Ultraviolet Divergences and Counterterm Structure in Maximal Supergravity

K.S. Stelle

Strings, Gauge Theory and the LHC Workshop Niels Bohr International Academy, Copenhagen August 25th, 2011

G. Bossard, P.S. Howe & K.S.S. 0901.4661, 0908.3883, 1009.0743

G. Bossard, P.S. Howe, K.S.S. & P. Vanhove 1105.6087

Are there quantum miracles happening in maximal supergravity?

Outline

- Nonrenormalization theorems and BPS degree
- Unitarity-based calculations
- Ectoplasm & superspace cohomology
- Duality constraints on counterterms
- The Volume of Superspace
- Current outlook

Ultraviolet Divergences in Gravity

• Simple power counting in gravity and supergravity theories leads to a naïve degree of divergence

$$\Delta = (D-2)L+2$$

in D spacetime dimensions. So, for D=4, L=3, one expects $\Delta = 8$. In dimensional regularization, only logarithmic divergences are seen ($\frac{1}{\epsilon}$ poles, $\epsilon = D - 4$), so 8 powers of momentum would have to come out onto the external lines of such a diagram.

• Local supersymmetry implies that the pure curvature part of such a D=4, 3-loop divergence candidate must be built from the square of the Bel-Robinson tensor

Deser, Kay & K.S.S 1977

$$\int \sqrt{-g} T_{\mu\nu\rho\sigma} T^{\mu\nu\rho\sigma} , \quad T_{\mu\nu\rho\sigma} = R_{\mu\nu}^{\alpha} {}^{\beta} R_{\rho\alpha\sigma\beta} + {}^*R_{\mu\nu}^{\alpha} {}^{\beta} {}^*R_{\rho\alpha\sigma\beta}$$

• This is directly related to the α'^3 corrections to the superstring effective action, except that in the string context such contributions occur with finite coefficients. In string theory, the corresponding question is how poles might develop in $(\alpha')^{-1}$ as one takes the zero-slope limit $\alpha' \to 0$ and how this bears on the ultraviolet properties of the corresponding field theory.

Green, Russo & Vanhove 2007, 2010

- The consequences of supersymmetry for the ultraviolet structure are not restricted to the requirement that counterterms be supersymmetric invariants.
- There exist more powerful "nonrenormalization theorems," the most famous of which excludes infinite renormalization of chiral invariants in D=4, N=1 supersymmetry; these are given in N=1 superspace by integrals over just *half* the superspace: $\int d^2\theta W(\phi(x,\theta,\bar{\theta})), \quad \bar{D}\phi = 0 \qquad \text{(cf. full superspace } \int d^4\theta L(\phi,\bar{\phi}))$

$$\int d^2\theta W(\phi(x,\theta,\bar{\theta})), \quad \bar{D}\phi = 0 \qquad \text{(cf. full superspace } \int d^4\theta L(\phi,\bar{\phi}))$$

However, maximally extended SYM and supergravity theories do not have formalisms with all supersymmetries linearly realised "off-shell" in superspace. So the power of such nonrenormalization theorems is restricted to the off-shell linearly realizable subalgebra.

- The degree of "off-shell" supersymmetry is the maximal supersymmetry for which the algebra can close without use of the equations of motion.
- Knowing the extent of this off-shell supersymmetry is tricky, and may involve formulations (*e.g.* harmonic superspace) with infinite numbers of auxiliary fields. Galperín, Ivanov, Kalitsín, Ogievetsky & Sokatchev
- For maximal N=4 Super Yang-Mills and maximal N=8 supergravity, the linearly realizable supersymmetry has been known since the 1980's to be at least *half* the full supersymmetry of the theory. So at that time the first generally allowed counterterms were expected to have "1/2 BPS" structure as compared to the full supersymmetry of the theory.

• The 3-loop R^4 candidate maximal supergravity counterterm has a structure very similar to that of an F^4 N=4 super Yang-Mills invariant. Both of these are 1/2 BPS invariants, involving integration over just half the corresponding full superspaces:

Howe, K.S.S. & Townsend 1981 Kallosh 1981

$$\Delta I_{SYM} = \int (d^4 \theta d^4 \bar{\theta})_{105} \operatorname{tr}(\phi^4)_{105}$$
 \boxplus 105 ϕ_{ij} \exists 6 of SU(4)
$$\Delta I_{SG} = \int (d^8 \theta d^8 \bar{\theta})_{232848} (W^4)_{232848} \stackrel{\blacksquare}{\equiv} 232848 \quad W_{ijkl} \stackrel{\blacksquare}{\equiv} 70 \text{ of SU(8)}$$

• Versions of these supergravity and SYM operators do occur as counterterms at one loop in D=8. However, the one-loop level often has special renormalization features, so one needs to be careful not to make unwarranted conclusions about the general acceptability of these counterterms.

