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Motivations and Overview

ABJM (Aharony, Bergman,Jafferis and Maldacena, 0806.1218) theory → AdS4/CFT3
→ should, in a suitable limit, provide another example of
integrability in gauge/string duality.
Minahan and Zarembo showed that the SU(4) sector (which
contains an SU(2)× SU(2) ⊂ SU(4) subsector) of ABJM theory is
integrable at two loop order (4-loops: Minahan, Sax, Sieg 0908.2463, 6-loops: Bak, Min,

Rey, 0911.0689).
Giombi, Gaiotto and Yin and G.G., Harmark and Orselli proposed an
expression for the all loop fundamental magnon dispersion relation.

E =

√
1
4

+ 4h2(λ) sin2
p
2

(Compare with AdS5/CFT4: E ∼
√

1 + λ sin2 p
2 )

with a strong-weak coupling interpolating function h(λ).
λ is the t’Hooft coupling.
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Suppose h(λ) at strong coupling has the form

h(λ) =
√
λ+ a1 +O

„
1
√
λ

«
then from the pp-wave dispersion relation for large J fixed λ′ = λ

J2 we would
get a correction of the form

E =

r
1
4

+ 2π2n2λ′ + 4π2n2a2
1

√
λ′

J

namely a 1/J correction.

This can be obtained by a sigma model calculation of the finite size corrections
to the energy of oscillator states.

Such a correction has been obtained for the spinning string with a one loop
calculation. Some calculations give a1 = 0 others a1 = − log2

2π
(McLoughlin,Roiban;Alday,Arutyunov,Bykov;Krishnan;Gromov,Mikhaylov;McLoughlin,Roiban,Tseytlin, ...)

Gromov and Vieira proposed an algebraic curve and an all loop Bethe ansatz for
the whole OSp(6|4) group. Type IIA string theory on AdS4 × CP3 seems to be
integrable at the quantum level.

From the algebraic curve based on the Bethe equations a1 = 0.
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How do we test the quantum integrability of type IIA superstring on
AdS4 × CP3?

1. Quantize type IIA superstring on AdS4 × CP3 in suitable limits,
pp-wave, Landau-Lifshits, giant magnon and derive the fundamental
magnon dispersion relation.

2. Derive the full interacting Lagrangian and Hamiltonian for quantum
strings in AdS4 × CP3 that fluctuate around a null curve on CP3.
There are both cubic and quartic terms.

3. Quantize the theory with a new type of κ-symmetry gauge fixing.
4. Finite size corrections to the dispersion relation at strong coupling in

the giant magnon limit and in the near pp-wave limit by computing
single oscillator energies (lifting the level matching condition).
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5. Divergences arise ⇒ require cancelation of divergences ⇒ normal
ordering prescription for the Hamiltonian.

6. Divergences arise ⇒ the regularization prescription suggested by the
form of the cubic Hamiltonian leads to a well defined value for the
first order quantum correction at strong coupling to h(λ), a1.

7. Once the divergences are correctly treated, derive the finite results
for the curvature corrections to the dispersion relations and to the
near-Penrose limit energies of states with one and two-oscillators.

8. Solve the corresponding all-loop Bethe Ansatz equations and
compare the two. This provides a most stringent test for the
quantum integrability of the theory.
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ABJM theory: content and symmetries
AdS4/CFT3 correspondence

ABJM theory (Aharony, Bergman, Jafferis, Maldacena, Jun 08)

It is a 2+1 dimensional N = 6 superconformal Chern-Simons theory with gauge group
U(N)k ×U(N)−k , the component action reads

S =
k
4π

Z
d3x

h
εµνλ Tr

`
Aµ∂νAλ + 2i

3 AµAνAλ − Âµ∂ν Âλ − 2i
3 ÂµÂν Âλ

´
−Tr(DµY )†DµY − i Trψ† /Dψ − Vferm − Vbos

i
,

where the sextic bosonic and quartic mixed potentials are

V bos = −
1
12

Tr
h
Y AY †AY BY †BY CY †C + Y †AY AY †BY BY †CY C

+4Y AY †BY CY †AY BY †C − 6Y AY †BY BY †AY CY †C
i

V ferm =
i
2

Tr
h
Y †AY Aψ†BψB − Y AY †AψBψ

†B + 2Y AY †BψAψ
†B − 2Y †AY Bψ†AψB

−εABCDY †AψBY †CψD + εABCDY Aψ†BY Cψ†D
i
.

The covariant derivative acts on bi-fundamental fields as

DµY = ∂µY + iAµY − iY Âµ ,

while on anti-bi-fundamental fields it acts with Aµ and Âµ interchanged.
Gianluca Grignani Quantum strings on AdS4 × CP3
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ABJM model: content and symmetries

Fields

U(N)k U(N)−k SU(2) SU(2)
2 Gauge fields Aµ adj 1 1 1

Âµ 1 adj 1 1
4+4 Scalars Y A N N̄ 2 1

Y †A N̄ N 1 2
Fermions ΨA N N̄ 2 1

Ψ†A N̄ N 1 2

with µ = 0, 1, 2, A = 1, 2, 3, 4
4 complex scalars in the bifundamental representations of U(N)×U(N)

Y A = (A1,A2,B
†
1 ,B

†
2 ) , Y †A = (A†1,A

†
2,B1,B2)

grouped into multiplets (fundamental and anti-fundamental) of the R-symmetry
group SU(4) and their superpartners
Symmetries: it is superconformal the symmetry group is

Full symmetry OSp(6|4)

8<: SU(4)R R-symmetry
conformal in 3D: SO(3, 2)
N = 6 supersymmetries

Gianluca Grignani Quantum strings on AdS4 × CP3
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ABJM theory: content and symmetries
AdS4/CFT3 correspondence

Effective theory of a stack of M2-branes probing C4/Zk singularity

The theory contains two parameters: k, N

Large-N limit: gravitational dual is M-theory on AdS4 × S7/Zk

Large-k limit: IIA superstring theory on AdS4 × CP3
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AdS4/CFT3 correspondence

k,N parameters

1/k ∼ coupling constant

Existence of a weakly coupled string dual guaranteed by the field theory
adjustable parameter that enables to go to weak coupling for fixed N

⇒ ’t Hooft coupling in the ABJM model

λ = N
k ⇒ large N, k and λ= fixed :

N = 6 planar super CS gauge theory ⇔ type IIA strings on AdS4 × CP3

at level k and −k N units of F(4) flux on AdS4
gauge group U(N)×U(N) k units of F(2) flux on a CP1 ⊂ CP3

λ� 1 λ� 1

Gianluca Grignani Quantum strings on AdS4 × CP3
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AdS4/CFT3 correspondence
the ’t Hooft coupling

λ = N
k

if λ� 1 =⇒ gauge theory description
When k increases the compactification circle of the M-theory 11th dimension
becomes small and one reduces to weakly coupled type IIA string theory

Type IIA is a good description N
k5 � 1 is valid when 1� λ� k4

the 11 dimensional supergravity approximation is valid when k4 � λ the realtion
between the curvature radius and the ’t Hooft coupling is

e2φ =
R2

k2 ∝
r

N
k5 R2 = 25/2π

√
λ

Notice that in AdS5/CFT4 we have R2 =
√
λ

When λ ∼ 1 the type IIA approximation by supergravity breaks down since the
curvature radius becomes of the order of the string scale details

Gianluca Grignani Quantum strings on AdS4 × CP3
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ABJM Theory

1 

1 k 

M‐theory 
Type IIA 

Weakly coupled 
super CS  
field theory 

2

Enhanced susy 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Metric of AdS4 × CP3

The metric in AdS4 is

ds2AdS =
R2

4
(
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̂2

2
)

The metric in CP3 is

ds2CP3 = R2(dθ2 +
1
4
cos2 θ

S2︷ ︸︸ ︷
dΩ′2

2
+
1
4
sin2 θ

S2︷︸︸︷
dΩ2

2 +4 cos2 θ sin2 θ(dδ + ω)2
)

with
ω =

1
4
sin θ1dϕ1 +

1
4
sin θ2dϕ2

with 0 ≤ θ ≤ π/2, 0 ≤ δ ≤ 2π, 0 ≤ ϕi ≤ 2π and 0 ≤ θi ≤ π for i = 1, 2.
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To zoom on a particular null curve on CP3 that selects the SU(2)× SU(2)
sector, giving to the states of this sector the lightest energies, it is useful to
make the coordinate transformation

t′ = t , χ = δ −
1
2
t

This gives the following metric for AdS4 × CP3

ds2 = −
R2

4
dt′2(1− 4 cos2 θ sin2 θ + sinh2 ρ) +

R2

4
(dρ2 + sinh2 ρdΩ̂2

2)

+ R2
»
dθ2 +

cos2 θ
4

dΩ2
2 +

sin2 θ

4
dΩ′2

2
+ 4 cos2 θ sin2 θ(dt′ + dχ+ ω)(dχ+ ω)

–
We have that

E ≡ ∆− J = i∂t′ , 2J = −i∂χ

∆− J is the energy we are interested in.
In order to take the pp-wave limit zoom into the SU(2)× SU(2) sector we set

