Ultraviolet Divergences and
 Counterterm Structure in Maximal

 Supergravity

 Supergravity}

K.S. Stelle
Strings, Gauge Theory and the LHC Workshop
Niels Bohr International Academy, Copenhagen August 25th, 2011
G. Bossard, P.S. Howe \& K.S.S. 0901.4661, 0908.3883, 1009.0743
G. Bossard, P.S. Howe, K.S.S. \& P. Vanhove 1105.6087

Are there quantum miracles happening in maximal supergravity?

Outline

- Nonrenormalization theorems and BPS degree
- Unitarity-based calculations
- Ectoplasm \& superspace cohomology
- Duality constraints on counterterms
- The Volume of Superspace
- Current outlook

Ultraviolet Divergences in Gravity

- Simple power counting in gravity and supergravity theories leads to a naïve degree of divergence

$$
\Delta=(D-2) L+2
$$

in D spacetime dimensions. So, for $D=4, L=3$, one
expects $\Delta=8$. In dimensional regularization, only logarithmic divergences are seen ($\frac{1}{\epsilon}$ poles, $\epsilon=D-4$), so 8 powers of momentum would have to come out onto the external lines of such a diagram.

- Local supersymmetry implies that the pure curvature part of such a $\mathrm{D}=4$, 3-loop divergence candidate must be built from the square of the Bel-Robinson tensor

Deser, Kay \& K.S.S 1977

$$
\int \sqrt{-g} T_{\mu \nu \rho \sigma} T^{\mu \nu \rho \sigma}, \quad T_{\mu \nu \rho \sigma}=R_{\mu}{ }^{\alpha}{ }^{\beta} R_{\rho \alpha \sigma \beta}+{ }^{*} R_{\mu}{ }^{\alpha}{ }_{v}{ }^{\beta *} R_{\rho \alpha \sigma \beta}
$$

- This is directly related to the α^{3} corrections to the superstring effective action, except that in the string context such contributions occur with finite coefficients. In string theory, the corresponding question is how poles might develop in $\left(\alpha^{\prime}\right)^{-1}$ as one takes the zero-slope limit $\alpha^{\prime} \rightarrow 0$ and how this bears on the ultraviolet properties of the corresponding field theory.
- The consequences of supersymmetry for the ultraviolet structure are not restricted to the requirement that counterterms be supersymmetric invariants.
- There exist more powerful "nonrenormalization theorems," the most famous of which excludes infinite renormalization of chiral invariants in $\mathrm{D}=4, \mathrm{~N}=1$ supersymmetry; these are given in $\mathrm{N}=1$ superspace by integrals over just half the superspace: $\int d^{2} \theta W(\phi(x, \theta, \bar{\theta})), \quad \bar{D} \phi=0 \quad$ (cf. full superspace $\int d^{4} \theta L(\phi, \bar{\phi})$)
- However, maximally extended SYM and supergravity theories do not have formalisms with all supersymmetries linearly realised "off-shell" in superspace. So the power of such nonrenormalization theorems is restricted to the off-shell linearly realizable subalgebra.
- The degree of "off-shell" supersymmetry is the maximal supersymmetry for which the algebra can close without use of the equations of motion.
- Knowing the extent of this off-shell supersymmetry is tricky, and may involve formulations (e.g. harmonic superspace) with infinite numbers of auxiliary fields. Galperin, vanov, Kalisín, Ogievectsky $\&$ solatechev
- For maximal N=4 Super Yang-Mills and maximal N=8 supergravity, the linearly realizable supersymmetry has been known since the 1980's to be at least half the full supersymmetry of the theory. So at that time the first generally allowed counterterms were expected to have " $1 / 2$ BPS" structure as compared to the full supersymmetry of the theory.
－The 3－loop R^{4} candidate maximal supergravity counterterm has a structure very similar to that of an $F^{4} \mathrm{~N}=4$ super Yang－ Mills invariant．Both of these are $1 / 2$ BPS invariants， involving integration over just half the corresponding full superspaces：
$\begin{array}{llllll}\Delta I_{S Y M} & =\int\left(d^{4} \theta d^{4} \bar{\theta}\right)_{105} \operatorname{tr}\left(\phi^{4}\right)_{105} & \text { 冊 } 105 & \phi_{i j} & \text { 日 } 6 \text { of SU }(4) \\ \Delta I_{S G} & =\int\left(d^{8} \theta d^{8} \bar{\theta}\right)_{232848}\left(W^{4}\right)_{232848} & \text { 曲 } 232848 & W_{i j k l} & \text { 目 } 70 \text { of SU }(8)\end{array}$
－Versions of these supergravity and SYM operators do occur as counterterms at one loop in $\mathrm{D}=8$ ．However，the one－loop level often has special renormalization features，so one needs to be careful not to make unwarranted conclusions about the general acceptability of these counterterms．
- Of course, there are other symmetries in supergravity beside diffeomorphism invariance and supersymmetry. In particular, $D=4, N=8$ supergravity also has a rigid nonlinearly realised E_{7} symmetry. At leading order, this symmetry is realised by constant shifts of the 70 scalars.
- The R^{4} candidate satisfies at least the minimal requirement of invariance under such constant shifts of the 70 scalars because, at the leading 4-particle order, the integrand may be written such that every scalar field is covered by a derivative.