- Of course, there are other symmetries in supergravity beside diffeomorphism invariance and supersymmetry. In particular, D=4, N=8 supergravity also has a rigid nonlinearly realised E₇ symmetry. At leading order, this symmetry is realised by constant shifts of the 70 scalars.
- The R^4 candidate satisfies at least the minimal requirement of invariance under such constant shifts of the 70 scalars because, at the leading 4-particle order, the integrand may be written such that every scalar field is covered by a derivative.

Unitarity-based calculations

- The calculational front has made impressive progress since the late 1990s.
- These have led to unanticipated and surprising cancellations at the 3- and 4-loop orders, yielding new lowest possible orders for the super Yang-Mills and supergravity divergence onsets:

Max. SYM first divergences, current lowest possible orders.

Dimension D	10	8	7	6	5	4
Loop order L	1	1	2	3	6?	∞
BPS degree	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Gen. form	$\partial^2 F^4$	F^4	$\partial^2 F^4$	$\partial^2 F^4$	$\partial^2 F^4$	finite

Max. supergravity first divergences, current lowest possible orders.

Blue: known divergences

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6?	5?
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	$\frac{1}{4}$
Gen. form	$\partial^{12}R^4$	$\partial^{10}R^4$	R^4	$\partial^6 R^4$	$\partial^6 R^4$	$\partial^{12}R^4$	$\partial^4 R^4$

Stora; Baulieu & Bossard

Algebraic Renormalization

- Another approach to analyzing the divergences in supersymmetric gauge theories, using the full supersymmetry, begins with the Callan-Symanzik equation for the renormalization of the Lagrangian as a operator insertion, governing, e.g., mixing with the half-BPS SYM operator $S^{(4)} = \operatorname{tr}(F^4)$. Letting the classical action be $S^{(2)}$, the C-S equation for SYM in dimension D is $\mu \frac{\partial}{\partial u} [S^{(2)} \cdot \Gamma] = (4 - D)[S^{(2)} \cdot \Gamma] + \gamma_{(4)} g^{2n_{(4)}} [S^{(4)} \cdot \Gamma] + \cdots$, where $n_{(4)} = 4$, 2, 1 for D = 5, 6, 8.
- From this one learns that $(n_{(4)}-1)\beta_{(4)}=\gamma_{(4)}$ so the beta function for the $S^{(4)}=\operatorname{tr}(F^4)$ operator is determined by the anomalous dimension $\gamma_{(4)}$.

• Combining the supersymmetry generator with a commuting spinor parameter to make a scalar operator $Q = \bar{\epsilon}Q$, the expression of SUSY invariance for a D-form density in D-dimensions is $Q \mathcal{L}_D + d \mathcal{L}_{D-1} = 0$. Combining this with the SUSY algebra $Q^2 = -i(\bar{\epsilon}\gamma^{\mu}\epsilon)\partial_{\mu}$ and using the Poincaré Lemma, one finds

$$i_{i(\bar{\epsilon}\gamma\epsilon)}\mathcal{L}_D + S_{(Q)|\Sigma}\mathcal{L}_{D-1} + d\mathcal{L}_{D-2} = 0$$
.

- Hence, one can consider cocycles of the extended nilpotent differential $d + S_{(Q)|\Sigma} + i_{i(\bar{\epsilon}\gamma\epsilon)}$ acting on formal formsums $\mathcal{L}_D + \mathcal{L}_{D-1} + \mathcal{L}_{D-2} + \cdots$.
- The supersymmetry Ward identities then imply that the whole cocycle must be renormalized in a coherent way. In order for an operator like $S^{(4)}$ to mix with the classical action $S^{(2)}$, their cocycles need to have the same structure.

