

 Generalized quark-antiquark potential

 Generalized quark-antiquark potential at weak and strong coupling

Nadav Drukker Imperial College London

Based on arXiv:1105.5144-N.D. and Valentina Forini
Strings, Gauge Theory and the LHC
Copenhagen Conference
September 2, 2011

\longrightarrow

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- It is known to two-loop order in perturbation theory and classically and at one-loop in string theory.

Introduction and motivation

- One of the most fundamental quantities in a quantum field theory is the potential between charged particles.
- In gauge theories this is captured by a long rectangular Wilson loop, or a pair of antiparallel lines.
- Such an object exists also in $\mathcal{N}=4$ SYM.
- The Wilson loop calculates the potential between two W-bosons arising from a Higgs mechanism.
- It is known to two-loop order in perturbation theory and classically and at one-loop in string theory.
- Can we do any better?

$\underline{\text { Wilson loops in } \mathcal{N}=4 \text { super Yang-Mills }}$

[Maldacena] Rey, Yee $]$

- The usual Wilson loop is

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint i A_{\mu} \dot{x}^{\mu} d s\right]
$$

- The most natural Wilson loops in $\mathcal{N}=4$ SYM include a coupling to the scalar fields

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint\left(i A_{\mu} \dot{x}^{\mu}+|\dot{x}| \theta^{I} \Phi_{I}\right) d s\right]
$$

θ^{I} do not have to be constant.

- For a smooth loop and $\left|\theta^{I}\right|=1$, these are finite observables.
- The scalar coupling is natural for calculating the potential between W-bosons.

$\underline{\text { Wilson loops in } \mathcal{N}=4 \text { super Yang-Mills }}$

[Maldacena $][$ Rey, Yee $]$

- The usual Wilson loop is

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint i A_{\mu} \dot{x}^{\mu} d s\right]
$$

- The most natural Wilson loops in $\mathcal{N}=4$ SYM include a coupling to the scalar fields

$$
W=\operatorname{Tr} \mathcal{P} \exp \left[\oint\left(i A_{\mu} \dot{x}^{\mu}+|\dot{x}| \theta^{I} \Phi_{I}\right) d s\right]
$$

θ^{I} do not have to be constant.

- For a smooth loop and $\left|\theta^{I}\right|=1$, these are finite observables.
- The scalar coupling is natural for calculating the potential between W-bosons.
- For a pair of antiparallel lines

$$
\langle W\rangle \approx \exp [-T V(L, \lambda)]
$$

- In a conformal theory we expect

$$
V(L, \lambda)=\frac{f(\lambda)}{L}
$$

- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{T}{L}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{1}{\lambda}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- Explicit calculations at weak and at strong coupling:

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{1}{\lambda}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- Hard to guess how to connect these two regimes.
- Could go to $O\left(\lambda^{3}\right)$ and $O\left(\lambda^{4}\right)$.
- We will add extra parameters and study a larger family of observables.
- Thus gather more information to help guess an exact interpolating function.

Outline

- Introduction and motivation
- Generalized quark-antiquark potential
- Perturbation theory calculation
- Classical string surfaces
- One loop string determinants
- Expansions in small angles
- Summary

Strings, Gauge Theory and the LHC

Copenhagen Conference 22 August - 2 September 2011 http://www.nbia.dk/cphconf.html

Copenhagen Conference, 1931

Speakers include: Convenors:

Nima Arkani-Hamed (IAS)
Zvi Bern (UCLA)
Simon Caron-Huot (IAS)
Dmitri Diakonov (St. Petersburg, INP)
Michael Green (DAMTP)
Zohar Komargodski (IAS)
Gregory Korchemsky (Saclay)
Gordon Semenoff (UBC)
David Shih (Rutgers)

Jan Ambjorn
N. Emil Bjerrum-Bohr Poul Henrik Damgaard Charlotte Kristjansen

Niels Obers
Marta Orselli

Organizing Committee:

Simon Badger Donal O'Connell

Generalized quark-antiquark potential

- The straight line and circular Wilson loop are $1 / 2$ BPS.
- Their expectation value is known exactly.

Generalized quark-antiquark potential

- The straight line and circular Wilson loop are $1 / 2$ BPS.
- Their expectation value is known exactly.
- Can we somehow view the antiparallel lines as a deformation of the circle/line?

- We take the following family of curves:

- We take the following family of curves:
- These are pairs of arcs with opening angle $\pi-\phi$.
- $\phi=0$ is the $1 / 2$ BPS circle.
- $\phi \rightarrow \pi$ gives the antiparallel lines.

- We take the following family of curves:
- These are pairs of arcs with opening angle $\pi-\phi$.
- $\phi=0$ is the $1 / 2 \mathrm{BPS}$ circle.
- $\phi \rightarrow \pi$ gives the antiparallel lines.

- Can have each line couple to a different scalar field
$\Phi_{1} \cos \frac{\theta}{2}+\Phi_{2} \sin \frac{\theta}{2} \quad$ and $\quad \Phi_{1} \cos \frac{\theta}{2}-\Phi_{2} \sin \frac{\theta}{2}$
- Gives another parameter: θ.
- We take the following family of curves:
- These are pairs of arcs with opening angle $\pi-\phi$.
- $\phi=0$ is the $1 / 2 \mathrm{BPS}$ circle.
- $\phi \rightarrow \pi$ gives the antiparallel lines.

