Gluons for (almost) nothing,

and gravitons for free

(a constrained poem in a graphy S-matrix)
NBIA Summer Institute 2011, Strings, Gauge Theory, and the LHC 30 August
J. J. M. Carrasco

Stanford Institute for Theoretical Physics

Based on work with:
Zvi Bern, Johannes Broedel, Lance Dixon, Henrik Johansson, and Radu Roiban

What is the right way to

 write down gauge and gravity scattering amplitudes?
insightful?

compact?
doable?

Consider a Vilanelle

Do Not Go Gentle Into That Good Night

Do not go gentle into that good night, Old age should burn and rave at close of day; Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.
Good men, the last wave by, crying how bright Their frail deeds might have danced in a green

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay, Rage, rage against the dying of the light.

And you, my father, there on that sad height, Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night.

Rage, rage against the dying of the light.
Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way, Do not go gentle into that good night.

Rage, rage against the dying of the light.

Do Not Go Gentle Into That Good Night

Do not go gentle into that good night,

Old age should burn and rave at close of day; Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they

Do not go gentle into that good night.

Good men, the last wave by, crying how bright Their frail deeds might have danced in a green bay,
Rage, rage against the dying of the light.
Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way, Do not go gentle into that good night.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay, Rage, rage against the dying of the light.

And you, my father, there on that sad height, Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night.
Rage, rage against the dying of the light.
-Dylan Thomas

Do Not Go Gentle Into That Good Night

Do not go gentle into that good night, Old age should burn and rave at close of day; Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they

Do not go gentle into that good night.

Good men, the last wave by, crying how bright Their frail deeds might have danced in a green bay, Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way, Do not go gentle into that good night.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay, Rage, rage against the dying of the light.

And you, my father, there on that sad height, Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night. Rage, rage against the dying of the light.
-Dylan Thomas

Do Not Go Gentle Into That Good Night

Do not go gentle into that good night,
Old age should burn and rave at close of day; Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.
Good men, the last wave by, crying how bright Their frail deeds might have danced in a green bay, Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way, Do not go gentle into that good night.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay, Rage, rage against the dying of the light.

And you, my father, there on that sad height, Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night. Rage, rage against the dying of the light.
-Dylan Thomas

Do Not Go Gentle Into That Good Night

Do not go gentle into that good night,
Old age should burn and rave at close of day; Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
Do not go gentle into that good night.
Good men, the last wave by, crying how bright Their frail deeds might have danced in a green bay,
Rage, rage against the dying of the light.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay,

Rage, rage against the dying of the light.
And you, my father, there on that sad height,
Curse, bless, me now with your fierce tears, I
And you, my father, there on that sad height,
Curse, bless, me now with your fierce tears, I pray.
Do not go gentle into that good night.
Rage, rage against the dying of the light.
-Dylan Thomas

Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way, Do not go gentle into that good night.

What's going on?

- Minimal information in.

- Relations propagate this information to a full solution.

Consider an Amplitude

So what are these relations for YM?
a duality between color and kinematic numerator factors for gauge theories

$$
\frac{(-i)^{L}}{g^{n-2+2 L}} \mathcal{A}^{\text {loop }}=\sum_{\mathcal{G} \in \mathrm{cubic}} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D}} \frac{1}{S(G)} \frac{n(G) c(G)}{D(G)}
$$

($n=$ numerator, $c=c o l o r$, S=symmetry, $D=$ denominator)
completely shanging our way of calculating
write down gauge theory amplitudes with minimal input from theory
trivially write down related gravity amplitudes

Map of talk

- Tree insights from loop level results
(sometimes it's easier to discover things at loops!)
- Generalizing duality to loop level
- Current Knowledge/Future outlook

Graphy Thinking!

Take seriously the idea of momentum-flow graphs as a very natural way to organize amplitudes Amplitude $\sim \sum f\left(\right.$ graph $\left._{i}\right)$
Conventional wisdom: these ${ }^{i}$ sorts of diagrams are a handy trick for calculating.

"Recent" wisdom: these sorts of diagrams are a (occasionally) handy old-fashioned trick for calculating. but local representations are having a come-back!
The point: this is more than a trick...
Conservation of momenta is a very physical symmetry representations making this manifest are natural places to hunt for physical kinematic structure.

The ability to simultaneously encode color information is very special for gauge theory amplitudes.

