Ultraviolet Divergences and
Counterterm Structure in Maximal
Supergravity
K.S. Stelle
Strings, Gauge Theory and the LHC Workshop

Niels Bohr International Academy, Copenhagen
August 25t 2011

G. Bossard, P.S. Howe & K.S.S. 0901.4661, 0908.3883, 1009.0743
G. Bossard, P.S. Howe, K.5.5. & P. Vanhove 1105.6087



Are there quantum miracles haPPening N

maximal supergravitg?

Outline

* Nonrenormalization theorems and BPS degree
» Unaitarity-based calculations

* Ectoplasm & superspace cohomology

* Duality constraints on counterterms

* The Volume of Superspace

* (Current outlook



Ultraviolet Divergences in Gravity

* Simple power counting in gravity and supergravity theories

leads to a naive degree ot divergence
A= (D—-2)L+2

in D spacetime dimensions. So, for D=4, .=3, one

expects A =8 . In dimensional regularization, only
logarithmic divergences are seen ( % poles, e =D — 4 ), so
8 powers of momentum would have to come out onto the

external lines of such a diagram.



* Local supersymmetry implies that the pure curvature part of

such a D=4, 3-loop divergence candidate must be built from

the square of the Bel-Robinson tensor Deser, Kay & K.5.5 1977
/ vV —8 T,uvpcsT'UVpG ,  Lyps = RyavBRpocGB +7 yavB *Rpoccsﬁ

» This is directly related to the o corrections to the
superstring effective action, except that in the string context
such contributions occur with finite coefficients. In string
theory, the corresponding question 1s how poles might
develop in (Oc')_1 as one takes the zero-slope limit o — 0
and how this bears on the ultraviolet properties of the

corresponding field theory. RO
Green, Russo & Vanhove 2007, 2010



* The consequences of supersymmetry for the ultraviolet structure

are not restricted to the requirement that counterterms be

supersymmetric invariants.

* There exist more powerful “nonrenormalization theorems,” the

most famous of which excludes infinite renormalization of chiral

invariants in D=4, N=1 supersymmetry; these are given in N=1

superspace by integrals over just Aaalf the

superspace:

/ d*OW (0(x,0,0)), Dd=0 (ct. full superspace / d*0L(¢, @)

* However, maximally extended SYM and

supergravity theories do

not have formalisms with all supersymmetries linearly realised

“off-shell” 1n superspace. So the power of such

nonrenormalization theorems 1s restrictec

realizable subalgebra.

 to the oft-shell linearly



* The degree of “off-shell” supersymmetry 1s the maximal
supersymmetry for which the algebra can close without use of the

equations of motion.

* Knowing the extent of this off-shell supersymmetry is tricky, and

may 1nvolve formulations (e.g. harmonic superspace) with infinite

numbers ()f aU.XﬂlaI‘y ﬁelds . Galperin, lvanov, Kalitsin, Ogievetskg & Sokatchev

* For maximal N=4 Super Yang-Mills and maximal N=8

supergravity, the linearly realizable supersymmetry has been

known since the 1980’s to be at least half the full supersymmetry
of the theory. So at that time the first generally allowed
counterterms were expected to have “1/2 BPS” structure as

compared to the full supersymmetry of the theory.



*» The 3-loop R* candidate maximal supergravity counterterm
has a structure very similar to that of an F'* N=4 super Yang-
Mills invariant. Both of these are 1/2 BPS invariants,

involving integration over just half the corresponding full

Howe, K.5.5. & Townsend 1981
Kallosh 1981

AISYM: /(d49d4é)105tr((|)4)105 105 (])l] H GOFSUH')

superspaces:

Al = /(d89d86)232848(w4)232848 232848 VVijkl E 70 of SU(8)

* Versions of these supergravity and SYM operators do occur as
counterterms at one loop in D=8. However, the one-loop level
often has special renormalization features, so one needs to be
careful not to make unwarranted conclusions about the general

acceptability of these counterterms.