- Can have each line couple to a different scalar field
$\Phi_{1} \cos \frac{\theta}{2}+\Phi_{2} \sin \frac{\theta}{2} \quad$ and $\quad \Phi_{1} \cos \frac{\theta}{2}-\Phi_{2} \sin \frac{\theta}{2}$
- Gives another parameter: θ.
- Crucial point: Calculations are no harder than for the antiparallel case!
- By a conformal transformation which maps one cusp to infinity:

- This is a cusp in Euclidean space.
- Taking $\phi=i u$ and $u \rightarrow \infty$ gives the Lorenzian null cusp.
- By the inverse exponential map we get the gauge theory on $\mathbb{S}^{3} \times \mathbb{R}$

- These are parallel lines on $\mathbb{S}^{3} \times \mathbb{R}$.
- From this last picture we expect

$$
\langle W\rangle \approx \exp [-T V(\phi, \theta, \lambda)]
$$

- The same is true for the cusp in \mathbb{R}^{4} with

$$
T=\log \frac{R}{\epsilon}
$$

- From this last picture we expect

$$
\langle W\rangle \approx \exp [-T V(\phi, \theta, \lambda)]
$$

- The same is true for the cusp in \mathbb{R}^{4} with

$$
T=\log \frac{R}{\epsilon}
$$

- This $V(\phi, \theta, \lambda)$ is the generalization of $V(L, \lambda)$ we study.
- For $\phi \rightarrow \pi$ it has a pole and the residue is $L V(L, \lambda)$.
- From this last picture we expect

$$
\langle W\rangle \approx \exp [-T V(\phi, \theta, \lambda)]
$$

- The same is true for the cusp in \mathbb{R}^{4} with

$$
T=\log \frac{R}{\epsilon}
$$

- This $V(\phi, \theta, \lambda)$ is the generalization of $V(L, \lambda)$ we study.
- For $\phi \rightarrow \pi$ it has a pole and the residue is $L V(L, \lambda)$.
- Expanding at weak coupling

$$
V(\phi, \theta, \lambda)=\sum_{n=1}^{\infty}\left(\frac{\lambda}{16 \pi^{2}}\right)^{n} V^{(n)}(\phi, \theta)
$$

- And at strong coupling

$$
V(\phi, \theta, \lambda)=\frac{\sqrt{\lambda}}{4 \pi} \sum_{l=0}^{\infty}\left(\frac{4 \pi}{\sqrt{\lambda}}\right)^{l} V_{A d S}^{(l)}(\phi, \theta)
$$

Weak coupling

1-loop graphs

- Just the exchange of a gluon and scalar field

- This graph is given by the integral

$$
\begin{aligned}
\left.\partial_{\lambda}\langle W\rangle\right|_{\lambda=0} & =\int d s d t\langle-A(s) \cdot A(t)+\Phi(s) \cdot \Phi(t)\rangle \\
& =\frac{\lambda}{8 \pi^{2}} \int d s d t \frac{-\dot{x}_{\mu}(s) \dot{x}^{\mu}(t)+\theta^{I}(s) \theta^{I}(t)}{|x(s)-x(t)|^{2}} \\
& =\frac{\lambda}{8 \pi^{2}} \int d s d t \frac{\cos \theta-\cos \phi}{s^{2}+t^{2}+2 s t \cos \phi}=\frac{\lambda}{8 \pi^{2}} \frac{\cos \theta-\cos \phi}{\sin \phi} \phi \log \frac{R}{\epsilon}
\end{aligned}
$$

- Therefore

$$
V^{(1)}(\phi, \theta)=-2 \frac{\cos \theta-\cos \phi}{\sin \phi} \phi
$$

2-loop graphs

- Ladder graphs are quite easy.

$$
V^{(2)}=\frac{1}{2 \log \frac{R}{\epsilon}} \partial_{\lambda}^{2}[\log \langle W\rangle]_{\lambda=0}=\frac{1}{2 \log \frac{R}{\epsilon}}\left[\partial_{\lambda}^{2}\langle W\rangle-\left(\partial_{\lambda}\langle W\rangle\right)^{2}\right]_{\lambda=0}
$$

- In $\langle W\rangle$ we include only planar graphs.
- $V_{\text {ladder }}^{(2)}$ is therefore minus the non-planar graphs.

- Ladder graphs are quite easy.

$$
V^{(2)}=\frac{1}{2 \log \frac{R}{\epsilon}} \partial_{\lambda}^{2}[\log \langle W\rangle]_{\lambda=0}=\frac{1}{2 \log \frac{R}{\epsilon}}\left[\partial_{\lambda}^{2}\langle W\rangle-\left(\partial_{\lambda}\langle W\rangle\right)^{2}\right]_{\lambda=0}
$$

- In $\langle W\rangle$ we include only planar graphs.
- $V_{\text {ladder }}^{(2)}$ is therefore minus the non-planar graphs.

- This graph is given by the integral

$$
\begin{aligned}
& \frac{\lambda^{2}}{(4 \pi)^{4}} \int_{s_{1}<s_{2}} d s_{1} d s_{2} \int_{t_{1}<t_{2}} d t_{1} d t_{2} \frac{(\cos \phi-\cos \theta)^{2}}{\left(s_{1}^{2}+t_{2}^{2}+2 s_{1} t_{2} \cos \phi\right)\left(s_{2}^{2}+t_{1}^{2}+2 s_{2} t_{1} \cos \phi\right)} \\
& =\frac{\lambda^{2}}{64 \pi^{4}} \frac{(\cos \theta-\cos \phi)^{2}}{\sin ^{2} \phi}\left[\operatorname{Li}_{3}\left(e^{2 i \phi}\right)-\zeta(3)-i \phi\left(\operatorname{Li}_{2}\left(e^{2 i \phi}\right)+\frac{\pi^{2}}{6}\right)+\frac{i}{3} \phi^{3}\right] \log \frac{R}{\epsilon}
\end{aligned}
$$

- Dividing by $-\frac{\lambda^{2}}{(4 \pi)^{4}} \log \frac{R}{\epsilon}$ we get $V_{\text {ladder }}^{(2)}$
- Interacting graphs are a bit more complicated.
- There are bubble graphs and the single cubic vertex graphs.

- Interacting graphs are a bit more complicated.
- There are bubble graphs and the single cubic vertex graphs.

- One of the lines is always a gluon. It is a total derivative, giving two contributions

- Interacting graphs are a bit more complicated.
- There are bubble graphs and the single cubic vertex graphs.