Cubic Organization:

Theory dependent
Amplitude $\sim \sum_{i \in \text { cubic }} \frac{h\left(\operatorname{graph}_{i}\right)}{D\left(\operatorname{graph}_{i}\right)}$

$$
D\left(\operatorname{graph}_{i}\right)=\prod_{p \in \text { internal edges }} p^{2}
$$

Gauge theory:
$h\left(\right.$ graph $\left._{i}\right) \propto n\left(\right.$ graph $\left._{i}\right) c\left(\right.$ graph $\left._{i}\right) \ldots$
$\mathrm{n}($.$) kinematic numerator "dressing" (antisymmetric)$
c(.) group theoretic color factor:
Dress vertices of diagram (i) with
the structure constantsf ${ }^{a b c}=\operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{c}\right)$

5 loop, 4pt, planar N=4 sYM

2007

3 loop, 4-pt full N=4 sYM 3 loop, 4-pt full N=8 SUGRA

Bern, JJMC, Dixon, Johansson, Kosower, Roiban

2007,

4 loop, 4 pt full $N=4$ sYM and N=8 SUGRA

(1) - (1) (1) (H) (A) (A) (A) (A)

$A=A B A+B A+A)$

\qquad

Why need anything more?

- Go beyond four-loops (five-loop N=8 SUGRA critical test for question of finiteness)
- Go beyond four-point -- there are entire theories to understand, and more to a theory than its UV behavior
- Scattering is very physical way at getting at the information in a QFT -- discovering structures in scattering (even perturbative) $=$ => discoveries about the language of the theory

Surprise at tree-level!

BCJ (2008)

Can always find a representation, so for every int. edge:

(Graph statement of Jacobi Relation)
$O()=.c(.) \leftrightarrow O()=.n($.
$\mathcal{A}_{m}^{\mathrm{tree}}=g^{(m-2)}$

(originally verified thru 8pt, now we know it's true)

Introduce 3 graph operators taking graph \& edge \rightarrow graph

Look at N=4 SYM, 2-loops

 (surpressing prefactor)

Scalar integrals with diagrams representing denominators, encoding conservation of momenta

Numerator "dressings" of integrals $\left(n_{i}\right)$
color: $C^{(i)} \equiv$ Dress vertices with the structure constants $f^{a b c}$

Hint of a new duality:

The numerator dressings n(graph) obey the graphical Jacobi relation:
$n(\hat{s}(\square))=n(\hat{t}(\square \square))$

$$
+n(\hat{u}(\square))
$$

Hint of a new duality:

The numerator dressings n (graph) obey the graphical Jacobi relation:

$+n(\hat{u}(\square))$

$$
+n(\text { KI) }
$$

Hint of a new duality:

The numerator dressings n(graph) obey the graphical Jacobi relation:

$\left(\kappa_{1}+\kappa_{2}\right)^{2}=0+\left(\kappa_{1}+\kappa_{2}\right)^{2}$

N=4 SYM, 3-loops

Numerator "dressings" of integrals n(graphs)

$$
s_{a, b}=\left(\kappa_{a}+\kappa_{b}\right)^{2}
$$

Off-shell, doesn't (automatically) work

n(graph) $=$ numerator kinematic dressing

Off-shell, doesn't (automatically) work at 3-loops!

With all but indicated momenta on shell: $p^{2}=0$

With all but indicated momenta on shell: $p^{2}=0$

n(graph) $=$ numerator kinematic dressing

$$
s_{a, b}=\left(k_{a}+k_{b}\right)^{2}
$$

With all but indicated momenta on shell: $p^{2}=0$

$=n(\overbrace{1}^{2} \quad \underbrace{2}_{4}$

$S_{12} S_{45}=S_{14} S_{46}+$ $\left(S_{12} S_{45}-S_{14} S_{46}\right)$
n(graph) $=$ numerator kinematic dressing

$$
s_{a, b}=\left(k_{a}+k_{b}\right)^{2}
$$

With all but indicated momenta on shell: $p^{2}=0$

n(graph) $=$ numerator kinematic dressing

With all but indicated momenta on shell: $p^{2}=0$

n(graph) $=$ numerator kinematic dressing

With all but indicated momenta on shell: $p^{2}=0$

examine color factors of 4-pt uncut gluonic tree:
$\operatorname{d(\Gamma)}=\left(\begin{array}{c}(1) \\ \hline\end{array}\right.$
true by Color Jacobi identity!
n(graph) $=$ numerator kinematic dressing
$c($ graph $)=$ color factor

So what's going on? Let's get graphy! Four-point tree amplitude: $g^{2}\left(\frac{c_{s} n_{s}}{s}+\frac{c_{t} n_{t}}{t}+\frac{c_{u} n_{u}}{u}\right)$ Of course there's a freedom ("generalized gauge invariance"): $n_{i} \rightarrow n_{i}+\triangle_{i}$ as long as $\frac{c_{s} \triangle_{s}}{s}+\frac{c_{t} \triangle_{t}}{t}+\frac{c_{u} \triangle_{u}}{u}=0$ Turns out that all Δ choices satisfy a duality between color and kinematics:

$$
\underset{\text { kinematic "dressing" }}{\mathcal{O}(.)}=n(.) \quad \mathcal{O}(.)=c(.)
$$

