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A word about statistics:
90% of the game is half mental.

Yogi Berra




™ |NEXT SIGN

NN
Contents / ‘ i
e 1. Foundational aspects: what is probability? \
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Building the likelihood function; Combination of multiple observations; Nuisance
parameters

e 2. Learning from experience: Bayesian parameter inference
Markov Chain Monte Carlo methods; Importance sampling; Nested sampling; Reporting
inferences; Credible regions vs confidence regions; The meaning of sigma

e 3. Bayesian model selection and cosmological applications
The different levels of inference; The Bayesian evidence and the Bayes factor;
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What you will learn

Imperial College

e \What does it mean to say that Qm =
0.28 + 0.02 ?

e How do you get plots like this and
what do they mean?

e How can you quantitatively
compare different models for your
observations?

2.0

Astier et al (2006)
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Recommended reading o _tege

e R. Trotta, “Bayes in the sky: Bayesian inference and model selection in cosmology”
Contemporary Physics, 49, 2 (2008), 71-104 (arXiv: 0803.4089)

e Bayesian methods in cosmology, Hobson et al (eds), CUP (2010)

e Tom Loredo’s Bayesian papers: http://www.astro.cornell.edu/staff/loredo/bayes/
tjl.html

e G. D’Agostini, Probability and Measurement Uncertainty in Physics - a Bayesian
Primer (1995), hep-ph/9512295

e E.T. Jaynes, Probability Theory: The Logic of Science, CUP (2003)

e D. MacKay, Information theory, Inference & Learning Algorithms, CUP (2003)
(available for free on the web for onscreen viewing)

e P. Gregory, Bayesian logical data analysis for the physical sciences, CUP (2003)
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“Why ShOUld | botherrpu Imperial College

¢ Increasingly complex models and data: "chi-square by eye" simply not enough

e "If it's real, better data will show it":
but all the action is in the "discovery zone" around 3-4 sigma significance. This is a
moving target.

e Don't waste time explaining effects which are not there

e Plan for the future: which is the best strategy? (survey design & optimization)

¢ In some cases, there will be no better data! (cosmic variance)

Roberto Trotta




The neutrino example

Imperial College

Upper .95 limit

o gldman-Cousins

Upper 95% limit on neutrino mass as a function of observed value
for different statistical methods

U(0,Inf)

U(=Inf,Inf)

ModSelect

Brad Efron (PHYSTAT 2003)
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Bayesian methods on the rise

Imperial College
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The rise of Bayesian methods in astrophysics
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Imperial College

Sayes’ theorem
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The matter with priors imperial College

e |[n parameter inference, prior dependence will in principle vanish for strongly
constraining data.
A sensitivity analysis is mandatory for all Bayesian methods!

=
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| Likelihood (1 datum)
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Inference In many dimensions I el

Usually our parameter space is multi-dimensional: how
should we report inferences for one parameter at the
time"?

BAYESIAN

Marginal posterior: Profile likelihood:

FREQUENTIST

P(61|D) = [ L(01,02)p(61,62)d0: L(Ql) — Maxy, L(Ql, ‘92)

Roberto Trotta
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Confidence intervals;
Frequentist approach

Imperial College

¢ Likelihood-based methods: determine the best fit parameters by finding the
minimum of -2Log(Likelihood) = chi-squared

e Analytical for Gaussian likelihoods
e Generally numerical 2

e Steepest descent, MCMQC, ...

Ay =1

¢ Determine approximate confidence intervals:
Local A(chi-squared) method

~ 68% CL 0

Roberto Trotta

12



Credible regions:
Bayesian approach

Imperial College

e Use the prior to define a metric on parameter space.

e Bayesian methods: the best-fit has no special status. Focus on region of large

posterior probability mass instead.
68% CREDIBLE REGION

e Markov Chain Monte Carlo (MCMC) =
: SuperBayeS
e Nested sampling 0.9y :
0.8 :
. _ 0.7 !
e Hamiltonian MC 206 :
805 !
. . . . o I I
e Determine posterior credible regions: x 0 VL
. 0.3 !
e.g. symmetric interval around the 0ol !
mean containing 68% of samples 01F !
‘ B | 1 ‘ ‘ ‘
500 100b 1500 2000 2500 3000 3500

m, (GeV)

Roberto Trotta
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The gOOd News Imperial College

e Marginalisation and profiling give exactly identical results for the linear Gaussian
case.

e This is not suprising, as we already saw that the answer for the Gaussian case is
numerically identical for both approaches

e And now the bad news: THIS IS NOT GENERICALLY TRUE!
e A good example is the Neyman-Scott problem:

¢ \We want to measure the signal amplitude pi of N sources with an uncalibrated
instrument, whose Gaussian noise level o is constant but unknown.