- One of the lines is always a gluon. It is a total derivative, giving two contributions

- The second graph cancels exactly against the bubble graphs

- Remaining graph involves the triangle graph

- It is given by the integral

$$
\frac{\lambda^{2}}{64 \pi^{6}} \int d t d s \int d^{4} w \frac{\cos \theta-\cos \phi}{|x(s)-w|^{2}|x(t)-w|^{2}|w|^{2}}
$$

- Remaining graph involves the triangle graph

- It is given by the integral

$$
\frac{\lambda^{2}}{64 \pi^{6}} \int d t d s \int d^{4} w \frac{\cos \theta-\cos \phi}{|x(s)-w|^{2}|x(t)-w|^{2}|w|^{2}}
$$

- The integration over w can be done exactly and gives a function (with dilogarithms) of s / t and ϕ.
- Doing the integral over s and t and dividing by $-\log \frac{R}{\epsilon}$ gives

$$
V_{\mathrm{int}}^{(2)}(\phi, \theta)=\frac{4}{3} \frac{\cos \theta-\cos \phi}{\sin \phi}\left(\pi^{2}-\phi^{2}\right) \phi
$$

- Remaining graph involves the triangle graph

- It is given by the integral

$$
\frac{\lambda^{2}}{64 \pi^{6}} \int d t d s \int d^{4} w \frac{\cos \theta-\cos \phi}{|x(s)-w|^{2}|x(t)-w|^{2}|w|^{2}}
$$

- The integration over w can be done exactly and gives a function (with dilogarithms) of s / t and ϕ.
- Doing the integral over s and t and dividing by $-\log \frac{R}{\epsilon}$ gives

$$
V_{\mathrm{int}}^{(2)}(\phi, \theta)=\frac{4}{3} \frac{\cos \theta-\cos \phi}{\sin \phi}\left(\pi^{2}-\phi^{2}\right) \phi
$$

- The result is simpler than the ladder graphs and closely related to 1-loop:

$$
V_{\mathrm{int}}^{(2)}(\phi, \theta)=-\frac{2}{3}\left(\pi^{2}-\phi^{2}\right) V^{(1)}(\phi, \theta)
$$

First sign of simplification for this set of observables...

Strings, Gauge Theory and the LHC

Copenhagen Conference 22 August - 2 September 2011 http://www.nbia.dk/cphconf.html

Copenhagen Conference, 1931

Speakers include: Convenors:

Nima Arkani-Hamed (IAS)
Zvi Bern (UCLA)
Simon Caron-Huot (IAS)
Dmitri Diakonov (St. Petersburg, INP)
Michael Green (DAMTP)
Zohar Komargodski (IAS)
Gregory Korchemsky (Saclay)
Gordon Semenoff (UBC)
David Shih (Rutgers)

Jan Ambjorn
N. Emil Bjerrum-Bohr Poul Henrik Damgaard Charlotte Kristjansen

Niels Obers
Marta Orselli

Organizing Committee:

Simon Badger Donal O'Connell

Strings, Gauge Theory and the LHC

Copenhagen Conference 22 August - 2 September 2011 http://www.nbia.dk/cphconf.html

Simon Badger

String theory calculation

Classical string in $A d S_{3} \times \mathbb{S}^{1}$

- The boundary conditions are lines separated by $\pi-\phi$ on the boundary of $A d S$ and θ on \mathbb{S}^{5}.
- All the string solutions fit inside $A d S_{3} \times \mathbb{S}^{1}$

$$
d s^{2}=\sqrt{\lambda}\left(-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \varphi^{2}+d \vartheta^{2}\right)
$$

String theory calculation

Classical string in $A d S_{3} \times \mathbb{S}^{1}$

- The boundary conditions are lines separated by $\pi-\phi$ on the boundary of $A d S$ and θ on \mathbb{S}^{5}.
- All the string solutions fit inside $A d S_{3} \times \mathbb{S}^{1}$

$$
d s^{2}=\sqrt{\lambda}\left(-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \varphi^{2}+d \vartheta^{2}\right)
$$

- As world-sheet coordinates we can take t and ϑ rescaled

$$
\sigma=\frac{\sqrt{b^{4}+p^{2}}}{b q} \vartheta \quad \tau=\frac{\sqrt{b^{4}+p^{2}}}{b p} t
$$

and then

$$
\rho=\rho(\sigma), \quad \vartheta=\vartheta(\sigma)
$$

- The Nambu-Goto action is

$$
\mathcal{S}_{N G}=\frac{\sqrt{\lambda}}{2 \pi} \int d t d \varphi \cosh \rho \sqrt{\sinh ^{2} \rho \varphi^{\prime 2}+\rho^{\prime 2}+1}
$$

- Two conserved quantities are

$$
E=\frac{\varphi^{\prime} \sinh ^{2} \rho \cosh \rho}{\sqrt{\sinh ^{2} \rho \varphi^{\prime 2}+\rho^{\prime 2}+1}} \quad J=-\frac{\cosh \rho}{\sqrt{\sinh ^{2} \rho \varphi^{\prime 2}+\rho^{\prime 2}+1}}
$$

- The resulting equations are elliptic.

$$
\varphi^{\prime 2}=\frac{b^{2}}{\left(b^{4}+p^{2}\right) \sinh ^{4} \rho}, \quad \rho^{\prime 2}=\frac{\left(b^{2} \sinh ^{2} \rho-1\right)\left(b^{2}+p^{2} \sinh ^{2} \rho\right)}{\left(b^{4}+p^{2}\right) \sinh ^{2} \rho}
$$

With

$$
p=-\frac{1}{E} \quad q=\frac{J}{E} \quad b^{2}=\frac{1}{2}\left(p^{2}-q^{2}+\sqrt{\left(p^{2}-q^{2}\right)^{2}+4 p^{2}}\right) \quad k^{2}=\frac{b^{2}\left(b^{2}-p^{2}\right)}{b^{4}+p^{2}}
$$

- The solution is

$$
\begin{gathered}
\cosh ^{2} \rho=\frac{1+b^{2}}{b^{2} \operatorname{cn}^{2}(\sigma)} \\
\varphi=\frac{\pi}{2}+\frac{p^{2}}{b \sqrt{b^{4}+p^{2}}}\left(\sigma-\Pi\left(\frac{b^{4}}{b^{4}+p^{2}}, \operatorname{am}(\sigma+\mathbb{K}) \mid k^{2}\right)+\Pi\left(\left.\frac{b^{4}}{b^{4}+p^{2}} \right\rvert\, k^{2}\right)\right),
\end{gathered}
$$

where $\operatorname{am}(x)$ is the Jacobi amplitude and \mathbb{K} the complete elliptic integral.