ρ = 0, θ =
π

4
This can be justified further since in the limit we will take one can check that
the transverse excitations in the ρ and θ directions become infinitely heavy.
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To take the pp-wave limit it is convenient to define the rescaled coordinates

v = R2
χ , x1 = Rϕ1 , y1 = Rθ1 , x2 = Rϕ2 , y2 = Rθ2 , u4 = R

„
θ −

π

4

«

R
2
sinh ρ =

u

1− u2
R2

,
R2

4
(dρ2 + sinh2 ρdΩ̂2

2) =

P3
i=1 du2i

(1− u2
R2 )2

, u2 =
3X

i=1

u2i

The metric of AdS4 × CP3 becomes

ds2 = −dt′2
0@R2

4
sin2

2u4
R

+
u2

(1− u2
R2 )2

1A +

P3
i=1 du2i

(1− u2
R2 )2

+ du24

+
1
8

„
cos

u4
R
− sin

u4
R

«2 „
dy21 + cos2

y1
R

dx21

«
+

1
8

„
cos

u4
R

+ sin
u4
R

«2 „
dy22 + cos2

y2
R

dx22

«
+ R2 cos2

2u4
R

»
dt′ +

dv
R2 +

1
4

„
sin

y1
R

dx1
R

+ sin
y2
R

dx2
R

«–
·

·
»

dv
R2 +

1
4

„
sin

y1
R

dx1
R

+ sin
y2
R

dx2
R

«–
a very convenient form to expand around R →∞.
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The SU(2)× SU(2) Penrose limit R →∞ gives now the pp-wave metric

ds2 = dvdt′ +
4X

i=1

(du2
i − u2

i dt′2) +
1
8

2X
i=1

(dx2
i + dy2

i + 2dt′yidxi )

This metric has two flat directions x1 and x2, and v = x− and t′ = x+

are the light-cone coordinates.

The background in the limit R →∞ selects automatically the
SU(2)× SU(2) subsector of AdS4 ×CP3.

Then the spin is rescaled by R2

E ≡ ı∂t′ = ∆− J 2J
R2 = −ı∂v

Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

Metric of AdS4 × CP3
Pp-waves
Dispersion Relation (light magnons)
Quantizing string theory on AdS4×CP3: pp-wave and beyond
Finite-size mixing matrix for light states

Integrability on the string side. Dispersion relation for the magnons in the
SU(2)× SU(2) sector of type II A string theory on AdS4 × CP3

a) pp-wave
=⇒

Hlc = ∆− J =
√

1
4 + λp2

2 −
1
2 p = 2πn

J

holds in the limit p → 0, λp2 = λ′4π2n2, λ′ ≡ λ
J2 ,

fixed.
b) Giant magnon

=⇒
∆− J =

√
2λ
∣∣sin p

2

∣∣
holds in the limit λ→∞ but fixed p.

c) Landau-Lifshitz model
=⇒

∆− J = λ
2 p2 p = 2πn

J

holds in the limit p → 0 with large but fixed λ.
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Dispersion relation

Putting together the information, we could derive the general form for
the dispersion relation of the single (light) magnon

E =
√

1
4 + 4h2(λ) sin2 p

2

h(λ) ∼
√

λ
2 for λ� 1

∆ =
√

1
4 + 4h2(λ) sin2 p

2

h(λ) ∼ λ for λ� 1

(Compare with AdS5/CFT4: E ∼
q

1 + λ sin2 p
2 )

(Gaiotto, Giombi, Yin, 08), (GG, Harmark, Orselli, 08)

h(λ) =


λ
[
1 + c1λ2 + c2λ4 + . . .

]
for λ� 1√

λ
2 + a1 + a2√

λ
for λ� 1
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Finite-size corrections: Procedure

Goal: Finite-size corrections of the string energy for states with two
oscillators
How? Approach used by Callan et al. for the AdS5/CFT4 case
(Callan, Swanson, McLoughlin, Schwarz, Wu, 03, 04)

The light-cone gauge must be fixed in order to remove the
unphysical bosonic degrees of freedom, namely

t ′ = cτ pv = ∂L
∂v̇ = constant, ∂L

∂v ′ = 0 , c = 4J
R2 = J

π
√
2λ
≡ 1

π
√
2λ′

where v plays the role of the light-cone coordinate x−

The constant is fixed using 2J
R2 =

∫ 2π
0

dσ
2π pv and pµ = ∂L

∂ẋµ .

Hlc = −pt′
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Penrose limit R →∞: string with large angular momentum J in
CP3

λ , J →∞ and λ′ ≡ λ
J2 ≡ fixed and ∆− J = fixed

Beyond the Penrose limit:

λ′ is fixed, i.e. J is large but finite: R2 = 4πJ
√
2λ′ ⇒ Finite-size

corrections as inverse curvature radius corrections.
The fermions for the type IIA superstring are real Majorana-Weyl
spinors with 32 components: θ = θ1 + θ2 with Γ11θ

1 = θ1 and
Γ11θ

2 = −θ2. However, since the AdS4 × CP3 background preserves
only 24 supercharges out of the initial 32, in order to work with the
fermionic d. o. f. corresponding to the unbroken supersymmetries,
namely the 24 physical fermionic d.o.f., the appropriate κ-symmetry
gauge must be fixed. details

The world-sheet metric can be fixed to a Minkowski metric only to
leading order, since in general the w.s. conformal gauge does no
commute with the e.o.m. for v . The world-sheet metric should then
be derived as a series expansion in powers of 1/R.
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The Virasoro constraints can be used to solve for v̇ and v ′ order by order in 1/R.
These should also be used to compute the corrections to the world-sheet metric.

The gauge fixed Lagrangian, Lgf = L − ∂L
∂v̇ v̇ , is obtained using the solutions for

v̇ and v ′ and has the following expansion in powers of 1/R

Lgf = L2,B +L2,F +
1
R

(L3,B +L3,BF ) +
1

R2 (L4,B +L4,BF +L4,F ) +O(R−3)

B = purely bosonic, F = purely fermionic and BF = mixed terms.
There are cubic terms that go like ∼ 1/R ∼ 1/

√
J!! ⇒ 6= AdS5/CFT4.

(R2 = πJ
√
2λ′)

After the light-cone gauge fixing we are left with the 8 transverse coordinates

AdS4z }| {
u1 , u2 , u3 ,

CP3z }| {
u4 , x1 , y1 , x2 , y2

The light cone Hamiltonian is

Hgf = H2,B + H2,F +
1
R

(H3,B + H3,BF ) +
1

R2 (H4,B + H4,BF + H4,F ) +O(R−3)
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Quantizing the pp-wave bosonic Hamiltonian

The leading order is the pp-wave Hamiltonian in the light-cone gauge.

H2,B =
1

16c

h`
x ′a
´2

+
`
y ′a
´2

+ (ẋa)2 + (ẏa)2
i

+
1
2c

4X
i=1

h
(u̇i )

2 + (u′i )
2 + c2u2

i

i

We need to quantize it. The mode expansion for the coordinates are:

ui (τ, σ) = i
1√
2

X
n∈Z

1√
Ωn

h
âi
ne
−i(Ωnτ−nσ) − (âi

n)†e i(Ωnτ−nσ)
i

za(τ, σ) = 2
√
2 e i cτ

2
X
n∈Z

1√
ωn

h
aa
ne
−i(ωnτ−nσ) − (ãa)†ne

i(ωnτ−nσ)
i

with the free dispersion relations Ωn =
√

c2 + n2, ωn =
q

c2
4 + n2

and za(τ, σ) = xa(τ, σ) + iya(τ, σ).
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Results for the bosonic pp-wave Hamiltonian

The quantized free bosonic Hamiltonian is, ( c = 1
π
√
2λ′

)

cH2,B =
4X

i=1

X
n∈Z

p
n2 + c2 N̂ i

n

+
2X

a=1

X
n∈Z

0@sn2 +
c2

4
−

c
2

1AMa
n +

2X
a=1

X
n∈Z

0@sn2 +
c2

4
+

c
2

1ANa
n

with the number operators N̂ i
n = (âi

n)†âi
n, Ma

n = (aa)†naa
n and Na

n = (ãa)†n ãa
n

and with the level-matching condition

X
n∈Z

n

" 4X
i=1

N̂ i
n +

2X
a=1

(Ma
n + Na

n)

#
= 0

4 “heavy bosons”, Ωn =
√

n2 + c2, and 4 “light bosons”,
q

n2 + c2
4 . In the

gauge theory there are only 4B + 4F scattering states.
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Pp-wave fermion Hamiltonian
Using the pp-wave metric, the fermion Hamiltonian reduces to