¢ |deally, measure the amplitude of calibration sources or measure one source
many times, and infer the value of o

Roberto Trotta
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Imperial College

Neyman-Scott problem

¢ |n the Neyman-Scott problem, no calibration source is available and we can only get
2 measurements per source. So for N sources, we have N+1 parameters and 2N

data points.

e The profile likelihood estime of o converges to a biased value o/sqrt(2) for N =

e The Bayesian answer has larger variance but is unbiased

Roberto Trotta
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Neymaﬂ —SCO't't problem Imperial College

Tom Loredo, talk at Banff 2010 workshop:

i i true val
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Marginalization vs profiling (maximising) TP colee

Marginal posterior: Profile likelihood:

P(6:1|D) = | L(01,62)p(01,02)d0: L(el) — Maxy, L(@l, ‘92)

0o

A
Best-fit

(smallest chi-squared)

N\,
Prpfile C\

Volume effect

Marginal posterior

/

likelihood

>

Best-fit Posterior e ]
mean
(2D plot depicts likelihood contours - prior assumed flat over wide range)

Roberto Trotta
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Marginalization vs profiling (maximising) TP colee

Physical analogy: (thanks to Tom Loredo) Heat: Q — f Cv/ ( .CIZ‘)T ( ZE) dV
Likelihood = hottest hypothesis s
Posterior = hypothesis with most heat Posterior: P> ¢ f p(@)L ((9)d(9

0o

A
Best-fit

(smallest chi-squared)

Volume effect

Profile

ikelihood Marginal posterior

/

>

Best-fit Posterior e ]
mean
(2D plot depicts likelihood contours - prior assumed flat over wide range)
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Markov Chain Monte Carlo




— ' ' (¢ )) I i IC “ €
=Xploration with “random scans ordon N e
[arg?id
e Points accepted/rejected in a in/out One recent example: check
fashion (e.g., 2-sigma cuts) Berger et al (0812.0980) i
PMSSM scans
e No statistical measure attached to (20 dimensions)

density of points: no probabilistic

interpretation of results possible, i
although the temptation cannot be
resisted...

LSP Mass Versus Relic Density

e Inefficient in high dimensional
parameters spaces (D>5) a

e HIDDEN PROBLEM: Random scan 05 |
explore only a very limited portion of :
the parameter space! 106 ¢

1 1 1 1 1 L A
0 100 200 300 400 500 600 700 800
msp [GeV]

Roberto Trotta
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Random scans explore only a small fraction of the
parameter space Imperial College

Concentration of measure

¢ “Random scans” of a high-
dimensional parameter space only
probe a very limited sub-volume:
this is the concentration of

Theoretical maximum

measure phenomenon. 7

6

e Statistical fact: the norm of D £l
draws from U[0,1] concentrates S

around (D/3)'2 with constant 4

Observed samples

variance 3 (flat prior on coordinates)

10 20 30 40 50 60 70 80 90 100
Dimensions

Roberto Trotta
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Geometry in high-D spaces imperial College

e Geometrical fact: in D dimensions, most of the volume is near the boundary. The
volume inside the spherical core of D-dimensional cube is negligible.

Together, these two facts mean that random scan only explore a very small
fraction of the available parameter space in high-dimesional models.

18 Volume of cube

1 8-
7_

6- Volume of sphere
5_
1 44
3-
2-
1-
0

1234567 8 910
d

Roberto Trotta
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Key advantages of the Bayesian approach  imperial colege

e Efficiency: computational effort scales ~ N rather than kN as in grid-scanning
methods. Orders of magnitude improvement over grid-scanning.

e Marginalisation: integration over hidden dimensions comes for free.

¢ Inclusion of nuisance parameters: simply include them in the scan and
marginalise over them.

e Pdf’s for derived quantities: probabilities distributions can be derived for any
function of the input variables

Roberto Trotta
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The general solution oidan o

P(0)d, T)  P(d|§, T)P(§|I)

¢ Once the RHS is defined, how do we evaluate the LHS?
e Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)

e Cheap computing power means that numerical solutions are often just a few clicks
away!

e \Norkhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A
procedure to generate a list of samples from the posterior.

Roberto Trotta

24



MCMC eSt|mat|On Imperial College

P(0)d, T)  P(d|§, T)P(§|I)

e A Markov Chain is a list of samples 81, 02, 63,... whose density reflects the
(unnormalized) value of the posterior

e A MC is a sequence of random variables whose (n+7)-th elements only depends on
the value of the n-th element

e Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that
does not change with time. In our case, the posterior.

* From the chain, expectation values wrt the posterior are obtained very simply:
(0) = [dOP(0]d)0 ~ « >, 0;
(f(0)) = [doP(0]d)f(0) = x >, f(6:)

Roberto Trotta
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Reporting inferences ondon 9

e Once P(6]d, I) found, we can report inference by:
e Summary statistics (best fit point, average, mode)
e Credible regions (e.g. shortest interval containing 68% of the posterior probability
for 6). Warning: this has not the same meaning as a frequentist confidence interval!