- The initial value is then

$$
\frac{\phi}{2}=\frac{\pi}{2}-\frac{p^{2}}{b \sqrt{b^{4}+p^{2}}}\left(\mathbb{K}-\Pi\left(\left.\frac{b^{4}}{b^{4}+p^{2}} \right\rvert\, k^{2}\right)\right) \quad \text { and } \quad-\mathbb{K}<\sigma<\mathbb{K}
$$

- These are transcendental equations for p, q in terms of θ, ϕ
- The induced metric is

$$
d s_{\mathrm{ind}}^{2}=\sqrt{\lambda} \frac{1-k^{2}}{\mathrm{cn}^{2}(\sigma)}\left[-d \tau^{2}+d \sigma^{2}\right] .
$$

- The classical action can also be calculated

$$
\mathcal{S}_{\mathrm{cl}}=\frac{\sqrt{\lambda}}{2 \pi} \int d t d \varphi p \cosh ^{2} \rho \sinh ^{2} \rho=\frac{T \sqrt{\lambda}}{\pi} \frac{\sqrt{b^{4}+p^{2}}}{b p}\left[\frac{\left(b^{2}+1\right) p^{2}}{b^{4}+p^{2}} \mathbb{K}-\mathbb{E}\right]
$$

- This determines $V_{A d S}^{(0)}$ as a function of p, q and implicitly in term of ϕ, θ.
- The induced metric is

$$
d s_{\mathrm{ind}}^{2}=\sqrt{\lambda} \frac{1-k^{2}}{\mathrm{cn}^{2}(\sigma)}\left[-d \tau^{2}+d \sigma^{2}\right] .
$$

- The classical action can also be calculated

$$
\mathcal{S}_{\mathrm{cl}}=\frac{\sqrt{\lambda}}{2 \pi} \int d t d \varphi p \cosh ^{2} \rho \sinh ^{2} \rho=\frac{T \sqrt{\lambda}}{\pi} \frac{\sqrt{b^{4}+p^{2}}}{b p}\left[\frac{\left(b^{2}+1\right) p^{2}}{b^{4}+p^{2}} \mathbb{K}-\mathbb{E}\right]
$$

- This determines $V_{A d S}^{(0)}$ as a function of p, q and implicitly in term of ϕ, θ.
- We can also expand around $\phi=\theta=0$

$$
\begin{aligned}
V_{A d S}^{(0)}(\phi, \theta)= & \frac{1}{\pi}\left(\theta^{2}-\phi^{2}\right)-\frac{1}{8 \pi^{3}}\left(\theta^{2}-\phi^{2}\right)\left(\theta^{2}-5 \phi^{2}\right) \\
& +\frac{1}{64 \pi^{5}}\left(\theta^{2}-\phi^{2}\right)\left(\theta^{4}-14 \theta^{2} \phi^{2}+37 \phi^{4}\right) \\
& -\frac{1}{2048 \pi^{7}}\left(\theta^{2}-\phi^{2}\right)\left(\theta^{6}-27 \theta^{4} \phi^{2}+291 \theta^{2} \phi^{4}-585 \phi^{6}\right)+O\left((\phi, \theta)^{10}\right)
\end{aligned}
$$

1-loop determinant

- At one-loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation modes.
- Such a calculation was done long ago for a confining string by Lüscher.
- The "Lüscher term" is proportional to the number of transverse dimensions and always has a Coulomb behavior.
- We have to repeat the calculation in the $\operatorname{Ad} S_{5} \times \mathbb{S}^{5}$ sigma model.

1-loop determinant

- At one-loop we should consider the 8 transverse bosonic and 8 fermionic fluctuation modes.
- Such a calculation was done long ago for a confining string by Lüscher.
- The "Lüscher term" is proportional to the number of transverse dimensions and always has a Coulomb behavior.
- We have to repeat the calculation in the $\operatorname{Ad} S_{5} \times \mathbb{S}^{5}$ sigma model.
- We need the full metric

$$
\begin{aligned}
d s^{2}=(& \cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho\left(d x_{1}^{2}+\cos ^{2} x_{1}\left(d x_{2}^{2}+\cos ^{2} x_{2} d \varphi^{2}\right)\right) \\
& \left.+d x_{3}^{2}+\cos ^{2} x_{3}\left(d x_{4}^{2}+\cos ^{2} x_{4}\left(d x_{5}^{2}+\cos ^{2} x_{5}\left(d x_{6}^{2}+\cos ^{2} x_{6} d \vartheta^{2}\right)\right)\right)\right)
\end{aligned}
$$

- We define the fluctuation modes

$$
\rho=\rho(\sigma)+\delta \rho, \quad \varphi=\varphi(\sigma)+\delta \varphi, \quad \vartheta=\vartheta(\sigma)+\delta \vartheta, \quad x_{i}, \quad i=1, \cdots, 6
$$

- After fixing the static gauge it results in the bosonic Lagrangean

$$
\mathcal{L}_{B}=\frac{1}{2} \sqrt{g}\left[g^{a b} \partial_{a} \zeta_{P} \partial_{b} \zeta_{P}+M_{P Q} \zeta_{P} \zeta_{Q}\right], \quad P, Q=1, \cdots, 8
$$

with a complicated mass-matrix $M_{P Q}$.

- Generically the mass matrix is nondiagonal.
- If we set either $\theta=0$ or $\phi=0$, it is diagonal.
- We calculated the determinants in these cases.
- Generically the mass matrix is nondiagonal.
- If we set either $\theta=0$ or $\phi=0$, it is diagonal.
- We calculated the determinants in these cases.