Can this be generalized?

m-point gauge tree amplitude:

$$
\mathcal{A}_{m}^{\text {tree }}=g^{(m-2)} \sum_{g \in \text { cubic }}\left(\frac{c(G) n(G)}{D(G)}\right)
$$

Hypothesize to all points: Color \leftrightarrows Kinematic Duality

$$
\begin{aligned}
& \text { General freedom: } \\
& n(G) \rightarrow n(G)+\Delta(G), \sum_{G \in \text { cubic }}\left(\frac{c(G) \Delta(G)}{D(G)}\right)=0
\end{aligned}
$$

Conjectured can always find a choice of \triangle such that for all graphs \& edges,

$O()=.n($.

$$
O(.)=c(.)
$$

kinematic "dressing" color factor (originally verified thru 8pt, now we know it's true)

Interesting tree-level Jacobi-satisfying numerator representations!

What have we gained?

$(2 m-5)!!$ diags

$(m-2)$! numerators unconstrained by dual kinematic Jacobi
unique topologies http://oeis.org/A000672

Multiplicity: $(m) \longrightarrow$

All cubic trees in terms of 1 topology for each multiplicity

Symmetric numerator functions => only one numerator for each mulitplicity

All cubic trees in terms of 1 topology for each multiplicity

Symmetric numerator functions => only one numerator for each mulitplicity

Gravity?

$\mathcal{A}_{m}^{\text {tree }} \propto$

color factors just sitting there obeying antisymmetry and Jacobi relations.

Gravity?

Gecubic

color factors just sitting there obeying antisymmetry and Jacobi relations.

- With particles all in the adjoint representation of $S U\left(N_{c}\right)$, the full tree amplitude can be decomposed:
(color group generators)
$\mathcal{A}_{n}^{\text {tree }}(1, \ldots, n)=g^{n-2} \sum$
$\operatorname{Tr}\left[T^{a_{1}} \ldots T^{a_{n}}\right] \times$ $P(2, \ldots, n) \quad A_{n}^{\text {tree }}(1, \ldots, n)$ color ordered (stripped) 'partial' amplitude annotated with roman
Full gauge theory amplitudes given with calligraphic \mathcal{A}
Structure constants: $f^{a b c}=\operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{c}\right)$

How to find duality-satisfying numerators?

Easy way at tree-level is to involve color-ordered partial amplitudes

- Write all m-point graphs and all independent Jacobi relations between their numerators
- Solve linear equations in terms of (m-2)! Jacobi-independent numerators (e.g. can let them all be half-ladders)
- Expand all color-ordered amplitudes in terms of their constituent graphs:

$$
A_{m}^{\text {tree }}(1,2,3, \ldots, m)=\sum_{g \in \text { cyclic }} \frac{n(g)}{\prod_{l \in p(g)} l^{2}}
$$

- Write the graphs in the ($\mathrm{m}-2$)! graph basis, and solve the linear relations in terms of the color-ordered amplitudes.
- This is it--you have a duality-satisfying representation. (symmetric is trickier)

Features:

- Completely straightforward solution of linear relations (trickiest bit is drawing graphs)
- Makes all residual gauge-freedom manifest: gauge freedom $=(m-3) \times(m-3)$! completely unconstrained numerator functions. (can use to, e.g. make symmetric numerator functions)
- Independent of dimension and helicity structure
- Interesting consequence for gauge-independent quantities: fewer independent color-ordered scattering amplitudes

"Observable" implications:

Only ($n-3$)! independent color-ordered tree partialamplitudes for n-point interaction. (c.f. ($n-2$)! from Kleis-Kuijf) e.g. 5 pt has 2 indep. color-ordered amps not 6:

$$
A_{5}^{\text {tree }}(12345) \quad A_{5}^{\text {tree }}(12354)
$$

6 pt has 6 indep. color-ordered amps not 12: $A_{6}^{\text {tree }}(123456) A_{6}^{\text {tree }}(123564) A_{6}^{\text {tree }}(123645)$ $A_{6}^{\text {tree }}(123546) A_{6}^{\text {tree }}(123465) \quad A_{6}^{\text {tree }}(123654)$

We found a general formula expressing any n-point color ordered amplitude in terms of chosen ($n-3$)! basis for SYM. since proved!