(Although the 2 might be formally identical)

e Plots of the marginalised distribution, integrating out nuisance parameters (i.e.
parameters we are not interested in). This generalizes the propagation of errors:

P(0ld,I) = | dpP(0,¢|d, I)

Roberto Trotta
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What does x=1.00+0.01 mean”? AR Shiagpe

Notation : @ ~ N(u,o?)

¢ Frequentist statistics (Fisher, Neymann, Pearson):
E.g., estimation of the mean p of a Gaussian distribution from a list of observed
samples X1, X2, Xa...
The sample mean is the Maximum Likelihood estimator for p:

UML = Xav = (X1 + X2 + X3 + ... XN)/N

e Key point:
in P(Xav), Xav is @ random variable, i.e. one that takes on different values across an
ensemble of infinite (imaginary) identical experiments. Xay is distributed according to
Xav ~ N(u, 0%/N) for a fixed true p
The distribution applies to imaginary replications of data.

Roberto Trotta
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What does x=1.00+0.01 mean”? AR Shiagpe

¢ Frequentist statistics (Fisher, Neymann, Pearson):
The final result for the confidence interval for the mean

P(umL - o/N"? < p < pmL + o/N?) = 0.683

¢ This means:
If we were to repeat this measurements many times, and obtain a 1-sigma distribution
for the mean, the true value p would lie inside the so-obtained intervals 68.3% of the
time

e This is not the same as saying: “The probability of y to lie within a given interval is
68.3%”. This statement only follows from using Bayes theorem.

Roberto Trotta
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What does x=1.00+0.01 mean”? AR Shiagpe

e Bayesian statistics (Laplace, Gauss, Bayes, Bernouilli, Jaynes):

After applying Bayes therorem P(u |Xay) describes the distribution of our degree of
belief about the value of py given the information at hand, i.e. the observed data.

¢ |[nference is conditional only on the observed values of the data.

e There is no concept of repetition of the experiment.

Roberto Trotta
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Gaussian case imperial College
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Non-Gaussian posteriors

Imperial College

l0g(c>") (pb)

Trotta et al (2008) CMSSM u=0, Iog priors

ZEPLIN II

XENON-10

m (GeV
%

l0g(c) (pb)

Trotta et al (2008) CMSSM u=0, Iog priors
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MCMC estimation

Imperial College

e Marginalisation becomes trivial: create bins along the dimension of interest and
simply count samples falling within each bins ignoring all other coordinates

e Examples (from superbayes.org) :

2D distribution of samples

SuperBayeS

0.9r
\ \ \ 0.8r
from joint posterior o 1D marginalised
805 :
posterior
0.3r
SuperBayeS
o TR R PR e o2 (along y)
. .:. Pl = ‘,:(;‘ ',,,‘-\;.L; )?A“A“ Sooefede -;...o. ..o., ', ‘ ‘ ‘ ‘ ‘ ‘
35()0E LS : e &»J ¥, :;!‘ ¥ e . ' 500 1000 1500 mio(%oe () 2500 3000 3500
3000: .;'.: ‘ : , - SuperBayeS
2500¢ - 2% H
2ot Wi : :
20004- -8 6 1D marginalised
1 AL P 3 bRy !
00, R posterior
1000¢ R4 3 e
o (along x)
500" b o ‘ ‘ ‘
M: .1 1 1 560 1600 1500 mZO‘OOe 2500 3000 3500
500 1000 1500 2000 "
r{GeV)
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Fancier stuff

Imperial College

SuperBayet

m

(GeV)

3500
3000

2500+

2000
1500
1000

500

50

40

|

w

o
tan

m, ., (GeV)

Roberto Trotta

33



The simplest MCMC algorithm ey ollege

e Several (sophisticated) algorithms to build a MC are available: e.g. Metropolis-
Hastings, Hamiltonian sampling, Gibbs sampling, rejection sampling, mixture
sampling, slice sampling and more...

e Arguably the simplest algorithm is the Metropolis (1954) algorithm:
e pick a starting location 6o in parameter space, compute Po = p(Bo|d)

¢ pick a candidate new location B¢ according to a proposal density q(Bo, 61)

e evaluate P. = p(Bc|d) and accept 6: with probability ¢ — min (%, 1)
e if the candidate is accepted, add it to the chain and move there; otherwise stay
at 8o and count this point once more.