H2,F =
i

4c2
(c2ψ+ψ

′
+ − 4ρ+ρ

′
+ + 2c2ψ−ψ

′
− − 2ρ−ρ

′
−)−

i
2
ψ+ρ+ + iψ−ρ− +

1
2
ψ−Γ56ρ−

where the conjugate momenta are

ρ = −
ic
2

(2P− + P+)ψ∗

ρ± = P±ρ and it is given in terms of a 16 components complex spinor

ψ = θ
1 + iΓ049θ

2
ψ
∗ = θ

1 − iΓ049θ
2

In the following we split up the spinor as

ψ = ψ+ + ψ− with ψ± = P±ψ

The mode expansions which follow from the plane-wave Lagrangian are

ψ+,α =

√
2α′
√

c

X
n

h
f +
n dn,αe−i (ωnτ−nσ) − f−n d†n,αe i (ωnτ−nσ)

i

ψ−,α =

√
α′
√

c
`
e−

c
2 Γ56τ

´
αβ

X
n

h
− g−n bn,βe−i (Ωnτ−nσ) + g+

n b†n,βe i (Ωnτ−nσ)
i

f±n =

√
ωn + n ±

√
ωn − n

2
√
ωn

, g±n =

√
Ωn + n ±

√
Ωn − n

2
√

Ωn
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The quantized free fermionic Hamiltonian is

cH2,F =
X

n

ωn

4X
f =1

F (f )
n +

X
n

“
Ωn +

c
2

” 2X
f =1

eF (f )
n +

X
n

“
Ωn −

c
2

” 4X
f =3

eF (f )
n

where F (f )
n = d†n,αdn,α and eF (f )

n = b†n,αbn,α, with dispersion relations

ωn =
q

c2
4 + n2, Ωn =

√
c2 + n2

and level-matching condition

X
n∈Z

n

"
4X

f =1

F (f )
n +

4X
f =1

eF (f )
n

#
= 0

Like for the bosons, there are 4 fermions with frequency ωn and 4 with
frequency Ωn.

4 “light” fermions and 4 “heavy” fermions.

Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

Metric of AdS4 × CP3
Pp-waves
Dispersion Relation (light magnons)
Quantizing string theory on AdS4×CP3: pp-wave and beyond
Finite-size mixing matrix for light states

Beyond the pp-wave Hamiltonian

The interaction Hamiltonian contains two terms Hint = H3 +H4 :

A cubic term that goes like 1
R : H3, (∼ 1/R ∼ 1/

√
J)

A quartic term that goes like 1
R2 : H4

The bosonic part of H3 reads

H3,B =
u4
8c

h
p2x1 + p2y1 − p2x2 − p2y2 − x′1

2 − y ′1
2

+ x′2
2

+ y ′2
2
i

It is cubic and it goes like ∼ 1/R!! ⇒ 6= AdS5/CFT4.

The quartic bosonic Hamiltonian is

H4,B =
2
c3

(
8X

i=1

piX
′ i )2 −

1
2c3

 8X
i=1

(p2i + (X ′ i )2)− c2
3X

i=1

u2i + c2u24

!2

+c(
3X

i=1

u2i )2 +
4
3
cu44 +

1
c

3X
i,j=1

u2i (u′j
2 − p2j ) +

2
c

u24
8X

i=5

p2i

+
1

12
√
2

(p5y
3
1 + p7y

3
2 ) +

1
2c

y21 (p25 − X ′5
2

) +
1
2c

y22 (p27 − X ′7
2

)

pi=1...4 = (pu1 , pu2 , pu3 , pu4 ) , pi=5...8 =

√
2
4

(px1 , py1 , px2 , py2 )

X ′ i=1...4
= (u′1, u

′
2, u
′
3, u
′
4) , X ′ i=5...8

=

√
2
4

(x′1, y
′
1, x
′
2, y
′
2)
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Beyond the Penrose limit: Fermionic sector

In order to deal with the fermions it is useful to introduce the following fermionic
bilinears

Aa,A = θ̄Γa∂Aθ , Ãa,A = θ̄Γ11Γa∂Aθ

Babc = θ̄ΓaΓbcθ , B̃abc = θ̄Γ11ΓaΓbcθ

Cab = θ̄ΓaPΓ0123Γbθ , C̃ab = θ̄Γ11ΓaPΓ0123Γbθ

Babc;d = θ̄Γabc(P+ +
1
2
P−)Γ0Γdθ , B̃abc;d = θ̄Γ11Γabc(P+ +

1
2
P−)Γ0Γdθ

Cab;c = θ̄ΓaPΓ0123Γb(P+ +
1
2
P−)Γ0Γcθ , C̃ab;c = θ̄Γ11ΓaPΓ0123Γb(P+ +

1
2
P−)Γ0Γcθ

Eab = θ̄Γa(P+ +
1
2
P−)Γ0Γbθ , Ẽab = θ̄Γ11Γa(P+ +

1
2
P−)Γ0Γbθ
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•

Cubic Hamiltonian

H3,BF =
i
2

8X
i=1

(C+ipi + C̃+iX
′ i )−

ic
4

(B+56 − B+78)u4 −
ic
4

B+−4u4

−
i
4

8X
i=5

si (B+4ipi + B̃+4iX
′ i )−

i
8

8X
i,j=5

εij (B+−ipj + B̃+−iX
′j )

• The quartic purely fermionic Hamiltonian

H4,F = −
i
24

“
θ̄Γ11Γ+M2

θ
′ + θ̄Γ+M2Γ11θ

′
”
−

1
2c

(A2
+,σ − Ã2

+,σ)

−
1
4
A+,σ(C̃+− + B̃+56 + B̃+78) +

1
4
Ã+,σ(C+− − C++ + B+56 + B+78)

−
c
8

4X
i=1

C2
+i −

c
32

8X
i=5

h
2C+i − siB+4i +

1
2

8X
j=5

εijB+−j

i2
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The mixed quartic Hamiltonian is

H4,BF =
i

c2

8X
i=1

“
p2i + (X′ i )2

”h
Ã+,σ +

c

4
(B+56 + B+78 − C++ + C+−)

i
− i Ã+,σ

h 3X
i=1

u2i − u24
i

+
2i

c2

8X
i=1

pi X
′ i hA+,σ +

c

4
(B̃+56 + B̃+78) +

c

4
C̃+−

i
+

ic

2

3X
i=1

u2i C++ −
ic

4

4X
i=1

u2i (B+56 + B+78)

+
i

2
u4

8X
i=5

si
h
C+i pi − C̃+i X

′ i i − i

c

8X
i,j=1

h
Cij (X′ i X′j − pi pj ) + 2C̃ij X

′ i pj
i
− i

3X
i,j=1

u′i uj B̃+ij

−
i

8
u4

8X
i,j=5

si εij (3B+−i pj + B̃+−i X
′j ) +

i

4
(B+56px1 y1 + B̃+56x′1y1 + B+78px2 y2 + B̃+78x′2y2)

−
i

2

4X
i=1

8X
j=1

ui
h
B−ij pj − B̃−ij X

′j i +
i

2c

8X
i=1

8X
j=5

sj
h

(pi pj − X′ i X′j )B4ij + (pi X
′j − X′ i pj )B̃4ij

i

−
i

2

3X
i=1

8X
j=4

ui
h
B+ij pj − B̃+ij X

′j i − i

4
u4

8X
i=5

(B+4i pi + 3B̃+4i X
′ i ) +

i

2
u4

3X
i=1

(B+4i pi − B̃+4i u
′
i )

−
i

4c

8X
i=1

8X
j,k=5

εjk
h

(B+ij − B−ij )(pi pk − X′ i X′k ) + (B̃+ij − B̃−ij )(pi X
′k − X′ i pk )

i

+
i

2c2

8X
i,j=1

(pi p
′
j + X′ i X′′j )Ẽij −

i

2c2

8X
i,j=1

(X′ i p′j + pi X
′′j )Eij −

3i

4c

8X
i,j=1

(pi pj − X′ i X′j )Ci+;j

+
3i

4c

8X
i,j=1

(X′ i pj − pi X
′j )C̃i+;j −

i

4c

8X
i,j=1

(pi pj + X′ i X′j )C+i ;j −
i

4c

8X
i,j=1

(X′ i pj + pi X
′j )C̃+i ;j

+
iu4
2

8X
i=1

(pjB+−4;i − X′j B̃+−4;i ) +
i

2c

8X
i=5

8X
j=1

si
h

(pi pj − X′ i X′j )B+4i ;j + (X′ i pj − pi X
′j )B̃+4i ;j

i

+
i

4c

8X
i,j=5

8X
k=1

εij
h

(pi pk + X′ i X′k )(B
+−i ;k + Ejk ) + (X′ i pk + pi X

′k )(B̃
+−i ;k − Ẽjk )

i
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One oscillator spectrum

We want to compute the energy for a one oscillator state with the
level matching condition relaxed up to 1

R2 . This will give the finite
size corrections to the dispersion relation of the single magnon.
Start with the example of a state ∈ SU(2) ∼ S2

|s〉 = (an)†|0〉 ∈ S2, 1 oscillator in one SU(2)

Using perturbation theory

E (1)
s = 〈s|H3|s〉 = 0

E (2)
s = 〈s|H4|s〉︸ ︷︷ ︸

A

+
∑
|i〉

|〈i |H3|s〉|2

E (0)
|s〉 − E (0)

|i〉︸ ︷︷ ︸
B

where |i〉 is an intermediate state with zeroth order energy E (0)
|i〉 .