Bjerrum-Bohr, Damgaard, Vanhove; Stieberger Feng, He, (R.) Huang, Jia

KLT field expressions:

Gravity tree amplitudes $i \in\{2, \ldots, n / 2\}$

$M_{n}^{\text {tree }}(\underline{1}, \ldots, n-1, n)=\underset{j \in\{n / 2+2, \ldots, n-2\}}{ }$ $i(-1)^{n+1} \sum_{\text {perms }(2, \ldots, n-2)}\left[A_{n}^{\text {tree }}(1, \ldots, n-1, n) \sum_{\text {perms }(i, j)} f f\left(i_{1}, \ldots, i_{j}\right)\right.$ $\left.\times \bar{f}\left(l_{1}, \ldots, l_{j^{\prime}}\right) \widetilde{A}_{n}^{\text {tree }}\left(i_{1}, \ldots, i_{j}, 1, n-1, l_{1}, \ldots, l_{j^{\prime}}, n\right)\right]$
$\begin{aligned} & \text { Color- } \\ & \text { ordered }\end{aligned} \quad f\left(i_{1}, \ldots, i_{j}\right)=s_{1, i_{j}} \prod_{m=1}^{j-1}\left(s_{1, i_{m}}+\sum_{k=m+1}^{j} g\left(i_{m}, i_{k}\right)\right)$,
$\begin{aligned} & \text { Color- } \\ & \text { ordered }\end{aligned} \quad f\left(i_{1}, \ldots, i_{j}\right)=s_{1, i_{j}} \prod_{m=1}^{j-1}\left(s_{1, i_{m}}+\sum_{k=m+1}^{j} g\left(i_{m}, i_{k}\right)\right)$, gauge tree $\quad \bar{f}\left(l_{1}, \ldots, l_{j^{\prime}}\right)=s_{l_{1}, n-1} \prod_{m=2}^{j^{\prime}}\left(s_{l_{m}, n-1}+\sum_{k=1}^{m-1} g\left(l_{k}, l_{m}\right)\right)$ amplitudes

$$
g(i, j)=\left\{\begin{array}{ll}
s_{i, j} & \text { if } i>j \\
0 & \text { else }
\end{array}\right\} \quad s_{a, b}=\left(k_{a}+k_{b}\right)^{2}
$$

KLT field expressions:

Gravity tree amplitudes $i \in\{2, \ldots, n / 2\}$

$M_{n}^{\text {tree }}(\underline{1}, \ldots, n-1, \underline{n})=j \in\{n / 2+2, \ldots, n-2\}$

$$
\operatorname{perms}(i, j)
$$

$$
\left.\times \bar{f}\left(l_{1}, \ldots, l_{j^{\prime}}\right) \widetilde{A}_{n}^{\text {tree }}\left(i_{1}, \ldots, i_{j}, \underline{1}, \underline{n-1}, l_{1}, \ldots, l_{j^{\prime}}, \underline{n}\right)\right]
$$

Colorordered gauge tree amplitudes

$$
g(i, j)=\left\{\begin{array}{ll}
s_{i, j} & \text { if } i>j \\
0 & \text { else }
\end{array}\right\} \quad s_{a, b}=\left(k_{a}+k_{b}\right)^{2}
$$

$$
\begin{aligned}
& i(-1)^{n+1} \sum_{\text {perms }(2, \ldots, n-2)}\left[A_{n}^{\text {tree }}(\underline{1}, \ldots, \underline{n-1}, \underline{n}) \sum_{\operatorname{perms}(i, j)} \int_{f}\left(i_{1}, \ldots, i_{j}\right)\right. \\
& \left.\times \bar{f}\left(l_{1}, \ldots, l_{j^{\prime}}\right) \widetilde{A}_{n}^{\text {tree }}\left(i_{1}, \ldots, i_{j}, \underline{1}, \underline{n-1}, l_{1}, \ldots, l_{j^{\prime}}, \underline{n}\right)\right]
\end{aligned}
$$

Colorordered gauge tree amplitudes

New "observable" relations allow re-expression of KLT in terms of different "basis" amplitudes: Leftright symmetric, etc.

But we can do better...

Clarifying Gravity Amplitudes

 satisfying cubic-diagrams:

Clarifying Gravity Amplitudes

Writing color-ordered gauge tree amplitudes in representation of duality satisfying cubic-diagrams:

Gives gravity tree amplitudes:
$-i M_{n}^{\text {tree }}=\sum_{G \in \text { cubic }} \frac{n(G) \tilde{n}(G)}{D(G)}$
Gravity as the sdouble copy" of gauge theory!