Roberto Trotta
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Practicalities imperial College

e Except for simple problems, achieving good MCMC convergence (i.e., sampling
from the target) and mixing (i.e., all chains are seeing the whole of parameter space)
can be tricky

e There are several diagnostics criteria around but none is fail-safe. Successful
MCMC remains a bit of a black art!

e Things to watch out for:
e Burn in time
e Mixing

e Samples auto-correlation

Roberto Trotta
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MCMC diagnostics

Imperial College
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(see astro-ph/0405462 for details)
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Sayesian model comparison
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Sayesian inference chain

e Select a model (parameters + priors)

e Compute observable quantities as a function of parameters

e Compare with available data
e derive parameters constraints: PARAMETER INFERENCE
e compute relative model probability: MODEL COMPARISON

e Go back and start again

Imperial College

Roberto Trotta
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The 3 levels of inference toidon o

LEVEL 1 LEVEL 2 LEVEL 3
| have selected a model M Actually, there are several None of the models is clearly
and prior P(B|M) possible models: Mo, My,... the best

P(O)d, M) = Paloanrenn g4 — PMold)  pggy - S~ p(ag,|d) P(6)d, M)

P(d|M) P(Mlld)
Parameter inference Model comparison Model averaging
(assumes M is the true What is the relative What is the inference on
model) plausibility of Mo, Mj,... the parameters
in light of the data”? accounting for model

uncertainty?

Roberto Trotta
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Level 2: mOdel Comparlson Imperial College

P(0]d, M) = Pw“w

Bayesian evidence or model likelihood

The evidence is the integral of the likelihood over the prior:
P(dIM) = [, dOP(d|6, M)P(0|M)
Bayes’ Theorem delivers the model’s posterior:

P(M|d) = P(d|M)P(M)

P(d)
When we are comparing two models: The Bayes factor:
P(Mold) _ P(d|Mo) P(Mo) B, = P(d|Mg)
P(Mi|d) — P(d[My) P(M:) 01 = P(q[M;)

Posterior odds = Bayes factor x prior odds

Roberto Trotta
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Scale for the strength of evidence

Imperial College

e A (slightly modified) Jeffreys’ scale to assess the strength of evidence (Notice: this
is empirically calibrated!)

favoured model’s

INB| relative odds Srobabilty Interpretation
<1.0 <31 < 0.750 oo

< 2.5 <12:1 0.923 weak

< 0.0 < 150:1 0.993 moderate
> 5.0 > 150:1 > (0.993 strong

Roberto Trotta
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An automatic Occam’s razor imperial College

e Bayes factor balances quality of fit vs extra model complexity.
¢ |t rewards highly predictive models, penalizing “wasted” parameter space
P(d|M) = [ dOL(6)P(0|M
Likelihood ~ P(@)d@L(é)
~ 29 1.(0)0
/'

Occam'’s factor

A

)

Prior

R

Roberto Trotta
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The evidence as predictive probability imperial College

e The evidence can be understood as a function of d to give the predictive probability
under the model M:

P(dM) 4

Simpler model Mo

More complex model M

Observed value dops

Roberto Trotta

43



Simple example: nested models

¢ This happens often in practice:
we have a more complex
model, M1 with prior P(6|M»),
which reduces to a simpler
model (Mo) for a certain value of
the parameter,
e.g. 0 = 0* = 0 (nested models)

Likelihood

e |s the extra complexity of Mj

warranted by the data?

0 =0

s

44



Simple example: nested models

Tal=% _ 0—0*
Define: )\ = =

For “informative” data:

Likelihood

- AO A\
In By N;l = /2
mismatch of

wasted parameter

prediction with
observed data
(favours more

complex model)

space
(favours simpler model)

0*=0

s
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COmputing the evidence Imperial College

evidence: P(d|M) = [, dOP(d|0, M)P(0|M)

- P(d|M)
Bo1 = )

Bayes factor:

e Usually computational demanding: multi-dimensional integral!
e Several techniques available:
e Brute force: thermodynamic integration

e Laplace approximation: approximate the likelihood to second order around
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.

e Savage-Dickey density ratio: good for nested models, gives the Bayes factor

* Nested sampling: clever & efficient, can be used generally

Roberto Trotta
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The Savage-Dickey density ratio el oo

e This methods works for nested models and gives the Bayes factor analytically.

e Assumptions: nested models (M1 with parameters 8,W reduces to Mo for e.g. W =0)
and separable priors (i.e. the prior P(6,W|M+) is uncorrelated with P(8|Mo))

e Result: B, — P(v=0|d,M)
01 = "P(w=0|M) Marginal posterior
e Advantages: under Mj
e analytical

e often accurate

e clarifies the role of prior

e does not rely on Gaussianity

Roberto Trotta
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Nested sampling

Imperial College

e Perhaps the method to compute the
evidence

e At the same time, it delivers samples
from the posterior: it is a highly efficient
sampler! (much better than MCMC in
tricky situations)

e |[nvented by John Skilling in 2005: the
gist is to convert a n-dimensional
integral in a 1D integral that can be
done easily.

