
Figure 2: Posterior probability for the coin bias for N = 10,100,1000 (from thin to thick) and H/N =
0.3,0.5,0.8 (from left to right).

2 Single parameter inference

1. A coin is tossed N times and heads come up H times [...]

Answer

The likelihood function for pH is given by the binomial

L(pH) =P(H ∣pH , N) = (N

H
)p H

H (1−pH)N−H . (15)

If we choose a flat prior over pH , i.e., uniform over 0 ≤ pH ≤ 1, the posterior is numerically identical to

the likelihood, apart from the normalizing constant (the evidence), and we obtain:

P(pH ∣H , N)= L(pH)
Z

(16)

where

Z = (N

H
)∫ 1

0
dpH p H

H(1−pH)N−H = (N

H
)H !(N −H)!
(N +1)! . (17)

For N = 100, the posterior on pH is plotted in Fig. 2 for a few choices of H and N = 10,100,1000.

A measure of the uncertainty of our estimate for pH is the standard deviation of the posterior, which

becomes very close to Gaussian for large N and not too small H , as apparent from Fig. 2. We can esti-

mate the standard deviation by expanding the posterior to second order in pH around the maximum,

and the standard deviation is then given by minus the curvature of the log-posterior at the peak:

P(pH ∣H , N) ≈P0 exp(−1

2

(pML−p)2)
Σ2

) , (18)
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where

Σ
−2 =−∂2 lnP(pH ∣H , N)

∂p2
∣
p=pML

=− ∂

∂p
(H

p
− N −H

1−p
)∣

p=pML

= H −2H p +p2N

p2(1−p)2 ∣
p=pML

= N
H
N
(1−H/N) .

(19)

and pML is the maximum of the posterior, given by pML = H/N (as apparent from derivating Eq. (16)

wrt pH and setting it to 0). So the standard deviation of the posterior is approximately given by

Σ ≈ (H
N
(1−H/N))1/2√

N
. (20)

The probability of the (N +1)-th flip giving heads, given that in the past N flips we obtained H heads

is given by:

P((N +1)-th =H ∣N , H)=∫ dr P((N +1)-th =H ∣pH)P(pH ∣N , H) (21)

i.e., the prior predictive distribution for the next flip is the average of the likelihood for that flip, P((N+
1)-th =H ∣pH) over the current posterior, P(pH ∣N , H) integrated over the parameter. This gives

P((N +1)-th =H ∣N , H)=∫ dpH

p H
H (1−pH)N−H

Z
= H +1

N +2
. (22)

So for example, for N = 0, H = 0 you recover P(first =H ∣0,0) = 1/2, i.e., if you haven’t observed anything

yet you have a 50% probability of heads in your first trial. for N = 10, H = 9 you predict P(11-th∣10,9) =
83.3%, i.e., you are becoming confident that your coin is biased. For N = 100, H = 90 you get P(101-st∣100,90) =
89.2% and so on. Notice that, as you would expext, for H = N/2 (i.e., over N flips exactly half of them

were heads) your prediction reduces to (H +1)/(2H +2) = 1/2, as it should.

2. An astronomer wishes to know the (mono-chromatic) flux of a particular source [...]

Answer

(a) The true flux of the source, Fsrc. (Even though this is a definite physical number, it is reasonable

to consider it’s value in probabilistic terms, as it is not uniquely/logically determined by the

data.)

(b) The datum is Nsrc, the number of photons registered in the measurement of the source.

(c) The starting point for answering this question is to see that photons from the source hit the

detector at a given rate (Fsrc/C per unit observation time) but that the photons propagate in-

dependently. This implies that the number of photons that hit the detector in a given period is

Poisson distributed, and so

Pr(Nsrc∣Fsrc) = (Fsrc/C)Nsrc e−Fsrc/C

Nsrc!
. (23)

In the case of bright sources, for which Fsrc/C ≫ 1, the distribution of Nsrc is still Poisson, al-

though mathematically extremely well approximated as a Gaussian of the form

Pr(Nsrc∣Fsrc)∝ 1

(Fsrc/C)1/2 e−1/2(Nsrc−Fsrc/C)2/(Fsrc/C), (24)

where, in the large Nsrc limit, it is being treated as a continuous variable. This equation is no

longer correctly normalised as an awkward sum over Nsrc must be done; however the relative
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probabilities of the different possible Nsrc values for a given Fsrc are correct. More importantly,

the likelihood is a smooth function of Fsrc, and it is this interpretation that will be required for

later inference. However, whilst Pr(Nsrc∣Fsrc) is a Gaussian in Nsrc, it is not Gaussian in terms of

Fsrc, as Fsrc appears in the normalising constant and in the denominator of the exponential.