Ectoplasm

- The construction of supersymmetric invariants is isomorphic to the construction of cohomologically nontrivial closed forms in superspace: $I = \int_{M_0} \sigma^* \mathcal{L}_D$ is invariant (where σ^* is a pull-back to a section of the projection map down to the purely bosonic "body" subspace M_0) if \mathcal{L}_D is a closed form in superspace, and it is nonvanishing only if \mathcal{L}_D is nontrivial.
- Using the BRST formalism, handle all gauge symmetries including space-time diffeomorphisms by the nilpotent BRST operator s. The invariance condition for \mathcal{L}_D is $s\mathcal{L}_D + d_0\mathcal{L}_{D-1} = 0$, where d_0 is the usual bosonic exterior derivative. Since $s^2 = 0$ and s anticommutes with d_0 , one obtains $s\mathcal{L}_{D-1} + d_0\mathcal{L}_{D-2} = 0$, etc.

- Solving the BRST Ward identities thus becomes a cohomological problem. Note that the supersymmetry ghost is a commuting field. One needs to study the cohomology of the nilpotent operator $\delta = s + d_0$, whose components $\mathcal{L}_{D-q,q}$ are (D-q) forms with ghost number q, i.e. (D-q) forms with q spinor indices. The spinor indices are totally *symmetric* since the supersymmetry ghost is *commuting*.
- For gauge-invariant supersymmetric integrands, this establishes an isomorphism between the cohomology of closed forms in superspace (aka "ectoplasm") and the construction of BRST-invariant counterterms.

Superspace cohomology

• Flat superspace has a standard basis of invariant 1-forms

$$E^{a} = dx^{a} - \frac{i}{2}d\theta^{\alpha}(\Gamma^{a})_{\alpha\beta}\theta^{\beta}$$

$$E^{\alpha} = d\theta^{\alpha}$$

dual to which are the superspace covariant derivatives (∂_a, D_α)

- There is a natural bi-grading of superspace forms into even and odd parts: $\Omega^n = \bigoplus_{n=n+q} \Omega^{p,q}$
- Correspondingly, the flat superspace exterior derivative splits into three parts with bi-gradings (1,0), (0,1) & (-1,2):

$$d = d_0(1,0) + d_1(0,1) + t_0(-1,2)$$
bosonic der. fermionic der. torsion
$$d_0 \leftrightarrow \partial_a \quad d_1 \leftrightarrow \partial_\alpha$$

where for a (p,q) form in flat superspace, one has

$$(t_o\omega)_{a_2\cdots a_p\beta_1\cdots\beta_{q+2}}\sim (\Gamma^{a_1})_{(\beta_1\beta_2}\omega_{a_1\cdots a_p\beta_3\cdots\beta_{q+2})}$$

• The nilpotence of the total exterior derivative d implies the relations

$$t_0^2 = 0$$

$$t_0 d_1 + d_1 t_0 = 0$$

$$d_1^2 + t_0 d_0 + d_0 t_0 = 0$$

- Then, since $d\mathcal{L}_D = 0$, the lowest dimension nonvanishing component (or "generator") $\mathcal{L}_{D-q,q}$ must satisfy $t_0\mathcal{L}_{D-q,q} = 0$ so $\mathcal{L}_{D-q,q}$ belongs to the t_0 cohomology group $H_t^{D-q,q}$.
- Starting with the t_0 cohomology groups $H_t^{p,q}$, one then defines a spinorial exterior derivative $d_s: H_t^{p,q} \to H_t^{p,q+1}$ by $d_s[\omega] = [d_1\omega]$, where the [] brackets denote H_t classes.

- One finds that d_s is nilpotent, $d_s^2 = 0$, and so one can define spinorial cohomology groups $H_s^{p,q} = H_{d_s}(H_t^{p,q})$.

 The groups $H_s^{0,q}$ give multi pure spinors.
- This formalism gives a way to reformulate BRST cohomology in terms of spinorial cohomology. The lowest dimension component, or *generator*, of a counterterm's superform must be d_s closed, *i.e.* it must be an element of $H_s^{D-q,q}$.
- Solving $d_s[\mathcal{L}_{D-q,q}] = 0$ allows one to solve for all the higher components of \mathcal{L}_D in terms of $\mathcal{L}_{D-q,q}$ for normal cocyles.