Notice that |i〉 has to contain 2 or 4 oscillators.
Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

Metric of AdS4 × CP3
Pp-waves
Dispersion Relation (light magnons)
Quantizing string theory on AdS4×CP3: pp-wave and beyond
Finite-size mixing matrix for light states

Divergences, H3

The cubic Hamiltonian written in terms of oscillators reads

H3,B =
i

c
√
2

X
m, l, r


δ(m + l + r)(â4

−r )†
√
ωmωl Ωr

h“
ωm −

c
2

”“
ωl −

c
2

”
+ ml

i
·h

(a2
−m)†(a2

l )− (a1
−m)†(a1

l )
i

+
h“
ωm +

c
2

”“
ωl −

c
2

”
−ml

i
·h`

ã1
m
´ `

a1
l
´

+
`
ã1
−m
´† `a1

−l
´† − `ã2

m
´ `

a2
l
´

+
`
ã2
−m
´† `a2

−l
´†iff

The cubic Hamiltonian produces divergent results =⇒ it is natural to handle the
sums over mode numbers by introducing cutoffs and removing the cutoffs only
at the end of the calculations.
Under the quite natural assumption that all the light modes have the same
cutoff N, and that all the heavy modes have the same cutoff M the form of the
interaction naturally suggests M = 2N.
â4 is the oscillator of a heavy mode whereas a and ã are oscillators of light
modes. =⇒ the Hamiltonian contains one heavy oscillator and two light
oscillators, if the sums over m and l have cutoff N, the sum over r has cutoff 2N.

The motivation behind this regularization prescription is that heavy excitations are not
fundamental but rather bound states of two light fundamental modes.
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Divergences, H4

Consider 〈s|H4|s〉, where H4 = H4,B + H4,F + H4,BF .
We got a divergent result from the cubic terms =⇒ to obtain a finite result for
the energy, this divergence must be canceled by the H4 term .

This cancelation can happen only if H4 is not normal ordered (for type IIB
superstring on AdS5 × S5 instead it is normal ordered) otherwise its mean value
would just be finite =⇒ we shall thus introduce for it an appropriate and
consistent normal ordering prescription.

Assume that the vacuum is a protected state =⇒ H4,F does not contribute to
the energy of the state |s〉, since if it would, it would also change the vacuum
energy

=⇒ 〈s|H4|s〉 = 〈s|H4,B |s〉+ 〈s|H4,BF |s〉

Requiring that the pp-wave algebra is not affected by normal ordering constants
and that the spectrum of string states is finite, will fix uniquely the normal
ordering prescription =⇒ the symmetric prescription!

All the divergences cancel leaving a finite result for the energy!
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Light Magnon Dispersion relation
For the state |s〉 = (an)†|0〉

E (2)
s = S(n)

S(n) =
1

4 c R2ωn

248n2
0@ 2NX

q=−2N

1
Ωq
−

NX
q=−N

1
ωq

1A
+

„
9
2
c2 − 9c ωn + 8n2

«0@ 2NX
q=−2N

1
Ωq
−

NX
q=−N

1
Ωq+n

1A35
Two different prescriptions for performing the sums:

1. First manipulate the sum so that all the sums have the same cutoff, then send N →∞.
All the sums can be computed by standard ζ-function techniques

S(n) =
4n2

c R2ωn

∞X
p=1

ˆ
(−1)p − 1

˜
K0(πcp)

In the limit for large c it is exponentially suppressed

This corresponds to a1 = 0 in h(λ)

El =

vuut 1
4

+ 4

 r
λ

2
+O

„
1
√
λ

«!2
n2π2

J2
−

πn2
√
2λ′

J
q

1
4 + 2λ′n2π2

∞X
q=1

ˆ
1− (−1)q

˜
K0

„
q
√
2λ′

«
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2. There is however another proposal for how to regularize the sum which was used
in the context of the semiclassical world-sheet computation of the folded and
spinning string in AdS4 × CP3. This prescription was also adopted in the
AdS5/CFT4 case and it does not distinguish between the world-sheet heavy and
light excitations. This implies that we simply remove the cutoff by sending
N →∞ to get

S(n) =
2 n2

R2c ωn

∞X
q=−∞

„
1

Ωq
−

1
ωq

«
(1)

This gives

S(n) = −
4n2

c R2ωn

0@log 2−
∞X

p=1

[(−1)p − 1] K0(πcp)

1A (2)

This corresponds to a1 = − log 2
2π in h(λ)

but since the cutoffs are different for light and heavy modes, it is more natural to
first write all the sums in terms of a single cutoff and then remove it. Note that
the second term in (2) is independent on the regularization, in (1) it appears the
same term.
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Heavy Magnon Dispersion relation

Also for heavy magnons we proved cancelation of divergences!

With the procedure (1.) for the single oscillator states, non level matched

|s〉 = (au1,u2,u3,u4
n )† |0〉

we got the finite size dispersion relation

Eh =

vuut1 + 4

 r
λ

2
+O

„
1
√
λ

«!2
n2π2

J2 −
πn2
√
2λ′

J
√
1 + 2λ′n2π2

∞X
q=1

[1− (−1)q ] K0

„
q
√
2λ′

«

ui , i = 1, 2, 3 ∈ AdS4 whereas u4 ∈ CP3 but they have the same dispersion
relation
The finite size correction of the dispersion relation for the heavy modes can be
obtained from that of the light modes by

n→ n
2 and multiplying by 2

Heavy magnons look like bound states of light magnons

Light and heavy fermions have the same dispersion relations of the bosons!
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2 oscillator spectrum: no mixing

The energy of two oscillator states tests the scattering matrix of the Bethe equations

Start with the example of states ∈ SU(2)× SU(2) ∼ S2 × S2

|s〉 = (a1
n)†(a1

−n)†|0〉 ∈ S2, 2 oscillators in one SU(2)

|t〉 = (a1
n)†(a2

−n)†|0〉 ∈ S2 × S2, 1 oscillator for each S2

These states are degenerate but we can use non degenerate perturbation theory

E (2)
s = 〈s, t|H4|s, t〉| {z }

A

+
X
|i〉

|〈i |H3|s, t〉|2

E (0)
|s〉,|t〉 − E (0)

|i〉| {z }
B

because the interaction hamiltonian do not mixes them

Notice that |i〉 has to contain 3 or 5 oscillators.

Divergences cancel!! what’s left?
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The finite size corrections to the energies of the states |s〉 and t〉 are

E (2)
s = −

8 n2
h`
ωn − c

2

´2 − c2
2

i
R2c3ω2

n
−

8n2

R2c ωn

∞X
q=1

[1− (−1)q ] K0(πcq)

'
8n2π2λ′

J
−

64n4π4λ′2

J
+

448n6π6λ′3

J
+O

`
λ′4
´

and

E (2)
t = −

8 n2 `ωn − c
2

´2
R2c3ω2

n
−

8n2

R2c ωn

∞X
q=1

[1− (−1)q ] K0(πcq) ' −
64n6π6λ′3

J
+ . . .

where ωn =
q

n2 + c2
4 is the pp-wave energy of a light mode

The Bessel function term appear here to be twice that on a single oscillator state
and give exponentially suppressed terms in the small λ′ limit.

For the state |s〉 the finite-size corrections for 1/J and λ′, λ′2 are analogous to
those of the SU(2) sector in AdS5 × S5

For the state |t〉 at order λ′3 the two spheres S2 start to interact (case |t〉)
The energy of |t〉 starts from λ′3! 6= AdS5/CFT4
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2 oscillator spectrum: mixing

The zeroth order energy of many two oscillator states is degenerate =⇒ mixing matrix

Using the basis of four single-oscillator light bosonic state

{a1+
n |0〉, ã1+

n |0〉, a2+
n |0〉, ã2+

n |0〉},

and the light fermionic states d+
α |0〉.

From the 4 single-oscillator bosonic states we can construct 32 two-oscillator states of
the type a+

i,−na+
i,n|0〉, where ai = ai , ãi . The tree-level degenerate states are

v1
n = a1+

n ã1+
−n|0〉,

v2
n = a1+

n ã2+
−n|0〉,

v3
n = a2+

n ã1+
−n|0〉,

v4
n = a2+

n ã2+
−n|0〉.

where n > 0, and equally states with n→ −n.
Requiring definite parities with respect to Z2 symmetries:

1 the momentum reflection symmetry Pn : n→ −n,
2 the symmetry between the two SU(2)’s Pa : a1 → a2,
3 the symmetry P̃ : ai → ãi .
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Such states are constructed as follows: first symmetrize and antisymmetrize in Pa

sn = 1√
2

(v1
n + v4

n )

pn = 1√
2

(−v1
n + v4

n )

qn = 1√
2

(v2
n + v3

n )

rn = 1√
2

(−v2
n + v3

n ).

The full basis of s = 0 scalar light two-oscillator boson-boson tree-level degenerate
states has then dimension 8 and is, after due decomposition into Pn even and odd
states

state definition Pn P̃ Pa
u1

1√
2

(sn + s−n) 1 1 1

u2
1√
2

(−sn + s−n) −1 −1 1

u3
1√
2

(pn + p−n) 1 1 −1
u4

1√
2

(−pn + p−n) −1 −1 −1
u5

1√
2

(qn + q−n) 1 1 1

u6
1√
2

(−qn + q−n) −1 −1 1

u7
1√
2

(rn + r−n) 1 −1 −1
u8

1√
2

(−rn + r−n) −1 1 −1
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The two-fermion-oscillator states
States of the type d+

αAαβd+
β |0〉.