* Of course, there are other symmetries in supergravity beside
diffeomorphism invariance and supersymmetry. In particular,
D=4, N=8 supergravity also has a rigid nonlinearly realised E;
symmetry. At leading order, this symmetry 1s realised by

constant shifts of the 70 scalars.

» The R*candidate satisfies at least the minimal requirement of
invariance under such constant shifts of the 70 scalars
because, at the leading 4-particle order, the integrand may be

written such that every scalar field 1s covered by a derivative.



Bern, Carrasco, Dixon,
Johansson & Roiban 2007 ... 2011

Unitarity-based calculations

* The calculational front has made impressive progress since the
late 1990s.

* These have led to unanticipated and surprising cancellations at

the 3- and 4-loop orders, yielding new lowest possible orders
for the super Yang-Mills and supergravity divergence onsets:

Max. SYM first divergences, Dimension D | 10 | 8 | 7 6 5 4
current lowest possible Looporder L | 1 | 1 | 2 3 67 | oo
orders. BPS degree x : ! L L 1

Gen. form O°F* | F* | 0°F* | 0°F* | 0°F* | finite

Blue: known divergences

Max. supergravity first Dimension D 11 10 8 7 6 5 4
divergences, current lowest Loop order L | 2 - L] 2 3 67 o7
possible orders. BPS degree 0 0 | 5| 1 3 0 1

Gen. form OPR* | ORY | R* | OR* | O°R* | O R* | O*R*




Dixon; Howe, Lindstrom & White;

Algebraic Renormaliz ation Piguet & Sorella; Hennaux;

Stora; Baulieu & Bossard

* Another approach to analyzing the divergences in
supersymmetric gauge theories, using the full supersymmetry,
begins with the Callan-Symanzik equation for the
renormalization of the Lagrangian as a operator insertion,
governing, e.g., mixing with the halt-BPS SYM
operator S = tr(F*). Letting the classical action be §?, the
C-S equation for SYM 1n dimension D
i8S po-[S®-T] = (4= D)[SP -T] + y4g>"@[SW T+ -,

where nu) =4, 2, 1 for D=5, 6, 8 .

» From this one learns that (n1) — 1)84) = Y1) so the beta
function for the S¥ = tr(F*) operator is determined by the

anomalous dimension 7) .



* Combining the supersymmetry generator with a commuting
spinor parameter to make a scalar operator Q = €0 , the
expression of SUSY invariance for a D-form density 1n D-
dimensions 18 Q Lp+ dLp_1 = 0. Combining this with the
SUSY algebra Q* = —i(&y‘e)d, and using the Poincaré Lemma,
one finds

L)L +SQsLp-1+dLp 2=0 .

* Hence, one can consider cocycles of the extended nilpotent
differential d +S(q)z + lisye) acting on formal form-

sums Lp+Lp 1+Lp o+ .

* The supersymmetry Ward 1dentities then imply that the whole
cocycle must be renormalized 1n a coherent way. In order for an
operator like ™ to mix with the classical action §(®, their
cocycles need to have the same structure.

1



Voronov 1992; Gates, Grisaru, Knut-—Whelau, & Siegel 1998

ECtOplasm Berkovits and Howe 2008; bossard} Howe & K.5.5. 2009

* The construction of supersymmetric invariants 1s isomorphic to
the construction of cohomologically nontrivial closed forms in
superspace: I = [, ¢*Lp is invariant (where o*is a pull-back to
a section of the projection map down to the purely bosonic “body™
subspace Mp) if Lp 1s a closed form in superspace, and it 1s
nonvanishing only if £p is nontrivial.

* Using the BRST formalism, handle all gauge symmetries

including space-time diffeomorphisms by the nilpotent BRST
operator s. The invariance condition for £ is

sLp +doLp_1 =0, where dy is the usual bosonic exterior
derivative. Since s> = 0 and s anticommutes with dg, one
obtains sLp_1 +doLp_o =0 ,etc.