$G \in c u b i c$

Note n and \widetilde{n} can come from different reps of same theory, or even different theories altogether.
$\mathcal{N}=4$ sYM $\otimes \mathcal{N}=4$ sYM $\Rightarrow \mathcal{N}=8$ sugra $\mathcal{N}=p s Y M \otimes \mathcal{N}=4$ sYM $\Rightarrow \mathcal{N}=4+p$ sugra (see Zvi's talk)

Only one gauge representation need have duality imposed, consequence of general freedom:
$n(G) \rightarrow n(G)+\triangle(G), \sum_{G \in c}\left(\frac{c(G) \triangle(G)}{D(G)}\right)=0$ $s \in$ cubic
can only depend on algebraic property of $c(G)$ not numeric values. So as long as $\widetilde{n}(G)$ satisfies same algebra (ie. duality) can shift $n(G)$ as we please.

This is all (semi)-classical

- The world is QUANTUM wouldn't it be great to generalize to loop-order corrections?

This is all (semi)-classical

- The world is QUANTUM wouldn't it be great to generalize to loop-order corrections?

"One should always generalize." - C. Jacobi

What's the right generalization?

$$
\frac{(-i)^{L}}{g^{n-2+L L}} \mathcal{A}^{100 D}=\sum_{\mathcal{G} \in \mathrm{Cubic}} \int_{i=1} \prod_{i=1}^{L} \frac{d^{D} p_{i}}{(2 \pi)^{D}} \frac{1}{S(\mathcal{G})} \frac{n(\mathcal{G})(\mathcal{G})}{D(\mathcal{G})}
$$

Hypothesize duality holds unchanged to all loops!
$\begin{aligned} & \text { Representation freedom: } \\ & n(G) \rightarrow n(G)+\Delta(G), \sum_{G \in c u b i c}\end{aligned}\left(\frac{c(G) \triangle(G)}{D(G)}\right)=0$

Gecubic

Conjecture there is always a choice of \triangle causing n to satisfy for all internal edges from any representation same duality:

[^0]If conjectured duality can be imposed for: Gauge:

$$
\frac{(-i)^{L}}{g^{n-2+2 L}} \mathcal{A}^{\text {loop }}=\sum_{G \in \mathrm{cubic}} \int_{l=1}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D}} \frac{1}{S(G)} \frac{n(G) c(G)}{D(G)}
$$

then, through unitarity \& tree-level expressions:
Gravity:

$$
\frac{(-i)^{L+1}}{(\kappa / 2)^{n-2+2 L}} M^{\text {loop }}=\sum_{G \in \mathrm{cubic}} \int_{l=1}^{L} \prod_{l}^{L} \frac{d^{D} p_{l}}{(2 \pi)^{D}} \frac{1}{S(G)} \frac{n(G) \tilde{n}(G)}{D(G)}
$$

What we always wanted out of a "loop level" relations!

We know this works beautifully at 1 and 2 loops for $\mathrm{N}=4$ and $\mathrm{N}=8$!

prefactor contains
helicity structure:

$$
K=s t A_{4}^{\text {tree }}
$$

Duality: $\mathcal{N}=8$ sugra is obtained if $1 \rightarrow 2$ "numerator squaring"

Original Palette of Diagrams

Integral	$\mathcal{N}=4$ Yang-Mills	$\mathcal{N}=8$ Supergravity
(a)-(d)	s^{2}	$\left[s^{2}\right]^{2}$
(e)-(g)	$s\left(l_{1}+k_{4}\right)^{2}$	$\left[s\left(l_{1}+k_{4}\right)^{2}\right]^{2}$
(h)	$s\left(l_{1}+l_{2}\right)^{2}+t\left(l_{3}+l_{4}\right)^{2}$	$\left(s\left(l_{1}+l_{2}\right)^{2}+t\left(l_{3}+l_{4}\right)^{2}-s t\right)^{2}-s^{2}\left(2\left(\left(l_{1}+l_{2}\right)^{2}-t\right)+l_{5}^{2}\right) l_{5}^{2}$
	$-s l_{5}^{2}-t l_{6}^{2}-s t$	$-t^{2}\left(2\left(\left(l_{3}+l_{4}\right)^{2}-s\right)+l_{6}^{2}\right) l_{6}^{2}-s^{2}\left(2 l_{7}^{2} l_{2}^{2}+2 l_{1}^{2} l_{9}^{2}+l_{2}^{2} l_{9}^{2}+l_{1}^{2} l_{7}^{2}\right)$
		$-t^{2}\left(2 l_{3}^{2} l_{8}^{2}+2 l_{10}^{2} l_{4}^{2}+l_{8}^{2} l_{4}^{2}+l_{3}^{2} l_{10}^{2}\right)+2 s t l_{5}^{2} l_{6}^{2}$
(i)	$s\left(l_{1}+l_{2}\right)^{2}-t\left(l_{3}+l_{4}\right)^{2}$	$\left(s\left(l_{1}+l_{2}\right)^{2}-t\left(l_{3}+l_{4}\right)^{2}\right)^{2}$
	$-\frac{1}{3}(s-t) l_{5}^{2}$	$-\left(s^{2}\left(l_{1}+l_{2}\right)^{2}+t^{2}\left(l_{3}+l_{4}\right)^{2}+\frac{1}{3} s t u\right) l_{5}^{2}$

Recipe for finding Δ so

 dressings satisfy duality:- Every edge represents a set of constraints on functional form of the numerators of the graphs. Small fraction needed.