The case of $\theta=0$

- The resulting determinant is

$$
Z=\frac{\operatorname{det}^{4}\left(i \gamma^{i} \hat{\nabla}_{i}-\gamma_{3}\right)}{\operatorname{det}\left(-\nabla^{2}+2\right) \operatorname{det}^{1 / 2}\left(-\nabla^{2}+R^{(2)}+4\right) \operatorname{det}^{5 / 2}\left(-\nabla^{2}\right)}
$$

- All derivatives are with the world-sheet metric.
- This is formally the same for all ϕ, except for the different world-sheet metrics.
- The bosonic fluctuation operators are (after Fourier transform $\partial_{\tau} \rightarrow i \omega$)

$$
\begin{gathered}
\mathcal{O}_{0} \equiv \sqrt{g}\left(-\nabla^{2}\right)=-\partial_{\sigma}^{2}+\omega^{2} \\
\mathcal{O}_{1} \equiv \sqrt{g}\left(-\nabla^{2}+2\right)=-\partial_{\sigma}^{2}+\omega^{2}+\frac{2\left(1-k^{2}\right)}{\mathrm{cn}^{2}(\sigma)} \\
\mathcal{O}_{2} \equiv \sqrt{g}\left(-\nabla^{2}+R^{(2)}+4\right)=-\partial_{\sigma}^{2}+\omega^{2}+\frac{2\left(1-k^{2}\right)}{\mathrm{cn}^{2}(\sigma)}-2 k^{2} \mathrm{cn}^{2}(\sigma)
\end{gathered}
$$

- All the differential operators can be written as Lamé operators

$$
-\partial_{\sigma}^{2}+2 k^{2} \operatorname{sn}^{2}\left(\sigma \mid k^{2}\right)
$$

- All the differential operators can be written as Lamé operators

$$
-\partial_{\sigma}^{2}+2 k^{2} \operatorname{sn}^{2}\left(\sigma \mid k^{2}\right)
$$

- Explicitly

$$
\begin{aligned}
\mathcal{O}_{1} & =\left(1-k^{2}\right)\left[-\partial_{\sigma_{1}}^{2}+\omega_{1}^{2}+2 k_{1}^{2} \operatorname{sn}^{2}\left(\sigma_{1}+i \mathbb{K}_{1}^{\prime} \mid k_{1}^{2}\right)\right] \\
\mathcal{O}_{2} & =\left(1-k^{2}\right)\left(1+k_{1}\right)^{2}\left[-\partial_{\sigma_{2}}^{2}+\omega_{2}^{2}+2 k_{2}^{2} \operatorname{sn}^{2}\left(\sigma_{2}+i \mathbb{K}_{2}^{\prime} \mid k_{2}^{2}\right)\right]
\end{aligned}
$$

where

$$
\begin{array}{lll}
k_{1}^{2}=\frac{k^{2}}{k^{2}-1} & \sigma_{1}=\sqrt{1-k^{2}} \sigma+\mathbb{K}_{1} & \omega_{1}^{2}=\frac{\omega^{2}}{1-k^{2}} \\
k_{2}^{2}=\frac{4 k_{1}}{\left(1+k_{1}\right)^{2}} & \sigma_{2}=\left(1+k_{1}\right)\left(\sqrt{1-k^{2}} \sigma+\mathbb{K}_{1}\right) & \omega_{2}^{2}=\frac{\omega^{2}}{\left(1-k^{2}\right)\left(1+k_{1}\right)^{2}}-k_{2}^{2}
\end{array}
$$

- A similar expression exists for the fermions.

1d determinants through the Gelfand-Yaglom method

- The general solution to the Lamé eigenvalue problem

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

is explicitly known

$$
y_{ \pm}(x)=\frac{H(x \pm \alpha)}{\Theta(x)} e^{\mp x Z(\alpha)} \quad \operatorname{sn}\left(\alpha \mid k^{2}\right)=\frac{1}{k} \sqrt{1+k^{2}-\Lambda}
$$

- We can write down the solution satisfying

$$
u(-\mathbb{K})=0, \quad u^{\prime}(-\mathbb{K})=1
$$

- Then

$$
\operatorname{det} \mathcal{O}=u(\mathbb{K})
$$

1d determinants through the Gelfand-Yaglom method

- The general solution to the Lamé eigenvalue problem

$$
\left[-\partial_{x}^{2}+2 k^{2} \operatorname{sn}^{2}\left(x \mid k^{2}\right)\right] f(x)=\Lambda f(x)
$$

is explicitly known

$$
y_{ \pm}(x)=\frac{H(x \pm \alpha)}{\Theta(x)} e^{\mp x Z(\alpha)} \quad \operatorname{sn}\left(\alpha \mid k^{2}\right)=\frac{1}{k} \sqrt{1+k^{2}-\Lambda}
$$

- We can write down the solution satisfying

$$
u(-\mathbb{K})=0, \quad u^{\prime}(-\mathbb{K})=1
$$

- Then

$$
\operatorname{det} \mathcal{O}=u(\mathbb{K})
$$

- Actually need to worry about divergences from the boundary, so introduce a cutoff at $\sigma= \pm(\mathbb{K}-\epsilon)$
- The regularized u is

$$
u(\sigma)=\frac{y_{+}(-\mathbb{K}+\epsilon) y_{-}(\sigma)-y_{-}(-\mathbb{K}+\epsilon) y_{+}(\sigma)}{y_{+}(-\mathbb{K}+\epsilon) y_{-}^{\prime}(-\mathbb{K}+\epsilon)-y_{+}^{\prime}(-\mathbb{K}+\epsilon) y_{-}(-\mathbb{K}+\epsilon)}
$$

- This gives the explicit answers like

$$
\operatorname{det} \mathcal{O}_{1}=\frac{\left(k^{2}-1\right) \mathrm{ns}^{2}\left(\epsilon_{1}, k_{1}^{2}\right)-2 k^{2}+\omega^{2}+1}{\sqrt{k^{2}-\omega^{2}} \sqrt{3 k^{2}\left(\omega^{2}+1\right)-2 k^{4}-\left(\omega^{2}+1\right)^{2}}} \sinh \left(2 Z\left(\alpha_{1}\right)\left(\mathbb{K}_{1}-\epsilon_{1}\right)+\Sigma_{1}\right)
$$

with

$$
\Sigma_{1}=\ln \frac{\vartheta_{4}\left(\frac{\pi\left(\alpha_{1}+\epsilon\right)}{2 \mathbb{K}_{1}}, q_{1}\right)}{\vartheta_{4}\left(\frac{\pi\left(\alpha_{1}-\epsilon\right)}{2 \mathbb{K}_{1}}, q_{1}\right)} \quad \epsilon_{1}=\sqrt{1-k^{2}} \epsilon
$$