12



* Solving the BRST Ward identities thus becomes a
cohomological problem. Note that the supersymmetry ghost is
a commuting field. One needs to study the cohomology of the
nilpotent operator 0 = s + dg , whose components Lp_, , are
(D-g) forms with ghost number g, 1.e. (D-gq) forms with g

spinor indices. The spinor indices are totally symmetric since

the supersymmetry ghost is commuting.

* For gauge-invariant supersymmetric integrands, this establishes
an 1somorphism between the cohomology of closed forms in
superspace (aka “ectoplasm”) and the construction of BRST-

Invariant counterterms.

)



Supersp ace COhomOIOgy Bonora, Pasti & Tonin 1987

» Flat superspace has a standard basis of invariant 1-forms
E* = dz%— %d@a(ra)aﬁeﬁ
EY = db"
dual to which are the superspace covariant derivatives (9,, D,,)
* There 1s a natural bi-grading of superspace forms into even and
odd parts: O = @y P

* Correspondingly, the flat superspace exterior derivative splits
into three parts with bi-gradings (1,0), (0,1) & (-1,2):
d=dy(1,0) +dqi(0,1) + to(—1,2)

bosonic der. fermionic der. torsion

dQ < (% dl < 6’a
where for a (p,q) form 1n flat superspace, one has

(tow)QQ...apgl...BquQ ~ (Fa’l)(51ﬁ2wa1...ap53...5q+2)
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* The nilpotence of the total exterior derivative d implies the

relations 2 = 0
t()dl T dlto = 0
di +tody +dotg = 0

* Then, since dLp = 0, the lowest dimension nonvanishing
component (or “generator”) Lp_, , must satisty to0Lp_q 4 =0

so L p—gq,q belongs to the tg cohomology group HtD T

» Starting with the tp cohomology groups H;’? , one then defines a
spinorial exterior derivative ds : H;'? — g2t

by d,w] = [diw] , where the [ | brackets denote H; classes.

15



Cederwall, Nilsson & Tsimpis 2002
Howe & Tsiml:)is 2005

* One finds that d; is nilpotent, d2 = 0 , and so one can define
spinorial cohomology groups HP? = Hy (H}"?).
The groups HY? give multi pure spinors.
* This formalism gives a way to reformulate BRST
cohomology in terms of spinorial cohomology. The lowest

dimension component, or generator, ot a counterterm’s

superform must be dsclosed, i.e. it must be an element
of HP~¢4,

* Solving ds|Lp—_4 4] = 0 allows one to solve for all the higher
components of Lp in terms of £p—gq,q for normal cocyles.

16



Berkovits & Howe 2008

* To 1llustrate how this formalism works, consider N=1

supersymmetry in D=10. Corresponding to the »
symmetries of strings and 5-branes, we have the D=10
Gamma matrix identities ¢ I12=0 ¢ I52=0.

The second of these is relevant to the construction of d-

closed forms in D=10. One may have a generator
Lss =152Mp3

where d;[My 3] = 0. The simplest example of such a form

corresponds to a full superspace integral over S:

Mapy = Tagy,s,6 (D)8
where Tu5~.5,---5; 18 constructed from the D=10 Gamma
matrices; 1t 1s totally symmetric in a8y and totally

antisymmetric in dg - - - s .

iV



Cohomological non-renormalization

* Spinorial cohomology then allows one to derive non-

renormalization theorems for counterterms: the cocycle

structure of candidate counterterms must match that of the

classical action.

¢ For example, in maximal SYM, this leads to non-
renormalization theorems ruling out the F'* counterterm

that was otherwise expected at L=4 in D=5.

¢ Similar non-renormalization theorems exist in

supergravity, but their study 1s complicated by local

supersymmetry and the density character of counterterm

integrands.

18



Duality invariance constraints

cf also Broedel & Dixon 2010

* Maximal supergravity has a series of duality symmetries
which extend the automatic GL(11-D) symmetry obtained
upon dimensional reduction from D=11, e.g. E7 in the N=8,
D=4 theory, with the 70 scalars taking their values in an E7/
SU(8) coset target space.

Bossard, Hillman & Nicolai 2010

* The N=8, D=4 theory can be formulated in a manifestly E7
covariant (but non-manifestly Lorentz covariant) formalism.