It is important not only to obtain the mathematical form of the likelihood but also to understand

what it means. It is not the probability of Fsrc, even though in some cases it might have a similar

form (e.g., peaked in the same place, or with a similar spread). It is only the probability that Nsrc

photons would be received from the source if its flux was Fsrc.

(d) You, as an astronomer, are very far from total ignorance about astronomical sources and their

fluxes. If you know the type of the source (e.g., a quasar or a Galactic star, etc.) then previous

astronomical knowledge about all sorts of astronomical sources. Even without any particular

knowledge about the type of source, there is the generic fact that, due to geometry, there are

significantly more faint sources than bright sources. The immediate implication is that, in any

situation where the data do not strongly constrain the source’s flux, it will be important to in-

clude the preponderence of faint sources in the prior.

(e) The complicated nature of astronomical surveys – and particular their attendant selection ef-

fects – makes this a potentially difficult question to answer. However the underlying principle is

that the observed flux distribution of the sources in question would serve as a good, if approxi-

mate, prior for the flux of the source of interest.

(f) The prior implied is (up to a normalisation constant)

Pr(Fsrc)Θ(Fsrc)∝ F
−5/2
src , (25)

where Θ(x) is the Heavyside step function, to ensure that the prior is zero for negative fluxes.

This might seem a little fussy, but in exploring an unfamiliar problem it is generally worth being

more careful/explicit about the assumptions you’re making.

The posterior distribution of the source’s true flux would then be (up to a normalisation con-

stant)

Pr(Fsrc∣Nsrc)∝Θ(Fsrc)(Fsrc/C)Nsrc−5/2e−Fsrc/C . (26)

In the limit of a large number of photons, the Gaussian approximatin invoked above leads to the

posterior

Pr(Fsrc∣Nsrc)∝Θ(Fsrc)F−3
srce−1/2(Nsrc−Fsrc/C)2/(Fsrc/C). (27)

The prior is not normaliseable unless a minimum flux, Fmin is assumed (or justified somehow),

and so care must be taken with these posteriors to check that they are normaliseable. The obvi-

ous potential problem is as Fsrc→ 0, as it is here that the improper prior becomes infinite. The

prior diverges as a power-law, as does the likelihood, when expressed as a function of Fsrc, al-

though the latter is dominant provided Nsrc > 5/2, so the posterior is bounded and integrable.

The Gaussian approximation does not have this property, however, and the likelihood is finite, if

very small, at Fsrc = 0, leading to a sharp “spike” in the posterior at Fsrc = 0 that contains infinite

probability. This is an artefact of the Gaussian approximation to the Poisson likelihood and is

not a serious problem in practice.

(g) The likelihoods and unnormalised posterior distributions are shown in Fig. 3. In the Nsrc = 5 case

the full Poisson formula is used; in the Nsrc = 104 case the Gaussian approximation is adopted. In

the latter case the posterior and likelihood are almost indistinguishable and also both very close

to Gaussian. The prior does not play a strong role as the high-precision measurement is much

more informative. In the Nsrc = 5 case, however, the measurement contains far less information

and the source is probably fainter than the data might naively be taken to indicate.
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Figure 3: Unnormalised posterior in the source flux, Fsrc in the cases where Nsrc = 5 (left) and Nsrc = 104

(right). In both cases the dashed lines show the likelihood as a function of Fsrc.