The states with zero AdS spin s can potentially mix with the light bosonic states as
well, where Aαβ is an arbitrary matrix with fermionic indices.
Choosing the linearly independent states by the following projection criteria

ΓT
11AΓ11 6= 0,

ΓT
+ AΓ+ 6= 0,

PTAP 6= .0

we find the fermionic-fermionic basis has dimension 16.
Therefore, the total basis in the mixing sector has 24 dimensions; the remaining terms
u9..24 = {d+Aid+|0〉} can be chosen as

Ai=9...24 = { 1
2 ,

1
2 Γ65,

1
2 Γ21,

1
2 Γ31,

1
2 Γ32,

1
2 Γ6521,

1
2 Γ6531,

1
2 Γ6532,

1
2 Γ7541,

1
2 Γ7542,

1
2 Γ7543,

1
2 Γ7641,

1
2 Γ7642,

1
2 Γ7643,

1
2 Γ9750,

1
2 Γ9760}.

where the index i numbering basis states runs from 9 to 24. It can be explicitly seen
that this basis is orthonormal. details
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Schematically, we may picture the mixing matrix as follows

B F
B H4B + H2

3B H2B2F + HFFBHBBF

F H2B2F + HFFBHBBF H4F + H2
FFB

where F and B represent the two-fermion and two-boson oscillator states. This
Hamiltonian is symbolically depicted in.

+

++

F

B

+

B

F
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Amazingly in the basis u1 . . . u24 the 24× 24 mixing matrix in the bosonic and
fermionic sector is diagonal, we get the set of eigenvalues as power series in λ′

The string spectrum becomes as shown in the Table below:

E (2) =
8
J

X
i

ai
`
λ′π2n2´i

a1 a2 a3 a4 a5
1 −12 96 −768 6144
1 −12 96 −768 6144
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
0 −4 32 −256 2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−1 4 −32 256 −2048
−2 12 −96 768 −6144
−2 12 −96 768 −6144

This spectrum must be compared to the solutions of the Bethe Equations.
Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

One and two magnon states
Warm up: recap of the SU(2) × SU(2) subsector
(1, 1, 1, 1, 1): how to deal with auxiliary roots

Outline

1 Motivations and Overview

2 ABJM theory

3 pp-waves, dispersion relation and finite size corrections

4 Bethe equations and comparison to the string spectrum

5 Summary and Conclusions

Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

One and two magnon states
Warm up: recap of the SU(2) × SU(2) subsector
(1, 1, 1, 1, 1): how to deal with auxiliary roots

The Bethe roots are quantized through the algebraic Bethe equations (Gromov, Vieira, 2008)

1 =

K2Y
j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4Y
j=1

1− 1/x1,kx+
4,j

1− 1/x1,kx−4,j

K4̄Y
j=1

1− 1/x1,kx+
4̄,j

1− 1/x1,kx−4̄,j
,

1 =

K2Y
j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K1Y
j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

K3Y
j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2
,

1 =

K2Y
j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4Y
j=1

x3,k − x+
4,j

x3,k − x−4,j

K4̄Y
j=1

x3,k − x+
4̄,j

x3,k − x−4̄,j0@ x+
4,k

x−4,k

1AL

=

K4Y
j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K1Y
j=1

1− 1/x−4,kx1,j

1− 1/x+
4,kx1,j

K3Y
j=1

x−4,k − x3,j

x+
4,k − x3,j

×

×
K4Y
j=1

σBES(u4,k , u4,j )

K4̄Y
j=1

σBES(u4,k , u4̄,j ) ,

0@ x+
4̄,k

x−4̄,k

1AL

=

K4̄Y
j=1

u4̄,k − u4̄,j + i

u4̄,k − u4̄,j − i

K1Y
j=1

1− 1/x−4̄,kx1,j

1− 1/x+
4̄,kx1,j

K3Y
j=1

x−4̄,k − x3,j

x+
4̄,k − x3,j

×

×
K4̄Y
j 6=k

σBES(u4̄,k , u4̄,j )

K4Y
j=1

σBES(u4̄,k , u4,j ) ,
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The spectrum of string energies is expressed in terms of the roots u4 and u4̄, which
carry momentum, as follows:

E = h(λ)Q2 ,

being the conserved charges Qn expressed in terms of the roots as

Qn =

K4X
j=1

qn(u4,j ) +

K4X
j=1

qn(u4̄,j ) , qn =
i

n − 1

„
1

(x+)n−1 −
1

(x−)n−1

«
.

The Zhukovsky variables x , x± are defined in terms of the roots as

x +
1
x

=
u

h(λ)
, x± +

1
x±

=
1

h(λ)

„
u ±

i
2

«
.

Recalling that pj = 1
i log

x+
4,j

x−4,j
and p̄j = 1

i log
x+
4̄,j

x−4̄,j
, we have

E =
PK4

j=1
1
2

„q
1 + 16h(λ)2 sin2 pj

2 − 1
«

+
PK4̄

j=1
1
2

„q
1 + 16h(λ)2 sin2 p̄j

2 − 1
«
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The rapidity variable expressed in terms of the momentum of the roots is given by

u4,j = 1
2 cot

“ pj
2

”r
1 + 16h(λ)2 sin

“ pj
2

”2

In the near plane wave limit, the BES kernel reduces to the AFS phase factor:

σAFS(uj , uk) = e iθjk ,

where
θjk =

X
r=2

h(λ)
ˆ
qr (xj )qr+1(xk)− qr (xk)qr+1(xj )

˜
.

Recall that at large ’t Hooft coupling we have

h(λ) '
p
λ/2 .

Procedure
1 Express the Bethe equations in terms of the momenta pj
2 Assume a perturbative ansatz for the momentum of the form

pj =
2πnj

J
+

A
J2 +

Bλ′

J2 +
Cλ′2

J2 +
Dλ′3

J2 +
Eλ′4

J2 + . . . ,

where λ′ = λ
J2

3 Derive the solutions for the coefficients A, B, . . . and solve the equations for the
momenta.

4 Plug the solution for the momenta in the dispersion relation to get the spectrum.
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One and two magnon states

The 8 one-magnon states are (Ku4 ,Ku4̄ ,Ku1 ,Ku2 ,Ku3 ) = (1, 0, 0, 0, 0),
(0, 1, 0, 0, 0), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1) in the boson sector, and (1, 0, 1, 0, 0),
(0, 1, 1, 0, 0), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0).

Out of these, 32 two-magnon states may be formed. Of special interest are those
which have degenerate energies at tree level.

In the boson-boson sector these are
(11111), (20111), (02111)
In the fermion-fermion sector these are
(11200), (11210), (11220), (20200), (20210), (20220), (02200),
(02210), (02220).
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Warm up: recap of the SU(2)× SU(2) subsector:
(2, 0, 0, 0, 0) and (0, 2, 0, 0, 0)

Magnons of the SU(2)× SU(2) group are described by
(Ku4 ,Ku4̄ ,Ku1 ,Ku2 ,Ku3 ) = (2, 0, 0, 0, 0) and
(Ku4 ,Ku4̄ ,Ku1 ,Ku2 ,Ku3 ) = (0, 2, 0, 0, 0), which clearly are identical .
Due to the level matching condition, we have only one independent momentum,
p. Plugging the expansion (3) in the Bethe equations, one gets, up to order λ′2
and 1

J :
1
J

ˆ
A− 2πn + λ′

`
B + 8n3π3´+ λ′2

`
C − 32n5π5´˜ = 0 ,

which completely determines the momentum up to the desired perturbative
order. We have

A = 2nπ, B = −8n3π3, C = 32n5π5 ,

This plugged in the dispersion relation gives the spectrum

E20000 = 4n2π2λ′−8n4π4λ′2+32n6π6λ′3+
1
J

`
8n2π2λ′ − 64n4π4λ′2 + 448n6π6λ′3

´
+. . .

which is the spectrum of the string states |s〉 =
“
a1,2
n

”† “
a1,2
−n

”†
|0〉.
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(1, 1, 0, 0, 0)

Consider the case (Ku4 ,Ku4̄ ,Ku1 ,Ku2 ,Ku3 ) = (1, 1, 0, 0, 0).

Level matching condition =⇒ there is only one independent momentum, p.

Yet we can build two different configurations, which shall be degenerate: the u4
root carrying momentum p and the u4̄ carrying −p, or viceversa.