Unitarity-based calculations

- The calculational front has made impressive progress since the late 1990s.
- These have led to unanticipated and surprising cancellations at the 3- and 4-loop orders, yielding new lowest possible orders for the super Yang-Mills and supergravity divergence onsets:

Max. SYM first divergences, current lowest possible orders.

Dimension D	10	8	7	6	5	4
Loop order L	1	1	2	3	$6 ?$	∞
BPS degree	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Gen. form	$\partial^{2} F^{4}$	F^{4}	$\partial^{2} F^{4}$	$\partial^{2} F^{4}$	$\partial^{2} F^{4}$	finite

Blue: known divergences
Max. supergravity first divergences, current lowest possible orders.

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	$6 ?$	$5 ?$
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	$\frac{1}{4}$
Gen. form	$\partial^{12} R^{4}$	$\partial^{10} R^{4}$	R^{4}	$\partial^{6} R^{4}$	$\partial^{6} R^{4}$	$\partial^{12} R^{4}$	$\partial^{4} R^{4}$

Algebraic Renormalization

- Another approach to analyzing the divergences in supersymmetric gauge theories, using the full supersymmetry, begins with the Callan-Symanzik equation for the renormalization of the Lagrangian as a operator insertion, governing, e.g., mixing with the half-BPS SYM operator $S^{(4)}=\operatorname{tr}\left(F^{4}\right)$. Letting the classical action be $S^{(2)}$, the C-S equation for SYM in dimension D
is $\mu \frac{\partial}{\partial \mu}\left[S^{(2)} \cdot \Gamma\right]=(4-D)\left[S^{(2)} \cdot \Gamma\right]+\gamma_{(4)} g^{2 n_{(4)}}\left[S^{(4)} \cdot \Gamma\right]+\cdots$, where $n_{(4)}=4,2,1$ for $D=5,6,8$.
- From this one learns that $\left(n_{(4)}-1\right) \beta_{(4)}=\gamma_{(4)}$ so the beta function for the $S^{(4)}=\operatorname{tr}\left(F^{4}\right)$ operator is determined by the anomalous dimension $\gamma_{(4)}$.
- Combining the supersymmetry generator with a commuting spinor parameter to make a scalar operator $Q=\bar{\varepsilon} Q$, the expression of SUSY invariance for a D-form density in Ddimensions is $Q \mathcal{L}_{D}+d \mathcal{L}_{D-1}=0$. Combining this with the SUSY algebra $Q^{2}=-i\left(\bar{\varepsilon} \gamma^{\mu} \varepsilon\right) \partial_{\mu}$ and using the Poincaré Lemma, one finds

$$
i_{i(\bar{\varepsilon} \bar{\varepsilon})} \mathcal{L}_{D}+S_{(Q) \mid \Sigma} \mathcal{L}_{D-1}+d \mathcal{L}_{D-2}=0 .
$$

- Hence, one can consider cocycles of the extended nilpotent differential $d+S_{(Q) \mid \Sigma}+i_{i(\overline{\bar{\gamma} \ell \mathcal{E}}}$ acting on formal formsums $\mathcal{L}_{D}+\mathcal{L}_{D-1}+\mathcal{L}_{D-2}+\cdots$.
- The supersymmetry Ward identities then imply that the whole cocycle must be renormalized in a coherent way. In order for an operator like $S^{(4)}$ to mix with the classical action $S^{(2)}$, their cocycles need to have the same structure.