(h) The full answer to any Bayesian parameter estimation problem is the posterior distribution in

the parameter(s) of interest. However in many practical situations (e.g., reporting flux estimates

of millions of sources) there is no way of assimilating or visualising the full distribution. Hence

it is useful to try and condense it into, e.g., an estimated value and an error. That said, there

can be no definitive algorithm for doing this. In some cases a few parameters can completely

encapsulate the posterior (e.g., the mean/mode/median and standard deviation if it’s Gaussian),

but in most cases this is not strictly possible.

For singly-peaked distributions it is reasonable to use the peak of the posterior, or the median or

the mean. Whichever of these characterising numbers is chosen will be less than the “natural”

estimator, F̂src = C Nsrc. This result is potentially counter-intuitive, especially if you’ve gotten

used to using sampling statistis. One of the first tests many people would run to test an algorithm

being used to estimate some quantity of interest would be to generate lots of fake data with the

flux equal to some known Fsrc and then see if the resultant estimates (from the peak or mean or

whatever) are centred around the true value. Bayesian estimates do not satisfy this test (unless

the prior happens to be symmetric about Fsrc). The reason is that the prior distribution reflects

the distribution of source fluxes in the Universe, which is explicitly contradicted if one simulates

data with a single flux value.

Put another way, in any real astronomical measurement most of the sources with photon counts

Nsrc will have true fluxes which are less than Fsrc =C Nsrc as there are more faint sources which

are randomly scattered bright than there are brighter sources scattered faint. This phenomenon

has long been known as Eddington bias, where the term "bias" is used because of the fact that

conventional flux estimates are biased high. In terms of Bayesian statistics it would simply be the

result of having made a poor choice of prior (that didn’t reflect the prevalence of faint sources).

3. This problem takes you through the steps to derive the posterior distribution for a quantity of interest

[...]

Answer
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(a) The likelihood is given by

L(θ) = N

∏
i=1

1√
2πσ

exp(−1

2

(θ− x̂i)2
σ2

) . (28)

Consider now the exponential term:

1

2
∑

i

(θ− x̂i)2
σ2

= 1

2σ2
(Nθ

2−2∑
i

x̂iθ+∑
i

x̂2
i )

= N

2σ2
(θ2−2θx̄ + x̄2− x̄2+ 1

N
∑

i

x̂2
i ) = N

2σ2
(θ− x̄)2+ N

2σ2
( 1

N
∑

i

x̂2
i − x̄2)

(29)

So the likelihood can be written as

L(θ) = L0 exp(−1

2

(θ− x̄)2
σ2/N ) , (30)

where L0 is a constant that does not depend on θ.

(b) The posterior pdf for θ is proportional to the likelihood times the prior (dropping the normal-

ization constant in Bayes’ Theorem):

p(θ∣x̂)∝L(θ)p(θ)∝ exp(−1

2

(θ− x̄)2
σ2/N )exp(−1

2

θ
2

Σ2
) , (31)

where we have dropped normalization constants which do not depend on θ and we have used

the Gaussian form of the prior. Collecting terms that depend on θ in the exponent and complet-

ing the square we get

p(θ∣x̂)∝ exp

⎛⎜⎜⎝
−1

2

(θ− x̄ Σ
2

Σ2+
σ2

N

)2
[ 1
Σ2 + N

σ2 ]−1

⎞⎟⎟⎠
, (32)

which shows that the posterior for θ is a Gaussian with the mean and variance as given in the

question.

(c) When N →∞, we have that the variance [ 1
Σ2 + N

σ2 ]−1
→σ

2/N (as N
σ2 ≫ 1

Σ2 ) and the mean x̄ Σ
2

Σ2+
σ2

N

→

x̄ (as Σ2≫ σ
2

N
and the fraction goes to unity). Thus the posterior pdf becomes

p(θ∣x̂)→ exp(−1

2

(θ− x̄)2
σ2/N ) , (33)

which shows that the posterior converges to the likelihood and the prior dependence disappears.

(d) From the above result, we can use the posterior pdf to compute the posterior mean of θ:

⟨θ⟩ =∫ θp(θ∣x̂)dθ = x̄. (34)

Therefore the posterior mean tends to the sample mean, x̄, which as we know is also the MLE

for the mean.

9