The perturbative expansion of the Bethe equations read:

1
J

ˆ
A + λ′B + λ′2

`
C + 16n5π5´˜ = 0 ,

which gives
A = 0, B = 0, C = −16n5π5 ,

and therefore

E11000 = 4n2π2λ′ − 8n4π4λ′2 + 32n6π6λ′3 −
1
J

`
64n6π6λ′3

´
+ . . . ,

which is the spectrum of the string states |t1,2〉 =
“
a1,2
n

”† “
a2,1
−n

”†
|0〉.
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(1, 1, 1, 1, 1): how to deal with auxiliary roots

Consider the case (Ku4 ,Ku4̄ ,Ku1 ,Ku2 ,Ku3 ) = (1, 1, 1, 1, 1)

1 In the λ′ → 0 limit the values for the auxiliary roots are 0 and ∞.
2 A solution for an auxiliary root which is 0 in the λ′ → 0 limit is rather a power

series in λ′ whose limit is 0 when λ′ → 0.
3 A solution for an infinite auxiliary root will be a power series containing negative

powers of λ′, such that in the λ′ → 0 it will diverge.
4 Request that the Bethe equations should contain only integer powers of λ′ in

their expansion.
5 =⇒ Bethe roots must contain only half integer powers of λ′. This can be

translated in an expansion for the Zhukovsky variable x . Denoting with a
subscript ∞ or 0 a Zhukovsky variable associated to a root which tends to ∞ or
0 respectively, we write

x∞ =
∞X

k=1

ck

“√
λ′
”k+ 1

2
, x0 = i +

∞X
k=1

dk

“√
λ′
”k− 1

2
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Warm up: recap of the SU(2) × SU(2) subsector
(1, 1, 1, 1, 1): how to deal with auxiliary roots

consider the expansion for x∞. If we want the Bethe equations to be satisfied at
the order λ′j , then the first j − 1 coefficients in the expansion must be vanishing,
in order for the expansion for x to start at least at λ′j+

1
2 .

This expansion for u1 and u3 around infinity allows to fulfill all the Bethe
equations and is therefore a meaningful solution.

The Bethe equations for this case read

1
J

ˆ
A− 2πn + λ′B + λ′2

`
C + 16n5π5´˜ = 0 ,

which gives
A = 2πn, B = 0, C = −16n5π5 ,

and therefore

E11111 = 4n2π2λ′−8n4π4λ′2+32n6π6λ′3−
1
J

`
−8n2π2λ′ + 32n4π4λ′2 − 256n6π6λ′3

´
+. . . .

In the multiplet of string states having plane wave degenerate energy equal to 2ωn,
this finite size correction exists and has a high multiplicity. details
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Boson-boson and fermion-fermion sectors are compared in the Tables

Table: Boson-boson spectrum comparison

Expansion coefficient Multiplicity Corresponding BA states
a1 a2 a3 a4 a5 K4 K4̄ K3 K2 K1

0 −4 32 −256 2048 2 2 0 1 1 1branch 1
−1 4 −32 256 −2048 4 2 0 1 1 1branch 2

1 1 1 1 1branch 1
−2 12 −96 768 −6144 2 1 1 1 1 1branch 2

Table: Fermion-fermion spectrum comparison

Expansion coefficient Multiplicity Corresponding BA states
a1 a2 a3 a4 a5 K4 K4̄ K3 K2 K1

1 −12 96 −768 6144 2 2 0 2 2 0
0 −4 32 −256 2048 8 1 1 2 2 0

2 0 2 1 0branch 1
2 0 2 1 0branch 2
2 0 2 0 0

−1 4 −32 256 −2048 6 1 1 2 1 0branch 1
1 1 2 1 0branch 2
1 1 2 0 0
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Summary and Conclusions

We derived the finite size corrections (the 1/J-corrections) in the near pp-wave
limit to the dispersion relations for both light and heavy magnons for type II A
string on AdS4 × CP3.

The strong-weak coupling interpolating function h(λ), entering the magnon
dispersion relation, does not receive a one-loop correction, in agreement with the
algebraic curve spectrum.

Divergences cancel, the interacting Hamiltonian we derived is correct!

The finite-size corrections to two oscillator state energies and the corresponding
solutions of the Bethe equations are completely identical up to the fourth order
in λ′ ≡ λ

J2 . The multiplicity is the same.

The check is highly non-trivial and heavily points towards the integrability of
the theory.

Open problems and Outlook

Fermionic two oscillator states of the type |s〉 = a†i d
†
α|0〉.

What about the 4 heavy magnons?
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Type IIA on AdS4 × CP3

The ABJM theory is conjectured to be the world-volume effective theory of a
stack of N′ = kN M2-branes probing C4/Zk singularity

The near horizon limit of the geometry of N′ M2-branes on C4/Zk gives the
AdS4 × S7/Zk geometry

In the large N limit the gravitational dual of N′ M2 branes in flat space is
AdS4 × S7, orbifolding:

ds2
11 =

R̂2

4
ds2

AdS4 + R̂2ds2
S7/Zk

where

R̂2 = (25π2N′)1/3l2p and F(4) =
3R̂3

8
εAdS4

where εAdS4 is the unit volum form of AdS4

S7: z1, z2, z3, z4 ∈ C4 orbifolding Zk : zi → e
2πı
k zi

ds2
S7/Zk

=
4X

a=1

dzadz̄a

4X
a=1

za z̄a = 1

The coordinates za can be associated with the 4 scalars Y A of the ABJM theory

Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

The orbifolding is implemented as follows write

za = µae iφa we span S7 if
4∑

a=1

µ2a = 1

we associate to each angle φa the angular momentum Ja = −i∂φa .
Introduce the angle

γ =
1
4

(φ1 + φ2 + φ3 + φ4)

The orbifold S7/Zk is now implemented as the identification

γ ≡ γ + 2π
k

We have that
J1 + J2 + J3 + J4 = −i∂γ

Thus, we see that the orbifolding is equivalent to the quantization
condition on the angular momenta

J1 + J2 + J3 + J4 ∈ kZ
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We can write

ds2
11 =

R̂2

4

“
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̂2

2

”
+

ds2S7/Zkz }| {
R̂2ds2

CP3 + R̂2(dγ + A)2

Compare with ds2
11 = e−2φ/3ds2

IIA + e4φ/3(dγ + A)2

using the standard relation between M-theory and type IIA, we get the following
background of type IIA supergravity

ds2 = R2

4

“
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̂2

2

”
+ R2ds2

CP3

with R2 = R̂3

k , R2

l2s
=
√

25π2N′
k =

q
25π2N

k =
√
25π2λ and

g2
s = e2φ = R2

k2 =
“

25π2λ
k4

” 1
2

By demanding a small curvature and a small string coupling ⇒ this background
is a valid background for type IIA string theory when λ� 1 and N � k5

in the type II A description we should require that the dependence on γ is
absent, nothing should depend on the direction that shrinks to zero

J1 + J2 + J3 + J4 = 0
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The SU(2)× SU(2) sector

We take a limit of type II A string theory on AdS4 × CP3 which corresponds to
zooming in to the SU(2)× SU(2) sector

Consider the M-theory background AdS4×S7 corresponding to M2 branes on C4

The 2 SU(2)’s are gotten from splitting C4 → C2 × C2

the first SU(2), corresponding to A1,2 is associated to z1,2. The second SU(2)
corresponding to B1,2 is associated to z3,4.

Split the S7 into 2 S3 one for each C2

ds2
S7 = dθ2 + cos2 θdΩ2

3 + sin2 θdΩ′3
2

Introduce now the angles

ϕ1 = φ1 − φ2 , ϕ2 = φ4 − φ3

γ =
1
4

(φ1 + φ2 + φ3 + φ4) , δ =
1
4

(φ1 + φ2 − φ3 − φ4)

thus

J1 + J2 + J3 + J4 = −i∂γ , and we define 2J = J1 + J2 − J3 − J4 = −i∂δ
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In these coordinates the 2 3-spheres become

dΩ2
3 =

1
4
dΩ2

2+
“
dγ+dδ+

1
2
cos θ1dϕ1

”2
dΩ′3

2
=

1
4
dΩ′2

2
+
“
dγ−dδ+

1
2
cosθ2dϕ2

”2

dΩ2
2 = dθ21 + sin2 θ1dϕ2

1 dΩ′2
2 = dθ22 + sin2 θ2dϕ2

2

the SU(2)×SU(2) sector is the subspace R×S2× S2 ∼ RP2 of AdS4×CP3

The two 2-sphere correspond to the two SU(2)’s
On the string theory side, the SU(2)× SU(2) symmetry of the two S2 is a
subgroup of the SU(4) symmetry of CP3. Cartan generators of the SU(4)

S(1)
z ≡

J1 − J2

2
= −i∂ϕ1 , S(2)

z ≡
J4 − J3

2
= −i∂ϕ2 , J = −

i
2
∂δ

On the gauge theory side, S(1)
z counts the total spin for the A1,2 scalars and S(2)

z
for the B1,2 scalars, in operators of the form

O = χ
b1...bJ
a1...aJ Tr(Aa1Bb1 ....A

aJ BbJ ) .

