} \Psi(x) \bar{\Psi} \Psi(0)\rangle=\frac{\text { const. }}{x^{2 \Delta}}, \Delta=\frac{3}{2}+\frac{3}{2} \sqrt{1-\frac{32}{9} \frac{1-f^{2}}{1+2 f^{2}}}
$$

$$
f^{2} \geq \frac{23}{50}
$$

Tree level dimension $\Delta=2$ at $f^{2}=1 / 2$
$\Delta=3$ when $f^{2}=1$

Defect conformal field theory

$$
\left\langle\bar{\Psi} \gamma_{\mu} \Psi \bar{\Psi} \gamma_{\nu} \Psi\right\rangle=\frac{N_{3} N_{7}}{2 \pi^{2}} \frac{\left(f^{2}+1\right)}{q}\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right)
$$

Compare with $\frac{N_{3} N_{7}}{16} \frac{1}{q}$ at weak coupling (1-loop)

Defect conformal field theory

$k=n^{2}$ where $n=\sqrt{\lambda} f$

$$
z(r)=-\frac{f^{2}}{\sqrt{1+2 f^{2}}} \frac{1}{r}
$$

Conformal field theory

Turn on mass operator \rightarrow Parity violating solution

Turn on mass operator \rightarrow Parity violating solution

Consider the case where ψ depends on r (and therefore breaks $\psi \rightarrow \frac{\pi}{2}-\psi$ parity symmetry). Numerical solution with boundary behavior

$$
\begin{gathered}
\psi(r \sim \infty)=\frac{\pi}{4}+\frac{m}{r^{\Delta_{-}}}+\frac{\langle\bar{\psi} \psi\rangle}{r^{\Delta_{+}}}+\ldots \\
\Delta_{ \pm}=\frac{3}{2} \pm \frac{3}{2} \sqrt{1-\frac{32}{9} \frac{1-f^{2}}{1+2 f^{2}}}, \quad \frac{23}{50} \leq f^{2} \leq 1 \\
\psi(r \sim 0)=\frac{1}{2} \arcsin f+\psi_{+} r^{\nu}+\ldots \quad, \nu=-\frac{3}{2}+\frac{3}{2} \sqrt{1+\frac{64}{9} \frac{1-f^{2}}{4-f^{2}}}
\end{gathered}
$$

Fix m, then $<\bar{\psi} \psi>$ and ψ_{+}determined and are functions of m.

$$
<\bar{\psi} \psi>=c(f) m^{\Delta_{+} / \Delta_{-}}
$$

No chiral symmetry breaking.

Strings, Gauge Theory and the LHC, Niels Bohr International Academy, August 2011

Turn on mass operator \rightarrow Parity violating solution

Consider the case where ψ depends on r (and therefore breaks $\psi \rightarrow \frac{\pi}{2}-\psi$ parity symmetry). Numerical solution with boundary behavior

$$
\begin{gathered}
\psi(r \sim \infty)=\frac{\pi}{4}+\frac{m}{r^{\Delta_{-}}}+\frac{\langle\bar{\psi} \psi\rangle}{r^{\Delta_{+}}}+\ldots, \Delta_{ \pm}=\frac{3}{2} \pm \frac{3}{2} \sqrt{1-\frac{32}{9} \frac{1-f^{2}}{1+2 f^{2}}} \\
\psi(r \sim 0)= \\
\frac{1}{2} \arcsin f+\psi_{+} r^{\nu}+\ldots, \nu=-\frac{3}{2}+\frac{3}{2} \sqrt{1+\frac{64}{9} \frac{1-f^{2}}{4-f^{2}}} \\
\quad \text { one loop }: \quad<j_{\mu} j_{\nu}>=\frac{N_{3} N_{7}}{16} \frac{1}{q}\left(\delta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \\
\text { large } q: \quad<j_{\mu} j_{\nu}>=\frac{N_{3} N_{7}}{2 \pi^{2}} \frac{f^{2}+1}{q}\left(\delta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right)
\end{gathered}
$$

small q :

$$
<j_{\mu} j_{\nu}>=\frac{N_{3} N_{7}}{2 \pi^{2}} \frac{2 f}{q}\left(\delta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right)+\frac{N_{3} N_{7}}{\pi^{2}}\left(f \sqrt{1-f^{2}}-\cos ^{-1} f\right) i \epsilon_{\mu \nu \lambda} p^{\lambda}
$$

Turn on charge density and magnetic field

$$
\begin{aligned}
& L \sim-\sqrt{\left(f^{2}+4 \sin ^{4} \psi\right)\left(f^{2}+4 \cos ^{4} \psi\right)\left(r^{4}+b^{2}\right)} \\
& \cdot \sqrt{\left(1+r^{4} z^{\prime 2}+r^{2}{\psi^{\prime}}^{2}-{a_{0}^{\prime}}^{2}\right)}+f^{2} r^{4} z^{\prime}+2 c(\psi) b a_{0}
\end{aligned}
$$

Turning on any two of a_{0}, b, m yields a source for the third.
With charge density and magnetic field, ψ cannot be constant.