Marcus 1985
Anomalies for SU(8), and hence E7, cancel.

* Combining the requirement of continuous duality invariance
with the spinorial cohomology requirements gives further

restrictions on counterterms.



* Supergravity Duality Groups and String Theory discretisations:

D Eii_pai—-p)(R) Kp Eii-pai-py(Z)
10A RF 1 1
10B Si(2,R) SO(2) Si(2,7)

0 | SI2,R) x R* SO(2) Si(2, 7)

8 | SI(3,R) x SI(2,R) | SO3) x SO2) | 8I(3,7) x SI(2,7)
7 S1(5,R) SO(5) S1(5,7)

6 SO(5,5,R) SO(5) x SO(5) SO(5,5,7Z)

> Eg(6)(R) USp(8) E(6)(Z)

4 Ern(R) SU(8)/Zs Er)(Z)

3 Ess) (R) SO(16) Ess)(Z)

* The scalar target-space manifold 1s Gp/Kp. In string theory, the

duality group becomes discretised to Gp(Z), but this

discretisation occurs due to nonperturbative effects outside the

context of field-theoretic supergravity.

20



* Densities: In a curved superspace, an invariant 1s constructed

from the top (pure “body’’) component in a coordinate basis:

1

/ dPg emo-m™ B Ap. B AL, 4 (2,0 =0)

» Referring this to a preferred “flat” basis and identifying £

components with vielbeins and gravitinos, one has in D=4

1
I =— (e“Aeb/\eC/\ed Lapeq + 4e% €% €62 Lapeq + 6€%4 5052 Lopas

24
Ae® 2B AT a B Alr
+A NP NP AT Lo gy + VAV AYAY g@ﬂé)

¢ Thus the “soul” components of the cocycle also contribute to
the local supersymmetric covariantization.
* Since the gravitinos do not transform under the D=4 E7 duality,

the Lapcp form components have to be separately duality

Invariant.

21



* At leading order, the E7/SU(8) coset generators of E7 simply

produce constant shifts in the 70 scalar fields, as we have seen.

This leads to a much easier check of invariance than analysing the

full spinorial cohomology problem.
Howe, K.5.5. & Townsend 1981

+ Although the pure-body (4,0) component Lgpeq of the R*
counterterm has long been known to be shift-invariant at lowest

order (since all 70 scalar fields are covered by derivatives), it 1s

harder for the fermionic “soul” components to be so, since they are

of lower dimension.

* Thus, one finds that the maxi-soul (0,4) Lagys component is not
invariant under constant shifts of the 70 scalars. Hence the D=4,

N=8, 3 -loop R*1/2 BPS counterterm is not E7 duality invariant, so

S Bo arcl, Howe & K.5.5. 2010
it is ruled out as an allowed counterterm. ”

22



N=5, N=6

+ Similar analysis of the D=4 3-loop R*invariants in N=5 and
N=6 supergravities shows them to be likewise ruled out by
the analogous requirements of SU(S5,1) and SO*(12) duality

invariances.

+ In N=6 supergravity, there is a 4-loop 8*R*type invariant.

Similar analysis indicates that this also is ruled out.

¢ In maximal supergravity, such a A = 10 invariant might
have been expected at one loop in D=10. However, in
maximal supergravity this invariant vanishes subject to the
classical field equations. But in D=4, N=6 it does not

vanish, so it could have been a threatening counterterm.

%,



Infinities versus infinities: dimensional
reduCtion Versus duality Elvang@ Kiermaier 2010 (from IIA stringtheorg)

Bossarcl, Howe & K.5.5. 2010 (1Crom supergravitg}
Beisert, Elvang, Freedman, Kiermaier, Morales & Stiebeger
2010

» Left out of control so far are some of the most interesting cases:
[.=5,6 in D=4 maximal supergravity, corresponding to the 1/4
BPS 0*R*and 1/8 BPS 8°R* type counterterms.

¢ Here, a different kind of duality-based argument comes 1nto
play.