- This gives the explicit answers like

$$
\operatorname{det} \mathcal{O}_{1}=\frac{\left(k^{2}-1\right) \mathrm{ns}^{2}\left(\epsilon_{1}, k_{1}^{2}\right)-2 k^{2}+\omega^{2}+1}{\sqrt{k^{2}-\omega^{2}} \sqrt{3 k^{2}\left(\omega^{2}+1\right)-2 k^{4}-\left(\omega^{2}+1\right)^{2}}} \sinh \left(2 Z\left(\alpha_{1}\right)\left(\mathbb{K}_{1}-\epsilon_{1}\right)+\Sigma_{1}\right)
$$

with

$$
\Sigma_{1}=\ln \frac{\vartheta_{4}\left(\frac{\pi\left(\alpha_{1}+\epsilon\right)}{2 \mathbb{K}_{1}}, q_{1}\right)}{\vartheta_{4}\left(\frac{\pi\left(\alpha_{1}-\epsilon\right)}{2 \mathbb{K}_{1}}, q_{1}\right)} \quad \epsilon_{1}=\sqrt{1-k^{2}} \epsilon
$$

- The determinant depends only on the leading term of the expansion in ϵ

$$
\begin{aligned}
& \operatorname{det} \mathcal{O}_{0}^{\epsilon} \cong \frac{\sinh (2 \mathbb{K} \omega)}{\omega} \\
& \operatorname{det} \mathcal{O}_{1}^{\epsilon} \cong-\frac{\sinh \left(2 \mathbb{K}_{1} Z\left(\alpha_{1}\right)\right)}{\epsilon^{2} \sqrt{\left(\omega^{2}-k^{2}\right)\left(\omega^{2}-k^{2}+1\right)\left(\omega-2 k^{2}+1\right)}} \\
& \operatorname{det} \mathcal{O}_{2}^{\epsilon} \cong \frac{\sinh \left(2 \mathbb{K}_{2} Z\left(\alpha_{2}\right)\right)}{\epsilon^{2}\left(1-k^{2}\right)^{3 / 2}\left(k_{1}+1\right)^{3} \sqrt{\left(\omega_{2}^{2}+k_{2}^{2}\right)\left(\omega_{2}^{2}+1\right)\left(\omega_{2}^{2}+k_{2}^{2}+1\right)}} \\
& \operatorname{det} \mathcal{O}_{F}^{\epsilon} \cong \frac{8 \mathbb{K}_{2} \sqrt{\omega_{3}^{2}+k_{2}^{2}} \sinh \left(\mathbb{K}_{2} Z\left(\alpha_{F}\right)\right)}{\epsilon \pi\left(1-k^{2}\right)\left(k_{1}+1\right)^{2} \sqrt{\left(\omega_{3}^{2}+1\right)\left(\omega_{3}^{2}+k_{2}^{2}+1\right)}} \frac{\vartheta_{2}\left(0, q_{2}\right) \vartheta_{4}\left(\frac{\pi \alpha_{F}}{2 \mathbb{K}_{2}}, q_{2}\right)}{\vartheta_{1}^{\prime}\left(0, q_{2}\right) \vartheta_{3}\left(\frac{\pi \alpha_{F}}{2 \mathbb{K}_{2}}, q_{2}\right)}
\end{aligned}
$$

- After removing a divergence we find (\mathcal{T} is a cutoff on $\tau)$

$$
\Gamma_{\mathrm{reg}}=-\frac{\mathcal{T}}{2} \lim _{\epsilon \rightarrow 0} \int_{-\infty}^{+\infty} \frac{d \omega}{2 \pi} \ln \frac{\epsilon^{2} \omega^{2} \operatorname{det}^{8} \mathcal{O}_{F}^{\epsilon}}{\operatorname{det}^{5} \mathcal{O}_{0}^{\epsilon} \operatorname{det}^{2} \mathcal{O}_{1}^{\epsilon} \operatorname{det} \mathcal{O}_{2}^{\epsilon}}
$$

- This can be integrated numerically to high precision

- This can be integrated numerically to high precision

- The 1d determinants can also be expanded about $\phi=0$ and evaluated analytically

$$
\begin{aligned}
V_{A d S}^{(1)}(\phi, 0)= & \frac{3}{2} \frac{\phi^{2}}{4 \pi^{2}}+\left(\frac{53}{8}-3 \zeta(3)\right) \frac{\phi^{4}}{16 \pi^{4}}+\left(\frac{223}{8}-\frac{15}{2} \zeta(3)-\frac{15}{2} \zeta(5)\right) \frac{\phi^{6}}{64 \pi^{6}} \\
& +\left(\frac{14645}{128}-\frac{229}{8} \zeta(3)-\frac{55}{4} \zeta(5)-\frac{315}{16} \zeta(7)\right) \frac{\phi^{8}}{256 \pi^{8}}+O\left(\phi^{10}\right)
\end{aligned}
$$

The case of $\phi=0$

- Everything can be done in that case too.

The case of $\phi=0$

- Everything can be done in that case too.
- At the end the small θ expansion gives

$$
\begin{aligned}
V_{A d S}^{(1)}(0, \theta)= & -\frac{3}{2} \frac{\theta^{2}}{4 \pi^{2}}+\left(\frac{5}{8}-3 \zeta(3)\right) \frac{\theta^{4}}{16 \pi^{4}}+\left(\frac{1}{8}+\frac{3}{2} \zeta(3)-\frac{15}{2} \zeta(5)\right) \frac{\theta^{6}}{64 \pi^{6}} \\
& +\left(-\frac{11}{128}-\frac{5}{8} \zeta(3)+\frac{25}{4} \zeta(5)-\frac{315}{16} \zeta(7)\right) \frac{\theta^{8}}{256 \pi^{8}}+O\left(\theta^{10}\right)
\end{aligned}
$$

Our main result:

Explicit expressions for these families of Wilson loops at weak and strong coupling.