- Find the independent numerators (solve the linear equations!)
- Build ansatze for the masters using functions seen on exploratory cuts
- Impose relevant symmetries
- Fit to the theory!

$B C J(2010)$

BCJ (20I0)

BCJ (2010)

$$
\begin{array}{ll}
N^{(\mathrm{a})}=N^{(\mathrm{b})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), & \left(J_{\mathrm{a}}\right) \\
N^{(\mathrm{b})}=N^{(\mathrm{d})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), & \left(J_{\mathrm{b}}\right) \\
N^{(\mathrm{c})}=N^{(\mathrm{a})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), & \left(J_{\mathrm{c}}\right) \\
N^{(\mathrm{d})}=N^{(\mathrm{h})}\left(k_{3}, k_{1}, k_{2}, l_{7}, l_{6}, k_{1,3}-l_{5}+l_{6}-l_{7}\right) \\
+N^{(\mathrm{h})}\left(k_{3}, k_{2}, k_{1}, l_{7}, l_{6}, k_{2,3}+l_{5}-l_{7}\right), & \left(J_{\mathrm{f}}\right) \\
N^{(\mathrm{f})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), & \left(J_{\mathrm{g}}\right) \\
N^{(\mathrm{g})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, l_{7}\right), & \left(J_{\mathrm{h}}\right) \\
N^{(\mathrm{h})}=-N^{(\mathrm{g})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{6}, k_{1,2}-l_{5}-l_{7}\right) \\
-N^{\mathrm{(i)}}\left(k_{4}, k_{3}, k_{2}, l_{6}-l_{5}, l_{5}-l_{6}+l_{7}-k_{1,2}, l_{6}\right), & \left(J_{\mathrm{i}}\right) \tag{h}\\
N^{(\mathrm{i})}=N^{(\mathrm{e})}\left(k_{1}, k_{2}, k_{3}, l_{5}, l_{7}, l_{6}\right) & \left(J_{\mathrm{m}}\right) \\
-N^{(\mathrm{e})}\left(k_{3}, k_{2}, k_{1},-k_{4}-l_{5}-l_{6},-l_{6}-l_{7}, l_{6}\right), & \left(J_{\mathrm{n}}\right)
\end{array}
$$

(h)

Solution is unique!

Only, e.g., require maximal cut information of (e) graph to build full amplitude!

Squaring numerators

 gives N=8 supergravity!$$
s=\left(k_{1}+k_{2}\right)^{2} \quad t=\left(k_{1}+k_{4}\right)^{2} \quad u=\left(k_{1}+k_{3}\right)^{2} \quad \tau_{i, j}=2 k_{i} \cdot l_{j}
$$

\section*{| Integral $I^{(x)}$ | $\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator |
| :--- | :--- |}

$(\mathrm{a})-(\mathrm{d})$	s^{2}
$(\mathrm{e})-(\mathrm{g})$	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$
$(\mathrm{~h})$	$\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right.$
	$\left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3$
(i)	$\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right.$
	$\left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3$
$(\mathrm{j})-(\mathrm{l})$	$s(t-u) / 3$

Note:

BOTH $N=4$ sYM and $N=8$ sugra

manifestly have same overall

 powercounting!$$
s=\left(k_{1}+k_{2}\right)^{2} \quad t=\left(k_{1}+k_{4}\right)^{2} \quad u=\left(k_{1}+k_{3}\right)^{2} \quad \tau_{i, j}=2 k_{i} \cdot l_{j}
$$

\section*{| Integral $I^{(x)}$ | $\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}}=8$ supergravity $)$ numerator |
| :--- | :--- | :--- |}

$(\mathrm{a})-(\mathrm{d})$	s^{2}
$(\mathrm{e})-(\mathrm{g})$	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$
$(\mathrm{~h})$	$\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right.$
	$\left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3$
(i)	$\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right.$
	$\left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3$
$(\mathrm{j})-(\mathrm{l})$	$s(t-u) / 3$

Intermezzo: How do we know of amplitude is correct?

ANSWER:

-Integrand satisfies all D-dimensionc generalized unitarity cuts.