Liddle et al (2006)

Roberto Trotta
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Nested sampling imperial College

10, 0
Bt 204
B -q0}
Rl 80}
I L(X) A
2t -80 +
[ =
N of -100}
it E
2} -120}
-af -140}
6t 160}
Bt ~180
_'o' : 1 3 ] _m i 4
-0 s 0 5 10 5 4 3 2 0 0 I x
5, In(X)

(animation courtesy of David Parkinson)

An algorithm originally aimed primarily at the Bayesian evidence computation
(Skilling, 2006):

X(A) = [r g2 P(0)d6

P(d) = [dOL(O)P(0) = [, X(\)dA

Roberto Trotta
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The MultiNest algorithm

Imperial College
London

e Feroz & Hobson (2007)

Target

- 8EEEE

Ukalhcea

Reconstructed

Ports
Peax T
Poak 2

O Trotta

Courtesy Mike Hobson
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The egg-box example

Imperial College

e MultiNest reconstruction of the egg-box likelihood:

250
200 r
150
100 +

50

Roberto Trotta
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=llipsoidal decomposition MIpEHE CORege

Unimodal distribution  Multimodal distribution

Courtesy Mike Hobson

Roberto Trotta
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Multinest: Efficiency

Imperial College

Courtesy Mike Hobson

Cluster 1
Clustar 2
Clustar 3
Cluster 4
Cluster 5

Log-Likathood(L)

0
-20
40
-60
-80
100

Paak |
Peak 2

Likethood

Gaussian mixture model:

True evidence: log(E) = -5.27
Multinest:

Reconstruction: log(E) = -5.33 + 0.11
Likelihood evaluations ~ 104
Thermodynamic integration:
Reconstruction: log(E) = -5.24 + 0.12
Likelihood evaluations ~ 10°

D Nike |efficiency| 4eoPe
2 /7000 70% 83
5 18000 51% 7

10 53000 34%

20 255000 15% 1.8

30 /753000 8% 1.6

Roberto Trotta
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A “simple” example: how many sources? e <o

Feroz and Hobson

(2007) Signal + Noise

200

150

y (pixels)
=
o

50

0 50 100 150 200
X (pixels)

Roberto Trotta




A “simple” example: how many sources”?

Feroz and Hobson

(2007) Signal: 8 sources

200

150

y (pixels)

50

0 o0 100 150 200

x (pixels)

Imperial College

Roberto Trotta
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A “simple” example: how many sources? TP colege

Feroz and Hobson

(2007) Sayesian reconstruction

7 out of 8 objects correctly identified.
Mistake happens because 2 objects very close.
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Cluster detection from Sunyaev-Zeldovich
effect iIn cosmic microwave background maps

Background Background
+ 3 point radio sources + 3 point radio sources
+ cluster cluster
B £
i g@x |
"\ . ol .‘ "0‘,
O) ..'\~ - N | .
O B AR "‘??:;‘
3\ 35 o R Sa e £.53¢
o ]
z %\Q‘;'% L ~

~0002  -00015  -0001 00005 0 0.0005 0.001 0.0015

Feroz et al 2009
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Background Background

+ 3 point radio sources + 3 point radio sources
+ cluster

S

%g& ) Q’
'. '5.53’ =

4

~0002  -00015  -0001  —0.0005 0 0.0005 0.001 0.0015

Bayesian model comparison:
R = P(cluster | data)/P(no cluster | data)

R=0.35+0.05 R~ 10

Cluster parameters also recovered (position, temperature, profile, etc)
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The cosmological concordance model

London

Imperial College

Competing model AN Ref Data Outcome
Initial conditions
Isocurvature modes
CDM isocurvature +1 —~7.6 58 WMAP3+, LSS Strong evidence for adiabaticity
4 arbitrary correlations 44 ~1.0 46 WMAP14, LSS, SN [a  Undecided
Neutrino entropy +1 -2.5, 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
4+ arbitrary correlations +4 ~1.0 46 WMAP14, LSS, SN [a  Undecided
Neutrino velocity +1 [—2.5,—6. 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +14 -1.0 46 WMAP14, LSS, SN [a  Undecided
Primordial power spectruun
No tilt (ne = 1) -1 +0.4 47 WMAP1+, LSS Undecided
[-1.1,-0.6) 51 WMAPI1+, LSS Undecided
-0.7 58 WMAP1+4, LSS Undecided
~0.9 70 WMAP1+ Undecided
[<0.7,~1.7]74 B [186] WMAP3+ ns = 1 weakly disfavoured
—-2.0 185] WMAP3+, LSS n, = 1 weakly disfavoured
~2.6 70 WMAP34 ns = 1 moderately disfavoured
—-29 58 WMAP3+, LSS n, = 1 moderately disfavoured
< =3.9¢ 65 WMAP34, LSS Moderate evidence at best against n, = 1
Running +1 [-0.6,1.0)4 156] WMAP3+, LSS No evidence for running
< 0,2° 166] WMAP34, LSS Running not required
Running of running +2 < 0.4¢ 166] WMAP3+, LSS Not required
Large scales cut-off +2 [1.3,2.2)74 186) WMAP3+, LSS Weak support for a cut-off
Matter-energy content
Non-flat Universe +1 —-3.8 70 WMAP3+, HST Flat Universe moderately favoured
—-34 55 WNMAP3+, LSS, HST Flat Universe moderately favoured
Coupled neutrinos +1 ~0.7 193] WMAP3+, LSS No evidence for non-SM neutrincs
Dark energy sector
w(z) = weg = ~1 +1 [-1.3,-2.7)® 187] SN Ia Weak to moderate support for A
-3.0 50 SN Ia Moderate support for A
~1.1 51 WMAP14, LSS, SN [a  Weak support for A
[-0.2, -1} 1858] SN Ia, BAO, WMAP3  Undecided
-1.6,-2.3)¢ 159] SN Ia, GRB Weak support for A
w(z) = wy + wy = +2 {—-1.5, —3.4)" 157 SN Ia Weak to moderate support for A
~6.0 50) SN Ia Strong support for A
—1.8 1588] SN Ia, BAO, WMAP3  Weak support for A
w(z) = wo + wa(l — a) +2 ~1.1 188] SN Ia, BAO, WMAP3  Weak support for A
(-1.2,-2.6)¢ 189] SN la, GRB Weak to moderate support for A
Reionization history
No refonization (r = 0) -1 -26 70 WMAP34, HST r # 0 moderately favoured
No reionization and no tilt -2 -10.3 TOI WMAP34, HST Strongly disfavoured