$\phi \rightarrow \pi$ limit

- $V^{(1)}, V^{(2)}, V_{A d S}^{(0)}$ and $V_{A d S}^{(1)}$ all have poles at $\phi=\pi$
- In perturbation theory

$$
V(\phi, \theta) \rightarrow-\frac{\lambda}{8 \pi} \frac{1+\cos \theta}{\pi-\phi}+\frac{\lambda^{2}}{32 \pi^{3}} \frac{(1+\cos \theta)^{2}}{\pi-\phi} \log \frac{e}{2(\pi-\phi)}+O\left(\lambda^{3}\right)
$$

$\phi \rightarrow \pi$ limit

- $V^{(1)}, V^{(2)}, V_{A d S}^{(0)}$ and $V_{A d S}^{(1)}$ all have poles at $\phi=\pi$
- In perturbation theory

$$
V(\phi, \theta) \rightarrow-\frac{\lambda}{8 \pi} \frac{1+\cos \theta}{\pi-\phi}+\frac{\lambda^{2}}{32 \pi^{3}} \frac{(1+\cos \theta)^{2}}{\pi-\phi} \log \frac{e}{2(\pi-\phi)}+O\left(\lambda^{3}\right)
$$

- In the case of $\theta=0$ we get essentially the same as the antiparallel lines with $L \rightarrow \pi-\phi$

$$
V(L, \lambda)= \begin{cases}-\frac{\lambda}{4 \pi L}+\frac{\lambda^{2}}{8 \pi^{2} L} \ln \frac{T}{L}+\cdots & \lambda \ll 1 \\ \frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}\left(1-\frac{1.3359 \ldots}{\sqrt{\lambda}}+\cdots\right) & \lambda \gg 1\end{cases}
$$

- The strong coupling calculations also agree in the limit.

Small θ and ϕ expansions

- Consider the expansion of $V(\phi, \theta, \lambda)$ at small ϕ or θ

$$
\left.\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}=-\left.\frac{1}{2} \frac{\partial^{2}}{\partial \phi^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}= \begin{cases}\frac{\lambda}{16 \pi^{2}}-\frac{\lambda^{2}}{384 \pi^{2}}+\cdots & \lambda \ll 1 \\ \frac{\sqrt{\lambda}}{4 \pi^{2}}-\frac{3}{8 \pi^{2}}+\cdots & \lambda \gg 1\end{cases}
$$

Small θ and ϕ expansions

- Consider the expansion of $V(\phi, \theta, \lambda)$ at small ϕ or θ

$$
\left.\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}=-\left.\frac{1}{2} \frac{\partial^{2}}{\partial \phi^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}= \begin{cases}\frac{\lambda}{16 \pi^{2}}-\frac{\lambda^{2}}{384 \pi^{2}}+\cdots & \lambda \ll 1 \\ \frac{\sqrt{\lambda}}{4 \pi^{2}}-\frac{3}{8 \pi^{2}}+\cdots & \lambda \gg 1\end{cases}
$$

- What does this calculate?
- How do we calculate this?
- Can we find an exact interpolating function?
- In terms of the Wilson loop

$$
\frac{\partial^{2}}{\partial \theta^{2}} V(0,0)=-\frac{1}{\ln \frac{R}{\epsilon}} \frac{\partial^{2}}{\partial \theta^{2}} \log \langle W\rangle \approx-\frac{1}{\ln \frac{R}{\epsilon}} \frac{\partial^{2}}{\partial \theta^{2}}\langle W\rangle
$$

- Write the Wilson loop as

$$
W=\operatorname{Tr} \mathcal{P}\left[\exp \left(\int_{-\infty}^{0}\left(i A_{1}+\Phi_{1}\right) d s\right) \exp \left(\int_{0}^{\infty}\left(i A_{1}+\Phi_{1} \cos \theta+\Phi_{2} \sin \theta\right) d s\right)\right]
$$

- In terms of the Wilson loop

$$
\frac{\partial^{2}}{\partial \theta^{2}} V(0,0)=-\frac{1}{\ln \frac{R}{\epsilon}} \frac{\partial^{2}}{\partial \theta^{2}} \log \langle W\rangle \approx-\frac{1}{\ln \frac{R}{\epsilon}} \frac{\partial^{2}}{\partial \theta^{2}}\langle W\rangle
$$

- Write the Wilson loop as

$$
W=\operatorname{Tr} \mathcal{P}\left[\exp \left(\int_{-\infty}^{0}\left(i A_{1}+\Phi_{1}\right) d s\right) \exp \left(\int_{0}^{\infty}\left(i A_{1}+\Phi_{1} \cos \theta+\Phi_{2} \sin \theta\right) d s\right)\right]
$$

- The variation gives

$$
\begin{aligned}
\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V= & -\frac{1}{\ln (L / \epsilon)} \frac{1}{2 N} \int_{0}^{\infty} d s_{1} \int_{0}^{\infty} d s_{2}\left\langle\operatorname{Tr} \mathcal{P}\left[\Phi_{2}\left(s_{1}\right) \Phi_{2}\left(s_{2}\right) e^{\int_{-\infty}^{\infty}\left(i A_{1}+\Phi_{1}\right) d s}\right]\right\rangle \\
& +\frac{1}{\ln (L / \epsilon)} \frac{1}{2 N} \int_{0}^{\infty} d s_{1}\left\langle\operatorname{Tr} \mathcal{P}\left[\Phi_{1}\left(s_{1}\right) e^{\int_{-\infty}^{\infty}\left(i A_{1}+\Phi_{1}\right) d s}\right]\right\rangle
\end{aligned}
$$

- These are insertions of adjoint valued local operators into the loop.
- In terms of the Wilson loop

$$
\frac{\partial^{2}}{\partial \theta^{2}} V(0,0)=-\frac{1}{\ln \frac{R}{\epsilon}} \frac{\partial^{2}}{\partial \theta^{2}} \log \langle W\rangle \approx-\frac{1}{\ln \frac{R}{\epsilon}} \frac{\partial^{2}}{\partial \theta^{2}}\langle W\rangle
$$