Bern, Dixon and Kosower

Correct?

all cuts:

Leaves no topologies untouched for Feynman rule contributions to be hiding in. (2) spanning set: any set sufficient to guarantee satisfaction of all cuts given the theory

Bern, JJMC, Dixon, Johansson, Roiban (2010)

Correct?

- D-dimensional:

Venerable: $N=1$ in 10D

(as tree multiplicity increases expressions can be unwieldy)
Cheung, O'Connell;
Dennen, Huang, Siegel; Boels;
Cheung, O'Connell;
Dennen, Huang, Siegel; Boels; Bern, JJMC, Dennen, Huang, Ita New Shiny: N=2 in 6D

Caron-Hout, O^{\prime} Connell;
Super New Shiny: N=1 in 10D
Bern, JJMC, Dixon, Johansson, Roiban; Broedel, JJMC

Solved D-dim. cuts special to maximal susy: Iterated 2-particle, Box, Pentacuts

Ok -- we've seen it work through three-loops -anywhere else?

Five point 1-loop N=4 SYM \& N=8 SUGRA

Venerable form satisfies duality (no freedom)
Bern, Dixon, Dunbar, Kosower;
Cachazo

Five point 1-loop N=4 SYM \& N=8 SUGRA

Venerable form satisfies duality (no freedom)

Bern, Dixon, Dunbar, Kosower;
Cachazo

Five point 1-loop N=4 SYM \& N=8 SUGRA

Venerable form satisfies duality (no freedom)

Bern, Dixon, Dunbar, Kosower;
Cachazo

Five point 2-loop N=4 SYM \& N=8 SUGRA

Five point 2-loop N=4 SYM \& N=8 SUGRA

Five point 2-loop N=4 SYM \& N=8 SUGRA

well -- that's it for published $N=4$, but here's a preview of results to come...

(29)

(20)

(34)

(31)

(32)

(6)

(20)

(35)

p
(6)
(7)

Five point 3-loop $N=4$ SYM \& $N=8$ SUGRA

(20)

(29)

(35)
2

(6)

(36)
(32)

(28)

(29)

(20)

(34)

(31)

(32)

(6)

(23)

(29)

(31)
(35)
${ }^{p}(32)$

Five point 3-loop $N=4$ SYM \& $N=8$ SUGRA

(29)

(35)

(20)

(32)

(6)

Four loop planar (extracted cusp anom. dim)

(1)

(12)

(14)

(18)

(6)

Full four loop N=4 SYM \& N=8 SUGRA
(A)
(B) (8) (8) (B) (B) (B) (B) © (1)

(2) (2) (8) (1) (1) (1)
(8) (1) (1) (1) (1)

Full four loop $N=4$ SYM \& N = 8 SUGRA

(B) (2) (1) (1) (1) (1) (B)

(H) (H) (1) (1) (1) (1)
(2) (2) (1) (1) (1) (1) (1)
(9) (1) (1) (1) (1)

Full four loop $N=4$ SYM \& N=8 SUGRA

(sin)

(2) ${ }^{2}>-$
?

(32)

(3i)

(4) (1) 因

(1)
(to appear)

Full four loop N=4 SYM \& N=8 SUGRA
(A)
(B) (8) (8) (B) (B) (B) (B) © (1)

(2) (2) (8) (1) (1) (1)
(8) (1) (1) (1) (1)

Full four loop N=4 SYM \& N=8 SUGRA

(B) (8) (1) (1) (1) (1) (1)

(17) (1) (8) (1) (1) (2) (1) (1)
(3) (2) (3) (1) (1) (b) (1)
(9) (1) (1) (1) (1)

Full four loop $N=4$ SYM \& N=8 SUGRA

d
(i) (e)

(

(ब2)
(2) (B) ((6) $=2$
 (32) Coses)

(32)

-$-(-2-1$

Contrast with BCDJR (2009)

$$
I_{i}=\int\left[\prod_{p=1}^{4} \frac{d^{D} l_{n_{p}}}{(2 \pi)^{D}}\right] \frac{N_{i}\left(l_{j}, k_{j}\right)}{l_{1} l_{2} \ldots l_{13}}
$$

Numerators determined from 2906 maximal and near maximal cuts YM dags thru KLT used as truth.