* In fact, the existence of the 1/2 BPS L=1, D=8 R4, the 1/4 BPS
L=2,D=7 0*R*and the 1/8 BPS L=3, D=6 9°R* types of
i i ) Drummond, Heslop, Howe & Kefstan 200%
divergences together with the unigueness ot the corresponding
D=4 counterterm structures allows one to rule out the

corresponding D=4 candidates.
24



* The existence of these D=8, 7 & 6 divergences indicate that

the corresponding forms of the R*, 9*R* & 9°R*
counterterms have to be such that the purely gravitational parts
of these invariants are not dressed bye?scalar prefactors —

otherwise, they would violate the corresponding

SL(3,R) x SL(2,R), SL(5,R) & SO(5,5)
duality symmetries: lowest-order shift symmetries would then
be violated.

Upon dimensional reduction to D=4, the Einstein-frame
classical N=8 action / d*z(Rv/—g + ...) 1s arranged to have no
scalar prefactors. But then dimensional reduction of the
R*, 0*R* & 0°R* counterterms in general causes such
prefactors to appear.

2



* These dimensional reductions from D=8, 7 & 6 don’t have even
the requisite SU(8) symmetry. But they can be rendered SU(8)

invariant by averaging, 1.e. by integrating the dimensionally

Elvang & Kiermailer 2010
E:lvang Freedman & Kiermaier 2010

SU(8)/(SO(3) x SO(2)) , SU(8)/SO(5) or SU(8)/(SO(5) x SO(5)) .
¢ The action of SU(8) on evident scalar combinations such as the
compactification volume modulus ¢ = - ¢ is highly nonlinear,

reduced counterterms over

so SU(8) averaging 1s difficult to do explicitly.

¢ However, some 1deas from string theory come to the rescue:

scalar prefactors need to satisfy certain Laplace equations,
even 1n the pure supergravity limit.

Green & Sethi 1999; Sinha 2002;
Green & Vanhove 2005; Green, Russo & Vanhove 2010

26



* Starting from a known duality invariant in some higher
dimension D, the dimensional reduction to D=4 giving the

n-loop candidate §2("—3) R* counterterm has a scalar
L’)ossard, Howe & K.5.5. 2010

prefactor fr(¢) satisfying

(vi + g :;ln(SQ —D-— n)) Fauld) =0

» This Laplace equation 1s SU(8) covariant, and must be
satisfied equally by the dimensional reduction of the D-

dimensional counterterm and by the SU(8) averaged

version of this counterterm.

+ [Infinitesimal shift invariance for the 70 scalars, and hence

E; invariance, can only be realised if f.(¢) =1.

27



* Starting from the known infinities at L=1,2&3 loops 1n
D=8,7&6, one thus learns the impossibility of E7 invariance in
D=4 for all the corresponding dimensionally reduced & SU(8)
averaged D=4 operators: the 1/2 BPS R*candidate, the 1/4 BPS

0* R* candidate and the 1/8 BPS 8° R*candidate.

Drummoncj) Heslopj Howe & Kerstan 200%

* Since these D=4 counterterm candidates are unigue (as shown

by conformal multiplet decomposition), just based on
supersymmetry together with the linearly realised SU(8)
symmetry, their failure to be E7 invariant completely rules out

the corresponding candidate counterterms. Thus the 1/2, 1/4 and
1/8 BPS R*, 9*R* and 9°R* N=8 counterterms are not allowed

as counterterms.



£, invariant counterterms long

The V()lume Of S upersp ace known to exist for L>7:

Howe & Lindstrom 198
Kallosh 1981

» It had long been anticipated that a manifestly E7 invariant
counterterm of D=4, N=8 supergravity would occur at

welght A = 16 corresponding to to the 7-loop order:
/ d*zd**0FE(z,0) - the full volume of N=8 superspace.

* Left unresolved, however, was just what this invariant looks
like 1in ordinary component-field terms.

¢ As with the other candidate initial counterterms we have
considered, we are interested in its on-shell expression in
terms of curvatures, etc.