- Write the Wilson loop as

$$
W=\operatorname{Tr} \mathcal{P}\left[\exp \left(\int_{-\infty}^{0}\left(i A_{1}+\Phi_{1}\right) d s\right) \exp \left(\int_{0}^{\infty}\left(i A_{1}+\Phi_{1} \cos \theta+\Phi_{2} \sin \theta\right) d s\right)\right]
$$

- The variation gives

$$
\begin{aligned}
\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V= & -\frac{1}{\ln (L / \epsilon)} \frac{1}{2 N} \int_{0}^{\infty} d s_{1} \int_{0}^{\infty} d s_{2}\left\langle\operatorname{Tr} \mathcal{P}\left[\Phi_{2}\left(s_{1}\right) \Phi_{2}\left(s_{2}\right) e^{\int_{-\infty}^{\infty}\left(i A_{1}+\Phi_{1}\right) d s}\right]\right\rangle \\
& +\frac{1}{\ln (L / \epsilon)} \frac{1}{2 N} \int_{0}^{\infty} d s_{1}\left\langle\operatorname{Tr} \mathcal{P}\left[\Phi_{1}\left(s_{1}\right) e^{\int_{-\infty}^{\infty}\left(i A_{1}+\Phi_{1}\right) d s}\right]\right\rangle
\end{aligned}
$$

- These are insertions of adjoint valued local operators into the loop.
- The double insertion is related to a BPS quantity. It gives no log divergence and is not renormalized.
- It is easy to see that some graphs will contribute and some not to this correlator
 yes

- This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

- It is easy to see that some graphs will contribute and some not to this correlator

- This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

- Indeed the 2-loop ladder graphs

$$
V_{\text {ladder }}^{(2)}=-\frac{1}{64 \pi^{4}} \frac{(\cos \theta-\cos \phi)^{2}}{\sin ^{2} \phi}\left[\operatorname{Li}_{3}\left(e^{2 i \phi}\right)-\zeta(3)-i \phi\left(\operatorname{Li}_{2}\left(e^{2 i \phi}\right)+\frac{\pi^{2}}{6}\right)+\frac{i}{3} \phi^{3}\right]
$$

contributes only from $O\left((\theta, \phi)^{4}\right)$.

- The connected 2-loop graphs were also simpler since they did not include polylogs...
- It is easy to see that some graphs will contribute and some not to this correlator

- This correlator is captured by the most interacting graphs.

Those with only one connected component connected to Wilson loop.

- Indeed the 2-loop ladder graphs

$$
V_{\text {ladder }}^{(2)}=-\frac{1}{64 \pi^{4}} \frac{(\cos \theta-\cos \phi)^{2}}{\sin ^{2} \phi}\left[\operatorname{Li}_{3}\left(e^{2 i \phi}\right)-\zeta(3)-i \phi\left(\operatorname{Li}_{2}\left(e^{2 i \phi}\right)+\frac{\pi^{2}}{6}\right)+\frac{i}{3} \phi^{3}\right]
$$

contributes only from $O\left((\theta, \phi)^{4}\right)$.

- The connected 2-loop graphs were also simpler since they did not include polylogs...
- What is the sum of all these graphs?

Strings, Gauge Theory and the LHC

Copenhagen Conference 22 August - 2 September 2011 http://www.nbia.dk/cphconf.html

Copenhagen Conference, 1931

Speakers include: Convenors:

Nima Arkani-Hamed (IAS)
Zvi Bern (UCLA)
Simon Caron-Huot (IAS)
Dmitri Diakonov (St. Petersburg, INP)
Michael Green (DAMTP)
Zohar Komargodski (IAS)
Gregory Korchemsky (Saclay)
Gordon Semenoff (UBC)
David Shih (Rutgers)

Jan Ambjorn
N. Emil Bjerrum-Bohr Poul Henrik Damgaard Charlotte Kristjansen

Niels Obers
Marta Orselli

Organizing Committee:

Simon Badger Donal O'Connell

Strings, Gauge Theory and the LHC

Copenhagen Conference 22 August - 2 September 2011 http://www.nbia.dk/cphconf.html

 Convenors:

Jan Ambjorn
N. Emil Bjerrum-Bohr Poul Henrik Damgaard Charlotte Kristjansen Niels Obers
Marta Orselli

Organizing Committee:
David Shih (Rutgers)
Simon Badger

Strings, Gauge Theory and the LHC

Copenhagen Conference 22 August - 2 September 2011 http://www.nbia.dk/cphconf.html

Simon Badger

Summary

- A two-parameter family of Wilson loop going between the circle and the antiparallel lines.
- The antiparallel lines is the residue at $\phi \rightarrow \pi$.
- They are no more complicated than the antiparallel lines.
- Explicit expression to order λ^{2}.
- Classical sting solution given by elliptic integrals.
- Differential operators for two one-parameter families, are of Lamé type.
- One loop determinant known in these examples.
- New expansion parameters: ϕ and θ.
- Natural separation of perturbative calculation into graphs with more and less connected components.
- The two-loop connected graphs give a simple result.

Summary

- A two-parameter family of Wilson loop going between the circle and the antiparallel lines.
- The antiparallel lines is the residue at $\phi \rightarrow \pi$.
- They are no more complicated than the antiparallel lines.
- Explicit expression to order λ^{2}.
- Classical sting solution given by elliptic integrals.
- Differential operators for two one-parameter families, are of Lamé type.
- One loop determinant known in these examples.
- New expansion parameters: ϕ and θ.
- Natural separation of perturbative calculation into graphs with more and less connected components.
- The two-loop connected graphs give a simple result.
- Would be good to get the result at $O\left(\lambda^{3}\right)$.
- Can we guess an interpolating function for $\left.\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} V(\phi, \theta, \lambda)\right|_{\phi=\theta=0}$

Will there be a gauge theory derivation of the strong coupling potential:

$$
V(L, \lambda)=\frac{4 \pi^{2} \sqrt{\lambda}}{\Gamma\left(\frac{1}{4}\right)^{4} L}
$$