Ectoplasm

- The construction of supersymmetric invariants is isomorphic to the construction of cohomologically nontrivial closed forms in superspace: $I=\int_{M_{0}} \sigma^{*} \mathcal{L}_{D}$ is invariant (where σ^{*} is a pull-back to a section of the projection map down to the purely bosonic "body" subspace M_{0}) if \mathcal{L}_{D} is a closed form in superspace, and it is nonvanishing only if \mathcal{L}_{D} is nontrivial.
- Using the BRST formalism, handle all gauge symmetries including space-time diffeomorphisms by the nilpotent BRST operator s. The invariance condition for \mathcal{L}_{D} is
$s \mathcal{L}_{D}+d_{0} \mathcal{L}_{D-1}=0$, where d_{0} is the usual bosonic exterior derivative. Since $s^{2}=0$ and s anticommutes with d_{0}, one obtains $s \mathcal{L}_{D-1}+d_{0} \mathcal{L}_{D-2}=0$, etc.
- Solving the BRST Ward identities thus becomes a cohomological problem. Note that the supersymmetry ghost is a commuting field. One needs to study the cohomology of the nilpotent operator $\delta=s+d_{0}$, whose components $\mathcal{L}_{D-q, q}$ are ($D-q$) forms with ghost number q, i.e. ($D-q$) forms with q spinor indices. The spinor indices are totally symmetric since the supersymmetry ghost is commuting.
- For gauge-invariant supersymmetric integrands, this establishes an isomorphism between the cohomology of closed forms in superspace (aka "ectoplasm") and the construction of BRSTinvariant counterterms.

Superspace cohomology

- Flat superspace has a standard basis of invariant 1-forms

$$
\begin{aligned}
E^{a} & =d x^{a}-\frac{i}{2} d \theta^{\alpha}\left(\Gamma^{a}\right)_{\alpha \beta} \theta^{\beta} \\
E^{\alpha} & =d \theta^{\alpha}
\end{aligned}
$$

dual to which are the superspace covariant derivatives $\left(\partial_{a}, D_{\alpha}\right)$

- There is a natural bi-grading of superspace forms into even and odd parts:

$$
\Omega^{n}=\oplus_{n=p+q} \Omega^{p, q}
$$

- Correspondingly, the flat superspace exterior derivative splits into three parts with bi-gradings $(1,0),(0,1) \&(-1,2)$:

$$
\begin{aligned}
& d=d_{0}(1,0)+\underset{\text { bosonic der. Fermionic der. }}{d_{1}(0,1)}+t_{\text {torsion }}(-1,2) \\
& \quad d_{0} \leftrightarrow \partial_{a} \quad d_{1} \leftrightarrow \partial_{\alpha}
\end{aligned}
$$

where for a (p, q) form in flat superspace, one has

$$
\left(t_{o} \omega\right)_{a_{2} \cdots a_{p} \beta_{1} \cdots \beta_{q+2}} \sim\left(\Gamma^{a_{1}}\right)_{\left(\beta_{1} \beta_{2}\right.} \omega_{\left.a_{1} \cdots a_{p} \beta_{3} \cdots \beta_{q+2}\right)}
$$

- The nilpotence of the total exterior derivative d implies the relations

$$
\begin{aligned}
t_{0}^{2} & =0 \\
t_{0} d_{1}+d_{1} t_{0} & =0 \\
d_{1}^{2}+t_{0} d_{0}+d_{0} t_{0} & =0
\end{aligned}
$$