from Trotta (2008)

InB < 0: favours ACDM

Roberto Trotta
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Interlude: frequentist hypothesis testing

e Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be
interpreted as a statement about the probability of the hypothesis!

e Example: to test the null hypothesis Ho: 8 = 0, draw n normally distributed points (with
known variance o). The X? is distributed as a chi-square distribution with (n-7)
degrees of freedom (dof). Pick a significance level a (or p-value, e.g. a = 0.05). If P(x°
> ¥20ps) < @ reject the null hypothesis.

e This is a statement about the likelihood of observing data as extreme or more extreme
than have been measured assuming the null hypothesis is correct.

¢ |t is not a statement about the probability of the null hypothesis itself and cannot
be interpreted as such! (or you’ll make gross mistakes)

e The use of p-values implies that a hypothesis that may be true can be rejected
because it has not predicted observable results that have not actually occurred.
(Jeffreys, 1961)

Roberto Trotta
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The significance of significance obdion g

e Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the
time: at least 29% of 2-sigma results are wrong!

e Take an equal mixture of Ho, H1
e Simulate data, perform hypothesis testing for Ho
e Select results rejecting Ho at 1-a CL

e \What fraction of those results did actually come from Ho ("true nulls", should not
have been rejected)?

p-value sigma  fraction of true nulls lower bound

0.05 1.96 0.51 0.29
0.01 2.58 0.20 0.11
0.001 3.29 0.024 0.018

Recommended: Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Roberto Trotta
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“Prior-free” evidence bounds

e \What if we do not know how to set the prior? For nested models, we can still choose a
prior that will maximise the support for the more complex model:

wider prior (fixed data)
>

larger sample (fixed prior and significance)

I (bits) 21 24 28
g [ Model O favored JE '
m 0 :
- B ' 8
- _2 :_ Ilodell 1 favored l \ I : _:

-2 -1 0 1 2 3
Information gain N (base 10)

maximum evidence for Model

Roberto Trotta




Maximum evidence for a detection mperial College

e The absolute upper bound: put all prior mass for the alternative onto the observed
maximum likelihood value. Then

B < exp(—x*/2)

e More reasonable class of priors: symmetric and unimodal around W=0, then
(a = significance level)

—1

B < exp(l)aln o

If the upper bound is small, no other choice of prior
will make the extra parameter significant.

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Roberto Trotta
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How to interpret the “numlber of sigma’s”

: Absolute bound s
a sigma bound on InB
on InB (B)
(B)
2.0 0.9
0.05 2.0 (7:1) (3:1)
weak undecided
4.5 3.0
0.003 3.0 (90:1) (21:1)
moderate moderate
0.48 5.0
0.0003 3.6 (650:1) (150:1)
strong strong

Imperial College

Roberto Trotta
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A conversion table

Imperial College

p—value B InB sigma category

1 0.05 2:9 0.9 2.0 |
0.04 2.9 1.0 2.1 ‘weak’ at best
0.01 8.0 2.1 2.6

[0.006 12 2.5 2.7 ‘moderate’ at best |
0.003 21 3.0 3.0
0.001 53 4.0 3.3

1 0.0003 150 5.0 3.6 ‘strong’ at best |
6 x 10~7 43000 11 5.0

Rule of thumb:
a n-sigma result should be interpreted as
a n-1 sigma result

Roberto Trotta
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Application: the spectral tilt

Imperial College

Is the spectrum of primordial fluctuations scale-invariant?