Routhians

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial F_{r 0}}=Q \\
\frac{\partial \mathcal{L}}{\partial z^{\prime}}=p_{z}(=0) \\
R_{7}=b \sqrt{1+r^{2} \psi^{\prime 2}} \cdot \\
\cdot \sqrt{\left(r^{4}+1\right)\left(f^{2}+4 \cos ^{4} \psi\right)\left(f^{2}+4 \sin ^{4} \psi\right)-f^{2} r^{4}+\left(\frac{Q}{b}-2 c(\psi)\right)^{2}}
\end{gathered}
$$

near $r=0, \psi(r)$ must approach

$$
f^{2} \cot 2 \psi(0)=\frac{Q}{b}+2 \psi(0)-\frac{\pi}{2}
$$

Landau levels have spread into a single band

What about solutions with a charge gap?

Suspended brane solutions D7-D5 brane join

$\longleftarrow z \longrightarrow$

Suspended brane solutions D7-D5 brane join

$$
\begin{align*}
\left\langle j_{+a} j_{+b}\right\rangle & =\frac{N_{3} N_{7}}{4 \pi} \epsilon_{a c b} q_{c}+\mathcal{O}\left(q^{2}\right) \\
\left\langle j_{-a} j_{-b}\right\rangle & =\frac{N_{3} N_{7}}{\pi^{2} \rho_{m}}\left(\delta_{a b}-\frac{q_{a} q_{b}}{q^{2}}\right)+\epsilon_{a c b} q_{c} \Delta_{\mathrm{CS}}^{(-)}(0)+\ldots \tag{1}
\end{align*}
$$

where

$$
\begin{align*}
\rho_{m} & =\int_{r_{\min }}^{\infty} \frac{d \tilde{r}}{\tilde{r}^{2}} \frac{\sqrt{\left(f^{2}+4 \sin ^{4} \psi\right)\left(f^{2}+4 \cos ^{4} \psi\right)}}{\sqrt{1+\tilde{r}^{2} \psi^{\prime 2}+\tilde{r}^{4} z^{\prime 2}}} \\
\Delta_{\mathrm{CS}}^{(-)}(0) & =\frac{N_{3} N_{7}}{\pi^{2}} \int_{0}^{\pi / 4} d \psi(1-\cos 4 \psi)\left(1-\frac{\rho(\psi)}{\rho_{m}}\right)^{2} \tag{2}
\end{align*}
$$

Suspended brane solutions: D7-D̄7

Dynamical symmetry breaking

C.Vafa, E.Witten, Phys.Rev.Lett. 53 (1984): 535536

With a single brane, there is no dynamical mass generation. Euclidean Action

$$
\begin{aligned}
L=\tau & \left\{\sqrt{\left(f^{2}+4 \sin ^{4} \psi\right)\left(f^{2}+4 \cos ^{4} \psi\right)\left(r^{4}+b^{2}\right)}\right. \\
& \left.\cdot \sqrt{1+r^{4}{z^{\prime}}^{2}+r^{2} \psi^{\prime 2}+\left(a_{0}^{\prime}\right)^{2}}\right\}-\mathbf{i} f^{2} r^{4} z^{\prime}+\mathbf{i} 2 c(\psi) b a_{0}^{\prime}
\end{aligned}
$$

The $2 N_{7}$ D7-branes with $U\left(2 N_{7}\right) \rightarrow U\left(N_{7}\right) \times U\left(N_{7}\right)$ symmetry breaking (or non-breaking) pattern.

Conclusions

- D7-D3 system as strongly coupled 2+1-dimensional relativistic fermions
- Conformal field theory at strong coupling
- gapless state with explicitly broken P and T symmetry
- only gapped states are joined branes D7-D5 and D7-D7 with $U\left(N_{7}\right) \times U\left(N_{7}\right) \rightarrow U\left(N_{7}\right)$ symmetry breaking pattern
- evidence for no renormalization of Chern-Simons at strong coupling