Completeness of ansatz verified on 26 generalized cuts

(a)

(e)

(i)

(b)

(f)

(j)

(C)

(g)
(d)

(h)

UV Divergence at Four Loops

$$
I_{i}=\int\left[\prod_{p=1}^{4} \frac{d^{D} l_{n_{p}}}{(2 \pi)^{D}}\right] \frac{N_{i}\left(l_{j}, k_{j}\right)}{l_{1} l_{2} \ldots l_{13}}
$$

$N_{i} \sim O\left(k^{4} l^{8}\right) \quad k$ external
Leading numerators $N_{i} \sim O\left(k^{4} l^{8}\right)$ would have $D=4.5$ divergence l internal: too many are bad for UV

Represented by integrals which cancel in the full amplitude
Sub-leading divergence: $O\left(k^{5} l^{7}\right)$
trivially vanishes under integration by Lorentz invariance

UV Divergence at Four Loops

$N_{i} \sim O\left(k^{6} l^{6}\right)$ corresponding to $D=5$ div.
Expand the integrands about small external momenta:
$N_{i}^{(6)}+N_{i}^{(7)} \frac{K_{n} \cdot l_{j}}{l_{j}^{2}}+N_{i}^{(8)}\left(\frac{K_{n}^{2}}{l_{j}^{2}}+\frac{K_{n} \cdot l_{j} K_{q} \cdot l_{p}}{l_{j}^{2} l_{p}^{2}}\right)$
(K_{i} annotates sums over external momenta)

Marcus \& Sagnotti UV extraction method cancels after using $D=5$ integral identities like:

Understand divergence, but UV structure was obscured!

In the new manifest representation, as Radu told us, we have the power to identify remarkable structure between YM and Gravity

$$
\begin{aligned}
\left.\mathcal{A}_{4}^{(4)}\right|_{\text {pole }} ^{S U\left(N_{c}\right)} & =-6 g^{10} \mathcal{K} N_{c}^{2}\left(N_{c}^{2}\right. \\
\times & \left(s\left(\operatorname{Tr}_{1324}+\operatorname{Tr}_{1423}\right)+t\left(\operatorname{Tr}_{1243}+\operatorname{Tr}_{1342}\right)+u\left(\operatorname{Tr}_{1234}+\operatorname{Tr}_{1432}\right)\right)
\end{aligned}
$$

(to appear)

Underlying Algebra?

- Understanding in 4D in self-dual sector, translating into 4D MHV

Monteiro, O'Connell

- Inverting standard color decomposition, i.e. tracing over kinematics

Bern, Dennen

$$
\mathcal{A}_{m}^{\text {tree }}=g^{m-2} \sum_{\sigma} \tau_{(12 \ldots m)} A_{m}^{\text {dual }}(1,2, \ldots, m)
$$

Solving the functional relations?

- These loop level calculations work beautifully!
- but ... functional equation solving! "Small problems at the multiloop level aren't small problems." -Z. Bern Want to figure out new techniques of how to solve these guys.
- Tree-level imposition of symmetry provides many of the same challenges
- Could be an interesting playground for techniques

Broedel, JJMC

String Theory \& Tree-level Duality

- Derivation of relations leading to (n-3)! amplitudes using monodromy of ST amps.

Bjerrum-Bohr, Damgaard, Vanhove Stieberger

- Duality first satisfied in 5-point ST using pure-spinor formalism
- Insights into nature of duality in Heterotic strings due to parallel treatment of color and kinematics
- n-point duality (local, asymmetric) satisfied in ST using pure-spinor formalism

Mafra, Schlotterer,
Stieberger

Field Theory \& Tree Level Duality

- Proof of double-copy form of gravity assuming duality
- Existence of Lagrangian manifesting 6-point duality

Bern, Dennen, Huang, Kiermaier

- Using ($n-3$)! relations via BCFW for field theoretic proofs of KLT relations, new forms etc.

Bjerrum-Bohr, Damgaard, Feng, Sondegaard Feng, He, (R.) Huang, Jia

- Explicit (non-symmetric) duality-satisfying tree-level num. to all multiplicity.
- Derivation of relations leading to (n-3)! amplitudes using BCFW

Feng, (R.) Huang, Jia

- Relations with (some) non-SUSY matter
- Symmetric, amplitude encoded, duality satisfying tree-level representations from 4-6 points JB, JJMC

What's the endgame?

- We don't want to have to write an ansatz. Rather, a direct way to write down master.
- As an intermediate step, we'll be happy with greater control over more fluidly flowing between representations (c.f. polytopes)
- Existence in higher-genus perturbative string theory?
- Connection to recent understanding from HigherSpin work?
- What is non-perturbative implication/barrier to gravity as a double-copy?
proofs, generalizations, etc... Lots to do!

 (A) (A) (A) (A) (A) (A) (B) (B) (i) (B) (B) (B) (B) (B) (B) (B)

(1) (1) (1) (1) © (1) © (1) (1)
(4) (ㅂ) (8) (1) (1) (1) (1) (2) (8)
(1) (1) (1) © (1) (1) (A) (\&) (1)

[^0]: Wednesday, September 7, 11