- Then, since $d \mathcal{L}_{D}=0$, the lowest dimension nonvanishing component (or "generator") $\mathcal{L}_{D-q, q}$ must satisfy $t_{0} \mathcal{L}_{D-q, q}=0$ so $\mathcal{L}_{D-q, q}$ belongs to the t_{0} cohomology group $H_{t}^{D-q, q}$.
- Starting with the t_{0} cohomology groups $H_{t}^{p, q}$, one then defines a spinorial exterior derivative $d_{s}: H_{t}^{p, q} \rightarrow H_{t}^{p, q+1}$ by $d_{s}[\omega]=\left[d_{1} \omega\right]$, where the [] brackets denote H_{t} classes.
- One finds that d_{s} is nilpotent, $d_{s}^{2}=0$, and so one can define spinorial cohomology groups $H_{s}^{p, q}=H_{d_{s}}\left(H_{t}^{p, q}\right)$. The groups $H_{s}^{0, q}$ give multi pure spinors.
- This formalism gives a way to reformulate BRST cohomology in terms of spinorial cohomology. The lowest dimension component, or generator, of a counterterm's superform must be d_{s} closed, i.e. it must be an element of $H_{s}^{D-q, q}$.
- Solving $d_{s}\left[\mathcal{L}_{D-q, q}\right]=0$ allows one to solve for all the higher components of \mathcal{L}_{D} in terms of $\mathcal{L}_{D-q, q}$ for normal cocyles.
- To illustrate how this formalism works, consider $\mathrm{N}=1$ supersymmetry in $\mathrm{D}=10$. Corresponding to the \varkappa symmetries of strings and 5 -branes, we have the $\mathrm{D}=10$
Gamma matrix identities $t_{0} \Gamma_{1,2}=0 \quad t_{0} \Gamma_{5,2}=0$.
- The second of these is relevant to the construction of d closed forms in $\mathrm{D}=10$. One may have a generator

$$
L_{5,5}=\Gamma_{5,2} M_{0,3}
$$

where $d_{s}\left[M_{0,3}\right]=0$. The simplest example of such a form corresponds to a full superspace integral over S :

$$
M_{\alpha \beta \gamma}=T_{\alpha \beta \gamma, \delta_{1} \ldots \delta_{5}}\left(D^{11}\right)^{\delta_{1} \cdots \delta_{5}} S
$$

where $T_{\alpha \beta \gamma, \delta_{1} \ldots \delta_{5}}$ is constructed from the $\mathrm{D}=10$ Gamma matrices; it is totally symmetric in $\alpha \beta \gamma$ and totally antisymmetric in $\delta_{1} \cdots \delta_{5}$.

Cohomological non-renormalization

- Spinorial cohomology then allows one to derive nonrenormalization theorems for counterterms: the cocycle structure of candidate counterterms must match that of the classical action.
- For example, in maximal SYM, this leads to nonrenormalization theorems ruling out the F^{4} counterterm that was otherwise expected at $\mathrm{L}=4$ in $\mathrm{D}=5$.
- Similar non-renormalization theorems exist in supergravity, but their study is complicated by local supersymmetry and the density character of counterterm integrands.

Duality invariance constraints

- Maximal supergravity has a series of duality symmetries which extend the automatic GL(11-D) symmetry obtained upon dimensional reduction from $\mathrm{D}=11$, e.g. E_{7} in the $\mathrm{N}=8$, $\mathrm{D}=4$ theory, with the 70 scalars taking their values in an $\mathrm{E}_{7} /$ SU(8) coset target space.
- The $\mathrm{N}=8, \mathrm{D}=4$ theory can be formulated in a manifestly E_{7} covariant (but non-manifestly Lorentz covariant) formalism. Anomalies for $\mathrm{SU}(8)$, and hence E_{7}, cancel.
- Combining the requirement of continuous duality invariance with the spinorial cohomology requirements gives further restrictions on counterterms.
- Supergravity Duality Groups and String Theory discretisations:

D	$E_{11-D(11-D)}(\mathbb{R})$	K_{D}	$E_{11-D(11-D)}(\mathbb{Z})$
10 A	\mathbb{R}^{+}	1	1
10 B	$S l(2, \mathbb{R})$	$S O(2)$	$S l(2, \mathbb{Z})$
9	$S l(2, \mathbb{R}) \times \mathbb{R}^{+}$	$S O(2)$	$S l(2, \mathbb{Z})$
8	$S l(3, \mathbb{R}) \times S l(2, \mathbb{R})$	$S O(3) \times S O(2)$	$S l(3, \mathbb{Z}) \times S l(2, \mathbb{Z})$
7	$S l(5, \mathbb{R})$	$S O(5)$	$S l(5, \mathbb{Z})$
6	$S O(5,5, \mathbb{R})$	$S O(5) \times S O(5)$	$S O(5,5, \mathbb{Z})$
5	$E_{6(6)}(\mathbb{R})$	$U S p(8)$	$E_{6(6)}(\mathbb{Z})$
4	$E_{7(7)}(\mathbb{R})$	$S U(8) / \mathbb{Z}_{2}$	$E_{7(7)}(\mathbb{Z})$
3	$E_{8(8)}(\mathbb{R})$	$S O(16)$	$E_{8(8)}(\mathbb{Z})$

- The scalar target-space manifold is G_{D} / K_{D}. In string theory, the duality group becomes discretised to $\mathrm{G}_{\mathrm{D}}(\mathbb{Z})$, but this discretisation occurs due to nonperturbative effects outside the context of field-theoretic supergravity.
- Densities: In a curved superspace, an invariant is constructed from the top (pure "body") component in a coordinate basis:

$$
I=\frac{1}{D!} \int d^{D} x \varepsilon^{m_{D} \ldots m_{1}} E_{m_{D}}{ }^{A_{D}} \ldots E_{m_{1}}{ }^{A_{1}} L_{A_{1} \ldots A_{D}}(x, \theta=0)
$$

- Referring this to a preferred "flat" basis and identifying $E_{M}{ }^{A}$ components with vielbeins and gravitinos, one has in $\mathrm{D}=4$
- Thus the "soul" components of the cocycle also contribute to the local supersymmetric covariantization.
- Since the gravitinos do not transform under the $\mathrm{D}=4 \mathrm{E}_{7}$ duality, the $L_{A B C D}$ form components have to be separately duality invariant.
- At leading order, the $\mathrm{E}_{7} / \mathrm{SU}(8)$ coset generators of E_{7} simply produce constant shifts in the 70 scalar fields, as we have seen. This leads to a much easier check of invariance than analysing the full spinorial cohomology problem.

Howe, K.S.S. \& Townsend 1981

- Although the pure-body $(4,0)$ component $L_{a b c d}$ of the R^{4} counterterm has long been known to be shift-invariant at lowest order (since all 70 scalar fields are covered by derivatives), it is harder for the fermionic "soul" components to be so, since they are of lower dimension.
- Thus, one finds that the maxi-soul $(0,4) L_{\alpha \beta \gamma \delta}$ component is not invariant under constant shifts of the 70 scalars. Hence the $\mathrm{D}=4$, $\mathrm{N}=8$, 3 -loop $R^{4} 1 / 2$ BPS counterterm is not E_{7} duality invariant, so it is ruled out as an allowed counterterm.

$\mathrm{N}=5, \mathrm{~N}=6$

- Similar analysis of the $\mathrm{D}=43$-loop R^{4} invariants in $\mathrm{N}=5$ and $\mathrm{N}=6$ supergravities shows them to be likewise ruled out by the analogous requirements of $\operatorname{SU}(5,1)$ and $\mathrm{SO}^{*}(12)$ duality invariances.
- In $N=6$ supergravity, there is a 4 -loop $\partial^{2} R^{4}$ type invariant. Similar analysis indicates that this also is ruled out.
- In maximal supergravity, such a $\Delta=10$ invariant might have been expected at one loop in $\mathrm{D}=10$. However, in maximal supergravity this invariant vanishes subject to the classical field equations. But in $\mathrm{D}=4, \mathrm{~N}=6$ it does not vanish, so it could have been a threatening counterterm.