- To illustrate how this formalism works, consider N=1 supersymmetry in D=10. Corresponding to the \varkappa symmetries of strings and 5-branes, we have the D=10 Gamma matrix identities $t_0\Gamma_{1,2}=0$ $t_0\Gamma_{5,2}=0$.
- The second of these is relevant to the construction of dclosed forms in D=10. One may have a generator $L_{5,5} = \Gamma_{5,2} M_{0,3}$

where $d_s[M_{0,3}] = 0$. The simplest example of such a form corresponds to a full superspace integral over S:

$$M_{\alpha\beta\gamma} = T_{\alpha\beta\gamma,\delta_1\cdots\delta_5}(D^{11})^{\delta_1\cdots\delta_5}S$$

where $T_{\alpha\beta\gamma,\delta_1\cdots\delta_5}$ is constructed from the D=10 Gamma matrices; it is totally symmetric in $\alpha\beta\gamma$ and totally antisymmetric in $\delta_1\cdots\delta_5$.

Cohomological non-renormalization

- Spinorial cohomology then allows one to derive nonrenormalization theorems for counterterms: the cocycle structure of candidate counterterms must match that of the classical action.
 - For example, in maximal SYM, this leads to non-renormalization theorems ruling out the F^4 counterterm that was otherwise expected at L=4 in D=5.
 - Similar non-renormalization theorems exist in supergravity, but their study is complicated by local supersymmetry and the density character of counterterm integrands.

Duality invariance constraints

• Maximal supergravity has a series of duality symmetries which extend the automatic GL(11-D) symmetry obtained upon dimensional reduction from D=11, e.g. E₇ in the N=8, D=4 theory, with the 70 scalars taking their values in an E₇/SU(8) coset target space.

Bossard, Hillman & Nicolai 2010

- The N=8, D=4 theory can be formulated in a manifestly E₇ covariant (but non-manifestly Lorentz covariant) formalism.

 Marcus 1985

 Anomalies for SU(8), and hence E₇, cancel.
- Combining the requirement of continuous duality invariance with the spinorial cohomology requirements gives further restrictions on counterterms.

• Supergravity Duality Groups and String Theory discretisations:

D	$E_{11-D(11-D)}(\mathbb{R})$	K_D	$E_{11-D(11-D)}(\mathbb{Z})$
10A	\mathbb{R}^+	1	1
10B	$Sl(2,\mathbb{R})$	SO(2)	$Sl(2,\mathbb{Z})$
9	$Sl(2,\mathbb{R}) \times \mathbb{R}^+$	SO(2)	$Sl(2,\mathbb{Z})$
8	$Sl(3,\mathbb{R}) \times Sl(2,\mathbb{R})$	$SO(3) \times SO(2)$	$ Sl(3,\mathbb{Z})\times Sl(2,\mathbb{Z}) $
\parallel 7	$Sl(5,\mathbb{R})$	SO(5)	$Sl(5,\mathbb{Z})$
6	$SO(5,5,\mathbb{R})$	$SO(5) \times SO(5)$	$SO(5,5,\mathbb{Z})$
5	$E_{6(6)}(\mathbb{R})$	USp(8)	$E_{6(6)}(\mathbb{Z})$
$\parallel 4$	$E_{7(7)}(\mathbb{R})$	$SU(8)/\mathbb{Z}_2$	$E_{7(7)}(\mathbb{Z})$
3	$E_{8(8)}(\mathbb{R})$	SO(16)	$E_{8(8)}(\mathbb{Z})$

• The scalar target-space manifold is G_D/K_D . In string theory, the duality group becomes discretised to $G_D(\mathbb{Z})$, but this discretisation occurs due to nonperturbative effects outside the context of field-theoretic supergravity.

• Densities: In a curved superspace, an invariant is constructed from the top (pure "body") component in a coordinate basis:

$$I = \frac{1}{D!} \int d^D x \, \varepsilon^{m_D \dots m_1} \, E_{m_D}{}^{A_D} \dots E_{m_1}{}^{A_1} \, L_{A_1 \dots A_D}(x, \theta = 0)$$

• Referring this to a preferred "flat" basis and identifying $E_M{}^A$ components with vielbeins and gravitinos, one has in D=4

$$I = \frac{1}{24} \int \left(e^{a}_{\wedge} e^{b}_{\wedge} e^{c}_{\wedge} e^{d} L_{abcd} + 4e^{a}_{\wedge} e^{b}_{\wedge} e^{c}_{\wedge} \psi^{\underline{\alpha}} L_{abc\underline{\alpha}} + 6e^{a}_{\wedge} e^{b}_{\wedge} \psi^{\underline{\alpha}} \psi^{\underline{\beta}} L_{ab\underline{\alpha}\underline{\beta}} + 4e^{a}_{\wedge} \psi^{\underline{\alpha}} \psi^{\underline{\beta}} \psi^{\underline{\gamma}} L_{a\underline{\alpha}\underline{\beta}\underline{\gamma}} + \psi^{\underline{\alpha}}_{\wedge} \psi^{\underline{\beta}} \psi^{\underline{\gamma}} \psi^{\underline{\delta}} L_{\underline{\alpha}\underline{\beta}\underline{\gamma}\underline{\delta}} \right)$$