Model comparison:
n=1vsn#1 (with inflation-motivated prior)

Results:

n # 1 favoured with odds of 17:1 (Trotta 2007)

n # 1 favoured with odds of 15:1 (Kunz, Trotta & Parkinson 2007)
n # 1 favoured with odds of 7:1 (Parkinson 2007 et al 2006)

Upper bound: odds of 49:1 at best for n # 1 (Gordon and Trotta 2007)

Roberto Trotta
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Application: dipole modulation

Imperial College
London

e Eriksen et al (2004) found hints
for a dipolar modulation in
WMAP1 ILC map

¢ Adding a phenomenological
dipole pattern improves the chi-
square by 9 units (for 3 extra
parameters)

e |s this significant evidence?

e Not really: upper bound on B is
odds of 9:1
The absolute upper bound is
about the same
(Gordon and Trotta 2007)

rooerto Trotta
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Model complexity imperial College

* "Number of free parameters" is a relative concept. The relevant scale is set by the
prior range

e How many parameters can the data support, regardless of whether their detection is
significant?

e Bayesian complexity or effective number of parameters:

Cyp = x2(0) — x*(0)
1
N z,: 1 = (o 30,)=

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)
Following Spiegelhalter et al (2002)

Roberto Trotta
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Polynomial fitting obdion ege

e Data generated from a model with n = 6:

GOOD DATA INSUFFICIENT DATA
Max supported complexity % 9 Max supported complexity ¥4 4
voo o L SR DR L L R B R [ | SN PNNC S mwoy oW TNS JESS RN MY Y. DWE ST Dw tmm mme
15 |- ¥ R el
I © 0o 06 0 0 o 009/0_0 15 o 0o ©0 000000090, 0490
! O I C P I |
- o ,’I -. -1 :g ! g ,II _- = :‘g
2 . 4 < = X E ]
; 10 . ,, E é b 10 = E'_: ’I il é
» i . i — g - 3 P . s
o - -2 @ o 2 - -2 )
a I . ° 2 T J - 3
£ | ] £ : , ] &
o [ | o o i P ] w0
a— _3 T ,, il _3 -—oa
b - ~— 5 o /’ - \L
B T . 3 . W : Y
i S I | i i ]
E - -4 " - -4

I L - -

o = | d

0 L L L L l l‘Jl L L l L L L L l i 0 1 1 n 1 l 1 1 1 1 l 1 1 L 1 l i

0 5 10 15 0 5 10 15

number of parameters number of parameters
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How many parameters does the CMB
need”

Imperial College

WMAP3+HST (WMAPS qualitatively the same)
ma R S B R g

100 E b
mb,+n +7 : > 4+n5+T
measured &
favoured
10 =
o b,+T
= 4
EU {' b,+n,
o % b o+ 41 Q
S 1 > '
ks measured &
> unnecessary
0.1 F b +0,+T
b, but th b
¢, ¢ b,+n,+0Q, 7/ params measured
O°01 rl 1 l 1 L 1 1 l 1 1 L 1 l 1 1 1 1 l 1

T only 6
sufficient

Roberto Trotta
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Liddle et al (2007)

Bayesian Model-averaging

Imperial College

P(0|d) = )i P(B|d,M;)P(Mi|d)

An application to dark energy:

Model averaged inferences

Model 11 Model 11
N N N N Ih‘
[\ A [ [ i BMA: all 5 models
. '
\ / (|
\ | |I
02 02503 088 07 072 -t -05 02 03 088 07 072 -2 -1
Q h Q h "
Model IV Model V
0.2 0.3 0.68 0.7 0.72
Qm B
0.2 0.3 068 0.7 0.72 0.2 0.3 068 0.7 072
Q Q
m h m h
-1.2 -1 -0.8 -1 0 1
W0 Wa
-2 -1 -1 0 1 -0.9 -0.7 04 0 04 08
wO wa wO wa
Roberto Trotta
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Imperial College

Key points

e Bayesian model comparison extends parameter inference to the space of models

e The Bayesian evidence (model likelihood) represents the change in the degree of
belief in the model after we have seen the data

e Models are rewarded for their predictivity (automatic Occam’s razor)

® Prior specification is for model comparison a key ingredient of the model building
step. If the prior cannot be meaningfully set, then the physics in the model is
probably not good enough.

e Bayesian model complexity can help (together with the Bayesian evidence) in
assessing model performance.

Roberto Trotta
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Prediction and optimization




' : I ial Coll
The Bayesian perspective ondon 3
¢ |[n the Bayesian framework, we can use present-day knowledge to produce
probabilistic forecasts for the outcome of a future measurement

e This is not limited to assuming a model/parameter value to be true and to determine
future errors

e Many questions of interest today are of model comparison: e.qg.
e is dark energy Lambda or modified gravity?
e is dark energy evolving with time?
e |s the Universe flat or not?

e |s the spectrum of perturbations scale invariant or not?