Infinities versus infinities: dimensional

 reduction versus duality Elharg s Kemmér 200 f from IA sting theory) Bossard, Howe \& K.S.S. 2010 (from supergravíty)Beisert, Elvang, Freedman, Kiermaier, Morales \& Stiebeger 2010

- Left out of control so far are some of the most interesting cases: $\mathrm{L}=5,6$ in $\mathrm{D}=4$ maximal supergravity, corresponding to the $1 / 4$ BPS $\partial^{4} R^{4}$ and $1 / 8$ BPS $\partial^{6} R^{4}$ type counterterms.
- Here, a different kind of duality-based argument comes into play.
- In fact, the existence of the $1 / 2 \mathrm{BPS} \mathrm{L}=1, \mathrm{D}=8 R^{4}$, the $1 / 4 \mathrm{BPS}$ $\mathrm{L}=2, \mathrm{D}=7 \partial^{4} R^{4}$ and the $1 / 8 \mathrm{BPS} \mathrm{L}=3, \mathrm{D}=6 \partial^{6} R^{4}$ types of divergences together with the uniqueness of the corresponding $\mathrm{D}=4$ counterterm structures allows one to rule out the corresponding $\mathrm{D}=4$ candidates.
- The existence of these $\mathrm{D}=8,7 \& 6$ divergences indicate that the corresponding forms of the $R^{4}, \partial^{4} R^{4} \& \partial^{6} R^{4}$ counterterms have to be such that the purely gravitational parts of these invariants are not dressed by e^{ϕ} scalar prefactors otherwise, they would violate the corresponding

$$
S L(3, \mathbb{R}) \times S L(2, \mathbb{R}), S L(5, \mathbb{R}) \& S O(5,5)
$$

duality symmetries: lowest-order shift symmetries would then be violated.

- Upon dimensional reduction to $\mathrm{D}=4$, the Einstein-frame classical $\mathrm{N}=8$ action $\int d^{4} x(R \sqrt{-g}+\ldots)$ is arranged to have no scalar prefactors. But then dimensional reduction of the $R^{4}, \partial^{4} R^{4} \& \partial^{6} R^{4}$ counterterms in general causes such prefactors to appear.
- These dimensional reductions from $\mathrm{D}=8,7 \& 6$ don't have even the requisite $\mathrm{SU}(8)$ symmetry. But they can be rendered $\mathrm{SU}(8)$ invariant by averaging, i.e. by integrating the dimensionally reduced counterterms over $S U(8) /(S O(3) \times S O(2)), S U(8) / S O(5)$ or $S U(8) /(S O(5) \times S O(5))$.
- The action of $\operatorname{SU}(8)$ on evident scalar combinations such as the compactification volume modulus $\phi=\vec{\alpha} \cdot \vec{\phi}$ is highly nonlinear, so $\mathrm{SU}(8)$ averaging is difficult to do explicitly.
- However, some ideas from string theory come to the rescue: scalar prefactors need to satisfy certain Laplace equations, even in the pure supergravity limit.
- Starting from a known duality invariant in some higher dimension D , the dimensional reduction to $\mathrm{D}=4$ giving the n-loop candidate $\partial^{2(n-3)} R^{4}$ counterterm has a scalar prefactor $f_{n}(\phi)$ satisfying

$$
\left(\nabla_{\phi}^{2}+\frac{D-4}{D-2} n(32-D-n)\right) f_{n}(\phi)=0
$$

- This Laplace equation is $\operatorname{SU}(8)$ covariant, and must be satisfied equally by the dimensional reduction of the D dimensional counterterm and by the $\mathrm{SU}(8)$ averaged version of this counterterm.
- Infinitesimal shift invariance for the 70 scalars, and hence E_{7} invariance, can only be realised if $f_{n}(\phi)=1$.
- Starting from the known infinities at $\mathrm{L}=1,2 \& 3$ loops in $\mathrm{D}=8,7 \& 6$, one thus learns the impossibility of E_{7} invariance in $\mathrm{D}=4$ for all the corresponding dimensionally reduced \& $\mathrm{SU}(8)$ averaged $\mathrm{D}=4$ operators: the $1 / 2 \mathrm{BPS} R^{4}$ candidate, the $1 / 4 \mathrm{BPS}$ $\partial^{4} R^{4}$ candidate and the $1 / 8$ BPS $\partial^{6} R^{4}$ candidate.