- Thus the "soul" components of the cocycle also contribute to the local supersymmetric covariantization.
- Since the gravitinos do not transform under the D=4 E₇ duality, the L_{ABCD} form components have to be *separately* duality invariant.

- At leading order, the E₇/SU(8) coset generators of E₇ simply produce *constant shifts* in the 70 scalar fields, as we have seen. This leads to a much easier check of invariance than analysing the full spinorial cohomology problem.
- Howe, K.S.S. & Townsend 1981
- Although the pure-body (4,0) component L_{abcd} of the R^4 counterterm has long been known to be shift-invariant at lowest order (since all 70 scalar fields are covered by derivatives), it is harder for the fermionic "soul" components to be so, since they are of lower dimension.
- Thus, one finds that the maxi-soul $(0,4)L_{\alpha\beta\gamma\delta}$ component is *not* invariant under constant shifts of the 70 scalars. Hence the D=4, N=8, 3 -loop R^4 1/2 BPS counterterm is not E₇ duality invariant, so it is ruled out as an allowed counterterm.

N=5, N=6

- Similar analysis of the D=4 3-loop R^4 invariants in N=5 and N=6 supergravities shows them to be likewise ruled out by the analogous requirements of SU(5,1) and SO*(12) duality invariances.
- In N=6 supergravity, there is a 4-loop $\partial^2 R^4$ type invariant. Similar analysis indicates that this also is ruled out.
 - In maximal supergravity, such a $\Delta = 10$ invariant might have been expected at one loop in D=10. However, in maximal supergravity this invariant vanishes subject to the classical field equations. But in D=4, N=6 it does not vanish, so it could have been a threatening counterterm.

Infinities versus infinities: dimensional reduction versus duality Elvang & Kiermaier 2010 (from Boscard House & K. S. S. 2010)

Elvang & Kiermaier 2010 (from IIA string theory)
Bossard, Howe & K.S.S. 2010 (from supergravity)
Beisert, Elvang, Freedman, Kiermaier, Morales & Stiebeger
2010

- Left out of control so far are some of the most interesting cases: L=5,6 in D=4 maximal supergravity, corresponding to the 1/4 BPS $\partial^4 R^4$ and 1/8 BPS $\partial^6 R^4$ type counterterms.
 - Here, a different kind of duality-based argument comes into play.
- In fact, the *existence* of the 1/2 BPS L=1, D=8 R^4 , the 1/4 BPS L=2, D=7 $\partial^4 R^4$ and the 1/8 BPS L=3, D=6 $\partial^6 R^4$ types of divergences together with the *uniqueness* of the corresponding D=4 counterterm structures allows one to rule out the corresponding D=4 candidates.

• The existence of these D=8, 7 & 6 divergences indicate that the corresponding forms of the R^4 , $\partial^4 R^4$ & $\partial^6 R^4$ counterterms have to be such that the purely gravitational parts of these invariants are <u>not dressed</u> by e^{ϕ} scalar prefactors – otherwise, they would violate the corresponding

$$SL(3,\mathbb{R}) \times SL(2,\mathbb{R}), \ SL(5,\mathbb{R}) \ \& \ SO(5,5)$$

duality symmetries: lowest-order shift symmetries would then be violated.

• Upon dimensional reduction to D=4, the Einstein-frame classical N=8 action $\int d^4x (R\sqrt{-g} + ...)$ is arranged to have no scalar prefactors. But then dimensional reduction of the R^4 , $\partial^4 R^4 \& \partial^6 R^4$ counterterms in general causes such prefactors to appear.

These dimensional reductions from D=8, 7 & 6 don't have even the requisite SU(8) symmetry. But they can be rendered SU(8) invariant by averaging, *i.e.* by integrating the dimensionally reduced counterterms over

 $SU(8)/(SO(3) \times SO(2))$, SU(8)/SO(5) or $SU(8)/(SO(5) \times SO(5))$.