¢ Natural guess for the general structure: 6°R*



Bossard, Howe, K.5.5. & Vanhove 1105.6087

Vanishing Volume

* The 7-loop situation, however, turns out to be more complex:

the superspace volume actually vanishes on-shell.

* Simply integrating out the volume / d*zd**0E(z, ) using the
superspace constraints implying the classical field equations

would be an ugly task.

* However, using an on-shell implementation of harmonic
superspace together with a superspace implementation of the

normal-coordinate expansion, one can nonetheless see that it

vanishes on-shell for all supersymmetry extensions IN.

50



* N=8 supergravity has a natural SU(8) R-symmetry group

under which the 8 gravitini transform in the 8

) i Hartwell & Howe 1994
representation. In (8,1,1) harmonic superspace, one

augments the normal (2", 0,) superspace coordinates by an
additional set of bosonic corrdinates u’; I=1r=2,...,7;8

parametrising the flag manifold (U(1) x U(6) x U(1))\SU(8)

Contracting the usual superspace basis vectors with these

o nlo B B nle”
and their inverses, one has by =u k-
B =l B

(

¢ Then work just with manifest U(1)xU(6)xU(1)

covariance.

bl



* Combining these with the d/; vector fields on the harmonic

flag mamfold one finds that the subset
{E a87dlradr87d18} 2<r<7

1S 1n involutlon. o 5 -
Wi bgt=Chp Ee

* One can then define Grassman-analytic superfields

annihilated by the dual superspace derivatives D, D3

* Some non-vanishing curvatures are

1 1 _ .
Raﬁs 1 Ra58 8__Boz5

where B ; = X, B 7Xasi; 18 Grassman-analytic

52



Normal coordinates for a 28+4 split

*® One can deﬁne normal Coordlnates Kuzenkoé»Tar’caglino~Mazzucche”iZOO8

CA — {COé — 53951621 7564 — 53“’8@ H_HZ) Zrla 287“7 281}
associated to the vector fields £ .

* Expanding the superspace Berezinian determinant in these,

one finds the flow equation

A 1 i 1 -
Qg _ _ o rB . (OB o sp
» Integrating, one finds the expansion of the determinant in the

four fermionic coordinates ¢ = (¢*,(%):

E(#,.0) = £(2) (1 1 BQBCO‘CB>

¢ However, since this has only ¢° terms, integration over

the four ¢“ vanishes.

2



1/8 BPS E7 invariant candidate notwithstanding

* Despite the vanishing of the full N=8 superspace volume, one
can nonetheless use the harmonic superspace formalism to
construct a different manifestly E7 -invariant candidate:

1% = /du(&l,l) B, ;B

+ At the leading 4-point level, this can be written as a full

superspace integral with respect to the linearised N=8
supersymmetry. It cannot, however, be rewritten as a full-
superspace integral at the nonlinear level.

» Full-superspace manifestly E7 -invariant candidates exist in
any case from 8 loops onwards.

bax



Current outlook

* As far as one knows, the first acceptable D=4 counterterm for

maximal supergravity still occurs at L=7 loops ( A = 16).

» Current divergence expectations for maximal supergravity are

consequently:
Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6 7
BPS degree 0 0 % i % 0 0
Gen. form OPR* | O°R* | R* | O°R* | O%R* | O12R* | O°R?

Blue: known clivergences Green: anticipated clivergences

2



Possible 5-loop test?

* At the 4-point level, the unitarity-based calculations of Bern,
Carrasco, Dixon, Johansson & Roiban simultaneously give
results for all dimensions D at a given loop order L. So one

can contemplate fractional dimensions when necessary.

* Akey clue would be a parting of the ways of maximal SYM
and maximal supergravity at =5 1n their divergence
behaviour. From what we now know, L.=5 max SYM should
show a divergence ( % pole) at D=26/5 while L=5 max
supergravity could diverge earlier, at D=24/5 with a
generic 0°R*structure. This would be a clear indication that

D=4 supergravity should first diverge at L=7.
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Accordingly, another bet was made with Zvi Bern
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