Drummond, Heslop, Howe \& Kerstan 2003

- Since these $\mathrm{D}=4$ counterterm candidates are unique (as shown by conformal multiplet decomposition), just based on supersymmetry together with the linearly realised $\operatorname{SU}(8)$ symmetry, their failure to be E_{7} invariant completely rules out the corresponding candidate counterterms. Thus the $1 / 2,1 / 4$ and $1 / 8 \operatorname{BPS} R^{4}, \partial^{4} R^{4}$ and $\partial^{6} R^{4} \mathrm{~N}=8$ counterterms are not allowed as counterterms.

The Volume of Superspace

- It had long been anticipated that a manifestly E_{7} invariant counterterm of $\mathrm{D}=4, \mathrm{~N}=8$ supergravity would occur at weight $\Delta=16$ corresponding to to the 7 -loop order: $\int d^{4} x d^{32} \theta E(x, \theta)$ - the full volume of $\mathrm{N}=8$ superspace.
- Left unresolved, however, was just what this invariant looks like in ordinary component-field terms.
- As with the other candidate initial counterterms we have considered, we are interested in its on-shell expression in terms of curvatures, etc.
- Natural guess for the general structure: $\partial^{8} R^{4}$

Vanishing Volume

- The 7-loop situation, however, turns out to be more complex: the superspace volume actually vanishes on-shell.
- Simply integrating out the volume $\int d^{4} x d^{32} \theta E(x, \theta)$ using the superspace constraints implying the classical field equations would be an ugly task.
- However, using an on-shell implementation of harmonic superspace together with a superspace implementation of the normal-coordinate expansion, one can nonetheless see that it vanishes on-shell for all supersymmetry extensions N.
- $\mathrm{N}=8$ supergravity has a natural $\operatorname{SU}(8) \mathrm{R}$-symmetry group under which the 8 gravitini transform in the 8 Hatwell 8 Howe 1994 representation. In $(8,1,1)$ harmonic superspace, one augments the normal ($x^{\mu}, \theta_{\alpha}^{i}$) superspace coordinates by an additional set of bosonic corrdinates $u^{I}{ }_{j} \quad I=1 ; r=2, \ldots, 7 ; 8$ parametrising the flag manifold $(U(1) \times U(6) \times U(1)) \backslash S U(8)$
- Contracting the usual superspace basis vectors with these and their inverses, one has $\begin{gathered}\tilde{E}_{I}^{\alpha}=u^{i}{ }_{I} \tilde{E}_{i}^{\alpha} \\ \tilde{E}^{\alpha I}=u^{I}{ }_{i} \tilde{E}^{\alpha i}\end{gathered}$
- Then work just with manifest $U(1) x U(6) x U(1)$ covariance.
- Combining these with the $d J_{I}$ vector fields on the harmonic flag manifold, one finds that the subset

$$
\hat{E}_{\hat{A}}:=\left\{\tilde{E}_{\alpha}^{1}, \tilde{E}_{\dot{\alpha} 8}, d^{1}{ }_{r}, d^{r}{ }_{8}, d^{1}{ }_{8}\right\}, \quad 2 \leq r \leq 7
$$

is in involution:

$$
\left\{\hat{E}_{\hat{A}}, \hat{E}_{\hat{B}}\right\}=C_{\hat{A} \hat{B}}{ }^{\hat{C}} \hat{E}_{\hat{C}}
$$

- One can then define Grassman-analytic superfields annihilated by the dual superspace derivatives $D_{\alpha 1}, \bar{D}_{\dot{\alpha}}^{8}$
- Some non-vanishing curvatures are

$$
R_{\alpha \dot{\beta} 8,{ }_{1}^{1}}^{1}=R_{\alpha \dot{\beta} 8, \quad, \quad{ }_{8}^{1}}^{1}=-B_{\alpha \dot{\beta}}
$$

where $B_{\alpha \dot{\beta}}=\bar{\chi}_{\dot{\beta}}^{1 i j} \chi_{\alpha 8 i j}$ is Grassman-analytic