The bare scaling dimension of each scalar is 1
2 . Total conformal dimension of O

∆0 = J

The SU(2)× SU(2) is defined as the sector consisting of operators with ∆0 = J
back

Gianluca Grignani Quantum strings on AdS4 × CP3



Motivations and Overview
ABJM theory

pp-waves, dispersion relation and finite size corrections
Bethe equations and comparison to the string spectrum

Summary and Conclusions

Fermions: General GS superstring action for type IIA
The quadratic fermionic Lagrangian is given by (Cvetic, Lu, Pope, Stelle, 2000)

LF = −i θ̄M ij ΓµD̃jθ∂iX
µ −

i
16
∂iX

µ
∂jX

νeφθ̄M ij`Γ11ΓµΓλσΓνFλσ +
1
12

ΓµΓλστρΓνFλστρ
´
θ

with M ij ≡
`
H ij − εijΓ11

´
, H ij ≡

√
−hhij and D̃iθ ≡ ∂iθ + 1

4∂iXµω ab
µ Γabθ

In type IIA we have two Majorana-Weyl spinors θ1,2 with opposite chirality, i .e.
Γ11θ1 = θ1 and Γ11θ2 = −θ2. 32 component real spinor θ = θ1 + θ2.
it can be rewritten as

L = Lkin + LWZ , Lkin = −
1
2
hABSAB

SAB = gµν∂AXµ∂BXν+i θ̄Γµ(∂AXµD̃Bθ+∂BXµD̃Aθ)+
i
8
∂AXµ∂BXν θ̄(ΓµMΓν+ΓνMΓµ)θ

and the Wess-Zumino part of the Lagrangian given by

LWZ = iεAB
θ̄Γ11Γµ∂AXµD̃Bθ +

i
8
ε
AB
∂AXµ∂BXν θ̄Γ11ΓµMΓνθ

where strengths F(2) and F(4) have been combined into the matrix M as

M = − 1
2FµνΓ11Γµν + 1

24FµνρσΓµνρσ
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Supersymmetric fermionic directions for type IIA on AdS4 × CP3

Define the quantity (Nilsson and Pope, Class. Quantum Grav.(1984))

Q = Γ0123Γ11F abΓab

here Γ0123Γ11Fab = Jab is the Kähler form on CP3

Q = Γ0123Γ11(−Γ49 − Γ56 + Γ78) = Γ5678 − Γ49(Γ56 − Γ78)

Note that Q2 = 2Q + 3. Q has 24 eigenvalues -1 and 8 eigenvalues 3.
Recalling that in the ground state the fermion fields of the D = 10 theory are set to
zero, the criterion for unbroken supersymmetry of the vacuum is that their
supersymmetric variations should also vanish.

δθ
˛̨
vacuum = 0

It is satisfied for the 24 eigenvalue

Q = −1

Then the projector on to the supersymmetric fermionic directions is

P =
3− Q

4
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All supersymmetric fermionic directions are characterized by Pθ = θ or equivalently
Qθ = −θ

Q = Γ0123Γ11(−Γ49 − Γ56 + Γ78) = Γ5678 − Γ49(Γ56 − Γ78)

Γ2
5678 = Γ2

4956 = Γ2
4978 = 1. If Γ5678θ = −θ we see that Qθ = −θ

=⇒ 16 supersymmetric directions.

If Γ5678θ = θ then we need in addition that Γ4956θ = θ to get Q = −1
=⇒ 8 supersymmetric directions

=⇒ total of 24 supersymmetric directions.

The 8 remaining non-supersymmetric directions are characterized by Γ5678θ = θ and
Γ4956θ = −θ corresponding to Qθ = 3θ.
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Coset model supersymmetric Lagrangian

Aim:=⇒ construct a supersymmetric Lagrangian with full Osp(6|4) symmetry

Problem:=⇒ it is not possible to make the whole symmetry manifest

Solution:=⇒ the target space can be realized as a coset OSp(6|4)
U(3)×SO(3,1)

(Metsaev, Tseytlin, 9805028 for AdS5 × S5, Arutyunov and Frolov, 0806.4940 for AdS4 × CP3 )

The superconformal algebra OSp(6|4) has schematically the form

[Bi ,Bj ] = f k
ij Bk , [Fα,Bi ] = f βαiFβ , {Fα,Fβ} = f i

αβBi

Bi denotes all the bosonic generators (i.e. the generators of SO(3, 2)× SU(4))
and Fα all the fermionic generators (i.e. the 32 supercharges). f k

ij , f βαi and f i
αβ

=⇒ structure constants of OSp(6|4).

Generalize the worldsheet derivative to include all the generators of OSp(6|4)
=⇒ introduce the left-invariant Maurer-Cartan forms Li and Lα

D = P(d + LiBi + LαFα)

d is the worldsheet derivative and Li and Lα are one-forms on the worldsheet.
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Demanding that D2 = 0 leads to the Maurer-Cartan equations

dLi + f i
jkLj ∧ Lk − f i

αβLα ∧ Lβ = 0 , dLα − f αβiL
β ∧ Li = 0

Solved by the generalized Maurer-Cartan forms Li
s and Lαs for any real number s ∈ R

Li = Li
s |s=1 , Lα = Lαs |s=1

along with the differential equations

∂s L̃
t
s = θ

αf i
αβ L̃i

s , ∂sL
α
s = Dθα − θβ f αβi L̃

i
s , where Li

s = (L0)i + L̃i
s

(L0)i is Li when setting the fermionic coordinates to zero θα = 0.
The solution Kallosh, Rahmfeld and Rajaraman (9805217) for AdS5 × S5 and Gomis, Sorokin and Wulff
(0811.1566), Grassi, Sorokin, Wulff, (0903.5407) for AdS4 × CP3

Li
s = (L0)i + 2θαf i

αβ

„
sinh2( s

2M)

M2

«β
γ

(Dθ)γ

Lαs =
“
sinh(sM)
M

”α
β

(Dθ)β with (M2)αβ = −θγ f αγi θ
δf i
δβ

the covariant derivative of θ being of the form (Dθ)α = P(dθα − (L0)i f αβi θ
β)

Dθ = P(d − 1
R Γ0123Γaea + 1

4ω
abΓab)θ

and the supervielbeins being given by

L(s)aA = E(s)aµ∂AXµ + E(s)aα∂Aθ
α
, L(s)αA = E(s)αµ∂AXµ + E(s)αβ∂Aθ

β

with La
A = L(s = 1)aA and LαA = L(s = 1)αA .
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Structure constants andM2

(M2)αβ can be generally written as

(M2)αβ = −θγ f αγiθ
δf i
δβ = −θγ f̃ αγaθ

δ f̂ a
δβ − θ

γ f̃ αγ abθ
δ f̂ ab
δβ

where the fermions are 32-dimensional. The structure constants f̃ can be read from
the covariant derivative of θ, (Dθ)α = dθα − f̃ αβ ae

aθβ − f̃ αβ abω
ab. The f̂ can be

derived from the supervielbeins. We have

f̃ αβa = 1
R (Γ0123PΓaP)αβ , f̃ αβ ab = − 1

4 (PΓabP)αβ

where, here, a, b = 0, . . . , 9.
For f̂ a

αβ we get

f̂ a
αβ = 2i(PΓ0ΓaP)αβ

The non-vanishing structure constants f̂ ab
αβ are

f̂ âb̂
αβ = − 4i

R (PΓ0Γ0123Γâb̂P)αβ , f̂ a′b′
αβ = 2i

R

“
PΓ0

“
Γ0123Γa′b′ − Ja′b′Γ11

”
P
”
αβ

where â = 0, 1, 2, 3; a′ = 4, · · · , 9
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Supercoset Lagrangian for type IIA on AdS4 × CP3

The Lagrangian is

L = −
1
2
hABηabLa

ALb
B − 2iεAB

Z 1

0
dsL(s)aA(θ̄ΓaΓ11)αL(s)αB

We write the total Lagrangian as

L = Lkin + LWZ Lkin = −
1
2
hABSAB SAB ≡ ηabLa

ALb
B

Dividing SAB according to the number of fermions

SAB = S(0f)
AB + S(2f)

AB + S(4f)
AB

we found for the kinetic term

S(0f)
AB = gµν∂AXµ∂BXν , S(2f)

AB = i θ̄Γµ(∂AXµDBθ + ∂BXµDAθ)

quartic term =⇒ S(4f)
AB = −(θ̄ΓaDAθ)(θ̄ΓaDBθ) + i

12 θ̄ΓµM2(∂AXµDBθ + ∂BXµDAθ)

The WZ term

LWZ = L(2f)
WZ + L(4f)

WZ L(2f)
WZ = −iεAB∂AXµθ̄ΓµΓ11DBθ

quartic term =⇒ L(4f)
WZ = 1

2 ε
AB(θ̄ΓaDAθ)(θ̄ΓaΓ11DBθ)− i

12 ε
AB∂AXµθ̄ΓµΓ11M2DBθ
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Equivalence of supercoset and Cvetic et al. Lagrangian
Using

F(2) =
2
R

(−e4 ∧ e9 − e5 ∧ e6 + e7 ∧ e8) F(4) =
6
R

e0 ∧ e1 ∧ e2 ∧ e3

we compute

M = − 1
2FµνΓ11Γµν + 1

24FµνρσΓµνρσ = − 8
R Γ0123P

Inserting this into the Cvetic et al. Lagrangian we see that this is equivalent to the
Lagrangian derived from the coset model up to the second order in the fermions
provided we have that

D̃Aθ = PD̃Aθ

for any spinor with Pθ = θ on the AdS4 × CP3 background. This is true if

ωab
µ [P, Γab] = 0 (1)

For nearly all non-zero components of ωab
µ you have that a and b are such that

[P, Γab] = 0. The only 8 components for which this is not the case are ω45
x1 , ω

69
x1 , ω

46
y1 ,

ω59
y1 , ω

47
x2 , ω

89
x2 , ω

48
y2 and ω79

y2 . However, if we consider ω45
x1 and ω69

x1 we see that
ω45

x1 = −ω69
x1 . For (1) to hold for µ = x1 it is therefore sufficient that

[P, Γ45 − Γ69] = 0 which indeed is the case, . It works similar for µ = y1, x2, y2 hence
we have checked explicitly that Eq.(1) holds.
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Fixing the κ symmetry
1 κ symmetry transformation on the supersymmetric fermionic directions Pθ = θ.