- The action of SU(8) on evident scalar combinations such as the compactification volume modulus $\phi = \vec{\alpha} \cdot \vec{\phi}$ is highly nonlinear, so SU(8) averaging is difficult to do explicitly.
- However, some ideas from string theory come to the rescue: scalar prefactors need to satisfy certain <u>Laplace equations</u>, even in the pure supergravity limit.

Green & Sethi 1999; Sinha 2002; Green & Vanhove 2005; Green, Russo & Vanhove 2010 • Starting from a known duality invariant in some higher dimension D, the dimensional reduction to D=4 giving the n-loop candidate $\partial^{2(n-3)}R^4$ counterterm has a scalar prefactor $f_n(\phi)$ satisfying

$$\left(\nabla_{\phi}^{2} + \frac{D-4}{D-2}n(32-D-n)\right)f_{n}(\phi) = 0$$

- This Laplace equation is SU(8) covariant, and must be satisfied equally by the dimensional reduction of the D-dimensional counterterm and by the SU(8) averaged version of this counterterm.
- Infinitesimal shift invariance for the 70 scalars, and hence E_7 invariance, can only be realised if $f_n(\phi) = 1$.

• Starting from the known infinities at L=1,2&3 loops in D=8,7&6, one thus learns the impossibility of E₇ invariance in D=4 for all the corresponding dimensionally reduced & SU(8) averaged D=4 operators: the 1/2 BPS R^4 candidate, the 1/4 BPS $\partial^4 R^4$ candidate and the 1/8 BPS $\partial^6 R^4$ candidate.

Drummond, Heslop, Howe & Kerstan 2003

• Since these D=4 counterterm candidates are *unique* (as shown by conformal multiplet decomposition), just based on supersymmetry together with the linearly realised SU(8) symmetry, their failure to be E_7 invariant completely rules out the corresponding candidate counterterms. Thus the 1/2, 1/4 and 1/8 BPS R^4 , $\partial^4 R^4$ and $\partial^6 R^4$ N=8 counterterms are *not allowed* as counterterms.

The Volume of Superspace

E₇ invariant counterterms long known to exist for L>7: Howe & Lindstrom 1981 Kallosh 1981

- It had long been anticipated that a manifestly E_7 invariant counterterm of D=4, N=8 supergravity would occur at weight $\Delta = 16$ corresponding to to the 7-loop order: $\int d^4x d^{32}\theta E(x,\theta) \text{the full volume of N=8 superspace.}$
- Left unresolved, however, was just what this invariant looks like in ordinary component-field terms.
 - As with the other candidate initial counterterms we have considered, we are interested in its on-shell expression in terms of curvatures, etc.
 - Natural guess for the general structure: $\partial^8 R^4$

Vanishing Volume

- The 7-loop situation, however, turns out to be more complex: the superspace volume actually *vanishes* on-shell.
- Simply integrating out the volume $\int d^4x d^{32}\theta E(x,\theta)$ using the superspace constraints implying the classical field equations would be an ugly task.
- However, using an on-shell implementation of harmonic superspace together with a superspace implementation of the normal-coordinate expansion, one can nonetheless see that it vanishes on-shell for all supersymmetry extensions *N*.

- N=8 supergravity has a natural SU(8) R-symmetry group under which the 8 gravitini transform in the 8 representation. In (8,1,1) harmonic superspace, one augments the normal $(x^{\mu}, \theta^{i}_{\alpha})$ superspace coordinates by an additional set of bosonic corrdinates u^{I}_{j} $I=1; r=2,\ldots,7;8$ parametrising the flag manifold $(U(1) \times U(6) \times U(1)) \setminus SU(8)$
- Contracting the usual superspace basis vectors with these and their inverses, one has $\tilde{E}_I^{\alpha} = u^i{}_I \tilde{E}_i^{\alpha}$ $\tilde{E}_I^{\dot{\alpha}I} = u^I{}_i \tilde{E}^{\dot{\alpha}i}$
 - Then work just with manifest U(1)xU(6)xU(1) covariance.