Normal coordinates for a $28+4$ split

- One can define normal coordinates

$$
\zeta^{\hat{A}}=\left\{\zeta^{\alpha}=\delta_{\mu}^{\alpha} \theta_{i}^{\mu} u_{1}^{i}, \bar{\zeta}^{\dot{\alpha}}=\delta_{\dot{\mu}}^{\dot{\alpha}} u_{i}^{8} \bar{\theta}^{\dot{\mu} i}, z_{1}^{r}, z_{r}^{8}, z_{1}^{8}\right\}
$$

associated to the vector fields $\hat{E}_{\hat{A}}$.

- Expanding the superspace Berezinian determinant in these, one finds the flow equation

$$
\zeta^{\hat{\alpha}} \partial_{\hat{\alpha}} \ln E=-\frac{1}{3} B_{\alpha \dot{\beta}} \zeta^{\alpha} \bar{\zeta}^{\dot{\beta}}+\frac{1}{18} B_{\alpha \dot{\beta}} B_{\alpha \dot{\alpha}} \zeta^{\alpha} \zeta^{\beta} \bar{\zeta}^{\dot{\alpha}} \bar{\zeta}^{\dot{\beta}}
$$

- Integrating, one finds the expansion of the determinant in the four fermionic coordinates $\zeta^{\hat{\alpha}}=\left(\zeta^{\alpha}, \zeta^{\dot{\alpha}}\right)$:

$$
E(\hat{x}, \zeta, \bar{\zeta})=\mathcal{E}(\hat{x})\left(1-\frac{1}{6} B_{\alpha \dot{\beta}} \zeta^{\alpha} \zeta^{\dot{\beta}}\right)
$$

- However, since this has only ζ^{2} terms, integration over the four $\zeta^{\hat{\alpha}}$ vanishes.

1/8 BPS_{7} invariant candidate notwithstanding

- Despite the vanishing of the full $\mathrm{N}=8$ superspace volume, one can nonetheless use the harmonic superspace formalism to construct a different manifestly E_{7}-invariant candidate:

$$
I^{8}:=\int d \mu_{(8,1,1)} B_{\alpha \dot{\beta}} B^{\alpha \dot{\beta}}
$$

- At the leading 4-point level, this can be written as a full superspace integral with respect to the linearised $N=8$ supersymmetry. It cannot, however, be rewritten as a fullsuperspace integral at the nonlinear level.
- Full-superspace manifestly E_{7}-invariant candidates exist in any case from 8 loops onwards.

Current outlook

- As far as one knows, the first acceptable $\mathrm{D}=4$ counterterm for maximal supergravity still occurs at $\mathrm{L}=7$ loops ($\Delta=16$).
- Current divergence expectations for maximal supergravity are consequently:

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6	7
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	0
Gen. form	$\partial^{12} R^{4}$	$\partial^{10} R^{4}$	R^{4}	$\partial^{6} R^{4}$	$\partial^{6} R^{4}$	$\partial^{12} R^{4}$	$\partial^{8} R^{4}$

Blue: known divergences

Possible 5-loop test?

- At the 4-point level, the unitarity-based calculations of Bern, Carrasco, Dixon, Johansson \& Roiban simultaneously give results for all dimensions D at a given loop order L . So one can contemplate fractional dimensions when necessary.
- A key clue would be a parting of the ways of maximal SYM and maximal supergravity at $\mathrm{L}=5$ in their divergence behaviour. From what we now know, L=5 max SYM should show a divergence ($\frac{1}{\epsilon}$ pole) at $\mathrm{D}=26 / 5$ while $\mathrm{L}=5$ max supergravity could diverge earlier, at $\mathrm{D}=24 / 5$ with a generic $\partial^{8} R^{4}$ structure. This would be a clear indication that $\mathrm{D}=4$ supergravity should first diverge at $\mathrm{L}=7$.

Accordingly, another bet was made with Zvi Bern