We have already imposed a partial κ symmetry gauge choice by demanding
Pθ = θ thus reducing the number of fermionic directions from 32 to 24

2 Fix the remaining 8 directions in the κ symmetry by a gauge choice that follows
from our light cone gauge. κ symmetry variations

Eαµ δX
µ + Eαβ δθ

β = [(1 + Γ)κ]α , Ea
µδX

µ + Ea
αδθ

α = 0

where (1 + Γ)/2 is a spinor projection matrix.
3 Analyze the κ symmetry in the Penrose limit. In this limit we have the super

vielbeins

Ea = ea + i θ̄ΓaDθ , Eα = (Dθ)α

and the κ-symmetry transformations

δXµ(Dµθ)α + δθα = [(1 + Γ)κ]α , δt + 2i θ̄Γ+DµθδXµ + 2i θ̄Γ+δθ = 0

using e+ = 1
2dX+ and assuming Pθ = θ and Pδθ = δθ.

Combining we get

δX+ = 2i θ̄Γ+(1 + Γ)κ
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For the light cone gauge to be consistent we need δX+ = 0 under variations of κ symmetry

Q = Γ5678 − Γ49(Γ56 − Γ78)

Recall: 16 supersymmetric directions with Γ5678θ = −θ and 8 with Γ5678θ = θ

Among the first 16 we can choose that either with PΓ−Pθ = 0 or PΓ+Pθ = 0

Take a supersymmetric fermionic direction with PΓ−Pθ = 0. Then
δt = −2iθT (1 + Γ)κ =⇒ such fermionic directions are not consistent with the
light cone gauge.

The matrix PΓ−P has 8 supersymmetric fermionic directions with eigenvalue
zero, characterized by Γ5678θ = −θ and Γ−θ = 0. Thus, we fix the remaining κ
symmetry gauge freedom by demanding that these directions are put to zero.
This leaves the following 16 physical fermionic directions in the light cone gauge

8 fermionic directions defined by Γ5678θ = −θ, Γ+θ = 0
8 fermionic directions defined by Γ5678θ = θ, Γ4956θ = θ

This is thus our condition for physical fermionic modes.
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It is useful to parameterize this by introducing the projectors

P+ =
I + Γ5678

2
I + Γ4956

2
, P− =

I − Γ5678

2
I − Γ09

2

P ′+ =
I + Γ5678

2
I − Γ4956

2
, P ′− =

I − Γ5678

2
I + Γ09

2

named after the eigenvalue of Γ5678. 4,5,6,7 and 8 are transverse directions in CP3.
These projectors are mutually orthogonal to each other and they are all idempotent
and symmetric. We have

P = P+ + P− + P ′− , I = P+ + P− + P ′+ + P ′−

We are thus imposing that our spinor θ = θ1 + θ2 obeys

(P+ + P−)θ = θ

or, equivalently, (P ′+ + P ′−)θ = 0. This is our condition for physical fermionic modes.
back
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The computation of the finite part of the mixing matrix is done by

R2H(one−loop) = H4B + H4F + H2B2F + H2
3B + H2

B2F .

In the H4B
P

apaqaras terms we take only the matrix elements of the type

〈0|a−n
|

a
−
−n
|

a
+
p
|
a

+
q
|

a
−
r
|

a
−
s
|

a
+
n
|
a

+
−n
|
|0〉

(and all possible permutations) not involving the sums, i.e. not having contractions
inside the Hamiltonian itself, since all other elements contribute to the superficially
divergent part already taken into account
This may potentially contribute both to the diagonanl and off-diagonal terms in the
bosonic sector. The H2B2F

P
dpdqaras part of the Hamiltonian in the finite mixing

matrix can contribute only to the mixing between a two-fermion and two-boson state,
e.g.

〈0|d−n
|

d
−
−n
|

d
+
p
|
d

+
q
|

a
−
r
|

a
−
s
|

a
+
n
|
a

+
−n
|
|0〉

The H3B , HB2F terms contribute via virtual particle exchange. Its possible contribution
to the matrix element of the finite mixing between degenerate states |a〉 and |b〉 is

〈a|H(2)|b〉 =
X

i

〈a|H†3 |i〉〈i|H3|b〉
Ea − Ei

,

where H3 = H3B ,H3F .
back
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(2, 0, 1, 1, 1)

The only difference with respect to the (1, 1, 1, 1, 1) case is the presence of the
S-matrix between the magnons on the right hand side of the Bethe equation. The
Bethe equation reads:

1
J

ˆ
A + λ′

`
B + 8n3π3´+ λ′2

`
C − 32n5π5´˜ = 0 ,

which gives
A = 0, B = −8n3π3, C = 32n5π5 ,

and therefore

E20111 = 4n2π2λ′ − 8n4π4λ′2 + 32n6π6λ′3 −
1
J

`
−32n4π4λ′2 + 256n6π6λ′3

´
+ . . . .

We have 10 string states out of the 24 (8 made with 2 bosons + 16 made with 2
fermions) having this correction, then this solution is indeed correct and useful.
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(1, 1, 2, 2, 2)

One can see, similarly to the case with (., ., 1, 1, 1) auxiliary roots, that the only
consistent solution is u1,j =∞ and u3,j =∞. Here also the same subtlety as in the
(., ., 1, 1, 1) case arises: provided that u1,j =∞ and u3,j =∞, the Bethe equations
are indeed satisfied whatever are the values of u2,j . This creates an issue about the
multiplicity of the solution, but I think that the point is that every configuration for
u2,j is equivalent and then the solution is physically only one. The Bethe equation
reads:

1
J

ˆ
A + 4nπ + λ′B + λ′2

`
C + 16n5π5´˜ = 0 ,

which gives
A = −4nπ, B = 0, C = −16n5π5 ,

and therefore

E11222 = 4n2π2λ′−8n4π4λ′2+32n6π6λ′3−
1
J

`
−16n2π2λ′ + 64n4π4λ′2 − 448n6π6λ′3

´
+. . . .

which is the spectrum of the string states |t̃1,2〉 =
“
ã1,2
n

”† “
ã2,1
−n

”†
|0〉.
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(2, 0, 2, 2, 2) and (0, 2, 2, 2, 2)

This case is specular to the the (1, 1, 2, 2, 2) case above, only difference the S-matrix
between the magnons on the right hand side of the Bethe equations. The Bethe
equation reads:

1
J

ˆ
A + 2nπ + λ′

`
B + 8π3n3´+ λ′2

`
C − 32n5π5´˜ = 0 ,

which gives
A = −2nπ, B = −8n3π3, C = 32n5π5 ,

and therefore

E20222 = 4n2π2λ′ − 8n4π4λ′2 + 32n6π6λ′3 −
1
J

`
−8n2π2λ′ + 64n6π6λ′3

´
+ . . . .

which is the spectrum of the string states |s̃1,2〉 =
“
ã1,2
n

”† “
ã1,2
−n

”†
|0〉.

details

back
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Energies of Bethe states

Taking into account the exact Z2 degeneracy due to p → −p symmetry and the
double occurrence of (..210) and (..111) states due to branching of auxiliary
roots we obtain 24 states in the tree-level degenerate spectrum, which exactly
corresponds to the degenerate string double-magnon spectrum.

Parameters ε1,2,3 are twists, introduced in the following way

e iε1 =

K2Y
j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4Y
j=1

1− 1/x1,kx+
4,j

1− 1/x1,kx−4,j

K4̄Y
j=1

1− 1/x1,kx+
4̄,j

1− 1/x1,kx−4̄,j
,

e iε2 =

K2Y
j 6=k

u2,k − u2,j − i
u2,k − u2,j + i

K1Y
j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

K3Y
j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2

,

e iε3 =

K2Y
j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4Y
j=1

x3,k − x+
4,j

x3,k − x−4,j

K4̄Y
j=1

x3,k − x+
4̄,j

x3,k − x−4̄,j
,

to regularize Bethe equations for those solutions which yield ui = 0, u + i =∞
perturbatively.
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The finite-size correction is normalized E = 8ε
J , where ε is given as series in powers of

λ′ in the following Table

Table: Boson-boson spectrum from Bethe Ansatz
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Table: Fermion-fermion spectrum from Bethe Ansatz

These tables are remarkable =⇒ all states presented here are also found on the
string side and the energies coincide up to λ′4! back
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