• Combining these with the dJ_I vector fields on the harmonic flag manifold, one finds that the subset

$$\hat{E}_{\hat{A}} := \{ \tilde{E}_{\alpha}^{1}, \tilde{E}_{\dot{\alpha}8}, d^{1}_{r}, d^{r}_{8}, d^{1}_{8} \}, \quad 2 \le r \le 7$$

is in involution:

$$\{\hat{E}_{\hat{A}},\hat{E}_{\hat{B}}\} = C_{\hat{A}\hat{B}}{}^{\hat{C}}\,\hat{E}_{\hat{C}}$$

- One can then define Grassman-analytic superfields annihilated by the dual superspace derivatives $D_{\alpha 1}$, $\bar{D}^8_{\dot{\alpha}}$
- Some non-vanishing curvatures are

$$R^{1}_{\alpha\dot{\beta}8,\ 1} = R^{1}_{\alpha\dot{\beta}8,\ 8} = -B_{\alpha\dot{\beta}}$$

where $B_{\alpha\dot{\beta}} = \bar{\chi}^{1ij}_{\dot{\beta}} \chi_{\alpha\,8ij}$ is Grassman-analytic

Normal coordinates for a 28+4 split

One can define normal coordinates

Kuzenko & Tartaglino-Mazzucchelli 2008

$$\zeta^{\hat{A}} = \{\zeta^\alpha = \delta^\alpha_\mu \theta^\mu_i u^i_{\ 1} \,, \bar{\zeta}^{\dot{\alpha}} = \delta^{\dot{\alpha}}_{\dot{\mu}} u^8_{\ i} \, \bar{\theta}^{\dot{\mu}\, i}, z^r_{\ 1}, z^8_{\ r}, z^8_{\ 1} \}$$
 associated to the vector fields $\hat{E}_{\hat{A}}$.

• Expanding the superspace Berezinian determinant in these, one finds the flow equation

$$\zeta^{\hat{\alpha}}\partial_{\hat{\alpha}}\ln E = -\frac{1}{3}B_{\alpha\dot{\beta}}\zeta^{\alpha}\bar{\zeta}^{\dot{\beta}} + \frac{1}{18}B_{\alpha\dot{\beta}}B_{\alpha\dot{\alpha}}\zeta^{\alpha}\zeta^{\beta}\bar{\zeta}^{\dot{\alpha}}\bar{\zeta}^{\dot{\beta}}$$

• Integrating, one finds the expansion of the determinant in the four fermionic coordinates $\zeta^{\hat{\alpha}} = (\zeta^{\alpha}, \zeta^{\dot{\alpha}})$:

$$E(\hat{x}, \zeta, \bar{\zeta}) = \mathcal{E}(\hat{x}) \left(1 - \frac{1}{6} B_{\alpha \dot{\beta}} \zeta^{\alpha} \zeta^{\dot{\beta}} \right)$$

• However, since this has only ζ^2 terms, integration over the four $\zeta^{\hat{\alpha}}$ vanishes.

1/8 BPS E7 invariant candidate notwithstanding

• Despite the vanishing of the full N=8 superspace volume, one can nonetheless use the harmonic superspace formalism to construct a different manifestly E₇ -invariant candidate:

$$I^8 := \int d\mu_{(8,1,1)} B_{\alpha\dot{\beta}} B^{\alpha\dot{\beta}}$$

- At the leading 4-point level, this can be written as a full superspace integral with respect to the linearised *N*=8 supersymmetry. It cannot, however, be rewritten as a full-superspace integral at the nonlinear level.
- Full-superspace manifestly E₇ -invariant candidates exist in any case from 8 loops onwards.

Current outlook

• As far as one knows, the first acceptable D=4 counterterm for maximal supergravity still occurs at L=7 loops ($\Delta = 16$).

 Current divergence expectations for maximal supergravity are consequently:

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6	7
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	0
Gen. form	$\partial^{12}R^4$	$\partial^{10}R^4$	R^4	$\partial^6 R^4$	$\partial^6 R^4$	$\partial^{12}R^4$	$\partial^8 R^4$

Blue: known divergences

Green: anticipated divergences

Possible 5-loop test?

- At the 4-point level, the unitarity-based calculations of Bern, Carrasco, Dixon, Johansson & Roiban simultaneously give results for all dimensions D at a given loop order L. So one can contemplate *fractional dimensions* when necessary.
- A key clue would be a parting of the ways of maximal SYM and maximal supergravity at L=5 in their divergence behaviour. From what we now know, L=5 max SYM should show a divergence ($\frac{1}{\epsilon}$ pole) at D=26/5 while L=5 max supergravity could diverge earlier, at D=24/5 with a generic $\partial^8 R^4$ structure. This would be a clear indication that D=4 supergravity should first diverge at L=7.

Accordingly, another bet was made with Zvi Bern