Roberto Trotta
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Predictions for future observations

e Toy model: the linear Gaussian
model (see Exercices 7-9)

y = Bo + X0+
y-Fx=¢

e (Gaussian noise on €

e True values: (Bo, 81) = (0,1)

1.8

1.6

1.4}

1.2

0.8}
0.6}
0.4}
0.2

Present posterior, 1-2-3c contours

¢ Max like point ||

¢ True model

0.5
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The predictive distribution

Predictive Log Prob (1-2-3c) for measurements at (x1,x2) = (-0.5, —1.0)

e Use present knowledge (and e
uncertainty!) to predict what a future ,|L*True model
measurement will find (with
corresponding probability) 2f

e True values: (Bo, 81) = (0,1)

y, at x=-1.0

* Present-day data: d

e Future data: D

P(D|d) = [dOP(D|O)P(O|d) = * yates' * °

Predictive probability = future likelihood weighted by
present posterior
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Predictive distribution

Prob distribution for 1 extra datum, 1-2-3c nominal contours Predictive Prob for fixed x1 value, x1=(-2,-1,0.5)
. . ! 2‘ 1 1 1
! ! ! — Predictive prob :
| I I i - -~ True value ! :
| I | !
1 [ > 1.5} |
] I c !
3 |
| l | ° |
| o |
a 1 .
o [
= I
I3) I
3 :
g 1 1 I
| ! 0.57 | | |
1 1 I
1 1 I
i | - I i
1 1 I
I | | 0 : . ' . '
] [ —— True model —4 - - 1 2
. . —— Best regression “
-4 -3 -2 -1 0 1 2 3
*D
range of

Possible locations of present-day
future measurements data




—xtending the power of forecasts imperial College

e Thanks to predictive probabilities we can increase the scope and power of
forecasts:

e Level 0: assume a model M and a fiducial value for the parameters, 0*
produce a forecast for the errors that a future experiment will find if M and 0* are the
correct choices

e |evel 1: average over current parameter uncertainty within M

e Level 2: average over current model uncertainty: replace M by M+, Mo,...

Roberto Trotta
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Predictive posterior odds distribution

Bayes factor forecast for Planck

'r ny=1 vs 0.8<n4<1.2
208l P(INB < -5) = 0.93
s | P(-5<InB<0) = 0.01
8>} T P(NB > 0) = 0.06
> 0.4 —

f’* 0.2 — Model uncertainty
! P(n.=1|WMAP3+) = 0.05
0

ALl 11

085 098 095 1 1.05 1.1
Future mean, ng

Trotta (2008), Parkinson et al
(2006), Pahud et al (2006)

80



—Xperiment design




Utility and optimization imperial College

e The optimization problem is fully specified once we define a utility function U
depending on the outcome e of a future observation (e.g., scientific return). We write
for the utility U(e, o, 8), where o is the current experiment and 0 are the true values of
the parameters of interest

e \We can then evaluate the expected utility:

E[Ule, 0] = [ dOU (0, e,0)P(0|o)

Example: an astronomer measures y = 0 x (with Gaussian noise) at a few
points O < x < 1. She then has a choice between building 2 equally
expensive instruments to perform a new measurement:

1. Instrument (e) is as accurate as today’s experiments but extends to
much larger values of x (to a maximum Xmax)

2. Instrument (a) is much more accurate but it is built in such a way as

has to have a “sweet spot” at a certain value of y, call it y*, and much less
accurate elsewhere

Which instrument should she go for?

Roberto Trotta
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Answer

Trotta et al, in Bayesian methods in cosmology (CUP, 2010)

Imperial College

* The answer depends on how good her current knowledge is - i.e. is the current
uncertainty on 0* small enough to allow her to target accurately enough x=x* so that
she can get to the “sweet spot” y*= 8"x*?
(try it out for yourself! Hint: use for the utility the inverse variance of the future posterior
on 0O and assume for the noise levels of experiment (a) the toy model:

2 __
Toa = Ty €XP

2

(

(y_y*)2 )
2A2

where y* is the location of the sweet spot and A is the width of the sweet spot)
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Mukherjee et al (20006)

Making predictions: Dark Energy impesial Gollege

A model comparison question: is dark energy Lambda, i.e. (wo, wa) = (-1, 0)?
How well will the future probe SNAP be able to answer this?

Fisher Matrix Bayesian evidence
1 1
0.5 0.5
z° o0 z° 0
-0.5 -0.5
7 | | ' SNAP SN-la
-2 -1.5 -1 -0.5 -2 -1.5 -i —0:5
W0 WO
Simulates from LCDM Simulate from all DE models
Assumes LCDM is true Assess “model confusion”
Ellipse not invariant when Allows to discriminate against LCDM

changing model assumptios

Roberto Trotta

84



Key pO| NS Imperial College

e Predictive distributions incorporate present uncertainty in forecasts for the future
scientific return of an experiment

e Experiment optimization requires the specification of an utility function. The “best”
experiment is the one that maximises the expected utility.

Roberto Trotta
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