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A word about statistics: 

90% of the game is half mental. 

Yogi Berra
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Building the likelihood function; Combination of multiple observations; Nuisance 
parameters

• 2. Learning from experience: Bayesian parameter inference 
Markov Chain Monte Carlo methods; Importance sampling; Nested sampling; Reporting 
inferences; Credible regions vs confidence regions; The meaning of sigma

• 3. Bayesian model selection and cosmological applications 
The different levels of inference; The Bayesian evidence and the Bayes factor; 
Computing Bayes factors; Information criteria for approximate model selection; The 
meaning of significance; Comparison with classical hypothesis testing; Model 
complexity; Bayesian model averaging
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optimization; Experimental utility; Bayesian adaptive exploration.
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What you will learn

• What does it mean to say that Ωm = 
0.28 ± 0.02 ?

• How do you get plots like this and 
what do they mean?

• How can you quantitatively 
compare different models for your 
observations?
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Recommended reading

• R. Trotta, “Bayes in the sky: Bayesian inference and model selection in cosmology” 
Contemporary Physics, 49, 2 (2008), 71-104 (arXiv: 0803.4089)

• Bayesian methods in cosmology, Hobson et al (eds), CUP (2010)

• Tom Loredo’s Bayesian papers: http://www.astro.cornell.edu/staff/loredo/bayes/
tjl.html 

• G. D’Agostini, Probability and Measurement Uncertainty in Physics - a Bayesian 
Primer (1995), hep-ph/9512295

• E.T. Jaynes, Probability Theory: The Logic of Science, CUP (2003)

• D. MacKay, Information theory, Inference & Learning Algorithms, CUP (2003) 
(available for free on the web for onscreen viewing)

• P. Gregory, Bayesian logical data analysis for the physical sciences, CUP (2003)
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“Why should i bother?”

• Increasingly complex models and data: "chi-square by eye" simply not enough

• "If it's real, better data will show it": 
but all the action is in the "discovery zone" around 3-4 sigma significance. This is a 
moving target.

• Don't waste time explaining effects which are not there 

• Plan for the future: which is the best strategy? (survey design & optimization)

• In some cases, there will be no better data!  (cosmic variance)
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The neutrino example

Brad Efron (PHYSTAT 2003)

Upper 95% limit on neutrino mass as a function of observed value 
for different statistical methods
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Bayesian methods on the rise

       11 
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P (�|d, I) = P (d|�,I)P (�|I)
P (d|I)

For parameter inference it is sufficient to 
consider

P (�|d, I) � P (d|�, I)P (�|I)

posterior ⇥ likelihood� prior
prior

posterior

likelihood

θ
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posterior likelihood prior

evidence 

θ: parameters
d: data
I: any other external information, 
or the assumed model

Bayes’ theorem
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The matter with priors 

• In parameter inference, prior dependence will in principle vanish for strongly 
constraining data. 
A sensitivity analysis is mandatory for all Bayesian methods! 

Priors 

Likelihood (1 datum) 

Posterior after 1 datum Posterior after 100 data 
points 

Prior 

Likelihood 

Posterior 

Data 
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Inference in many dimensions

Marginal posterior:
P (�1|D) =

�
L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

Usually our parameter space is multi-dimensional: how 
should we report inferences for one parameter at the 
time?

FREQUENTISTBAYESIAN
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Confidence intervals:
Frequentist approach
• Likelihood-based methods: determine the best fit parameters by finding the 

minimum of -2Log(Likelihood) = chi-squared 

• Analytical for Gaussian likelihoods 

• Generally numerical 

• Steepest descent, MCMC, ...  

• Determine approximate confidence intervals: 
Local Δ(chi-squared) method

θ

�2

��2 = 1

≈ 68% CL
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Credible regions:
Bayesian approach
• Use the prior to define a metric on parameter space. 

• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 

• Markov Chain Monte Carlo (MCMC) 

• Nested sampling

• Hamiltonian MC 

• Determine posterior credible regions: 
e.g. symmetric interval around the 
mean containing 68% of samples 

SuperBayeS
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68% CREDIBLE REGION
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The good news 

• Marginalisation and profiling give exactly identical results for the linear Gaussian 
case. 

• This is not suprising, as we already saw that the answer for the Gaussian case is 
numerically identical for both approaches

• And now the bad news: THIS IS NOT GENERICALLY TRUE!

• A good example is the Neyman-Scott problem: 

• We want to measure the signal amplitude μi of N sources with an uncalibrated 
instrument, whose Gaussian noise level σ is constant but unknown.  

• Ideally, measure the amplitude of calibration sources or measure one source 
many times, and infer the value of σ 
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Neyman-Scott problem

• In the Neyman-Scott problem, no calibration source is available and we can only get 
2 measurements per source. So for N sources, we have N+1 parameters and 2N 
data points. 

• The profile likelihood estime of σ converges to a biased value σ/sqrt(2) for N → ∞

• The Bayesian answer has larger variance but is unbiased

15
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Neyman-Scott problem

Joint & Marginal Results for σ = 1

The marginal p(σ|D) and Lp(σ) differ dramatically!
Profile likelihood estimate converges to σ/

√
2.

The total # of parameters grows with the # of data.
⇒ Volumes along µi do not vanish as N → ∞.

11 / 15

Tom Loredo, talk at Banff 2010 workshop:

true value

Bayesian marginal
Profile likelihoodσ

μ

Joint posterior
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Marginalization vs profiling (maximising) 
Marginal posterior:

P (�1|D) =
�

L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect
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Marginalization vs profiling (maximising) 

θ2

θ1

Best-fit 
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile 
likelihood

Best-fit Posterior 
mean

Marginal posterior

} Volume effect

Physical analogy:  (thanks to Tom Loredo) 

P �
�

p(�)L(�)d�

Q =
�

cV (x)T (x)dVHeat: 

Posterior: Likelihood  = hottest hypothesis
Posterior = hypothesis with most heat

18



Markov Chain Monte Carlo 
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Exploration with “random scans”
• Points accepted/rejected in a in/out 

fashion (e.g., 2-sigma cuts)

• No statistical measure attached to 
density of points: no probabilistic 
interpretation of results possible, 
although the temptation cannot be 
resisted...

• Inefficient in high dimensional 
parameters spaces (D>5) 

• HIDDEN PROBLEM: Random scan 
explore only a very limited portion of 
the parameter space! 

C. F. Berger, J. S. Gainer, J. L. 
Hewett, and T. G. Rizzo, 
Supersymmetry Without 
Prejudice, JHEP 02 (2009) 023, 
[arXiv:0812.0980

check this for random scan of the 
pMSSM

One recent example: 
Berger et al (0812.0980)

pMSSM scans 
(20 dimensions)
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Random scans explore only a small fraction of the 
parameter space
• “Random scans” of a high-

dimensional parameter space only 
probe a very limited sub-volume: 
this is the concentration of 
measure phenomenon.

• Statistical fact: the norm of D 
draws from U[0,1] concentrates 
around (D/3)1/2 with constant 
variance 

1

1
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Geometry in high-D spaces
• Geometrical fact: in D dimensions, most of the volume is near the boundary. The 

volume inside the spherical core of D-dimensional cube is negligible. 

Volume of cube

Volume of sphere

Ratio Sphere/Cube

1

1

Together, these two facts mean that random scan only explore a very small 
fraction of the available parameter space in high-dimesional models.
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Key advantages of the Bayesian approach

• Efficiency: computational effort scales ~ N rather than kN as in grid-scanning 
methods. Orders of magnitude improvement over grid-scanning.

• Marginalisation: integration over hidden dimensions comes for free.  

• Inclusion of nuisance parameters: simply include them in the scan and 
marginalise over them. 

• Pdf’s for derived quantities: probabilities distributions can be derived for any 
function of the input variables
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The general solution

• Once the RHS is defined, how do we evaluate the LHS?

• Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)

• Cheap computing power means that numerical solutions are often just a few clicks 
away! 

• Workhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A 
procedure to generate a list of samples from the posterior. 

P (�|d, I) � P (d|�, I)P (�|I)

24
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MCMC estimation

• A Markov Chain is a list of samples θ1, θ2, θ3,... whose density reflects the 
(unnormalized) value of the posterior 

•  A MC is a sequence of random variables whose (n+1)-th elements only depends on 
the value of the n-th element 

• Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that 
does not change with time. In our case, the posterior. 

• From the chain, expectation values wrt the posterior are obtained very simply: 

P (�|d, I) � P (d|�, I)P (�|I)

⇥�⇤ =
⇥

d�P (�|d)� � 1
N

�
i �i

⇥f(�)⇤ =
⇥

d�P (�|d)f(�) � 1
N

�
i f(�i)
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Reporting inferences

• Once P(θ|d, I) found, we can report inference by: 

• Summary statistics (best fit point, average, mode)

• Credible regions (e.g. shortest interval containing 68% of the posterior probability 
for θ). Warning: this has not the same meaning as a frequentist confidence interval! 
(Although the 2 might be formally identical)

• Plots of the marginalised distribution, integrating out nuisance parameters (i.e. 
parameters we are not interested in). This generalizes the propagation of errors: 

P (�|d, I) =
�

d⇥P (�, ⇥|d, I)
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson): 
E.g., estimation of the mean μ of a Gaussian distribution from a list of observed 
samples x1, x2, x3...
The sample mean is the Maximum Likelihood estimator for μ:

μML = Xav = (x1 + x2  + x3 + ... xN)/N

• Key point:
in P(Xav), Xav is a random variable, i.e. one that takes on different values across an 
ensemble of infinite (imaginary) identical experiments.  Xav is distributed according to 
Xav ~ N(μ, σ2/N) for a fixed true μ
The distribution applies to imaginary replications of data.

P (x) = 1⇥
2⇥⇤

exp
�
� 1

2
(x�µ)2

⇤2

⇥

Notation : x � N(µ, ⇥2)
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson): 
The final result for the confidence interval for the mean

P(μML - σ/N1/2 < μ < μML + σ/N1/2) = 0.683
• This means: 

If we were to repeat this measurements many times, and obtain a 1-sigma distribution 
for the mean, the true value μ would lie inside the so-obtained intervals 68.3% of the 
time

• This is not the same as saying: “The probability of μ to lie within a given interval is 
68.3%”. This statement only follows from using Bayes theorem.
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What does x=1.00±0.01 mean?

• Bayesian statistics (Laplace, Gauss, Bayes, Bernouilli, Jaynes): 

After applying Bayes therorem P(μ |Xav) describes the distribution of our degree of 
belief about the value of μ given the information at hand, i.e. the observed data. 

• Inference is conditional only on the observed values of the data. 

• There is no concept of repetition of the experiment. 
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Gaussian case

30
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Non-Gaussian posteriors
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MCMC estimation

• Marginalisation becomes trivial: create bins along the dimension of interest and 
simply count samples falling within each bins ignoring all other coordinates 

• Examples (from superbayes.org) : 

2D distribution of samples 
from joint posterior

SuperBayeS

500 1000 1500 2000 2500 3000 3500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

m0 (GeV)
Pr

ob
ab

ilit
y

SuperBayeS

500 1000 1500 2000 2500 3000 3500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

m1/2 (GeV)

Pr
ob

ab
ilit

y

1D marginalised 
posterior 
(along y)

1D marginalised 
posterior 
(along x)

SuperBayeS

m1/2 (GeV)

0

500 1000 1500 2000

500

1000

1500

2000

2500

3000

3500

32



Roberto Trotta 

Fancier stuff 
SuperBayeS
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The simplest MCMC algorithm

• Several (sophisticated) algorithms to build a MC are available: e.g. Metropolis-
Hastings, Hamiltonian sampling, Gibbs sampling, rejection sampling, mixture 
sampling, slice sampling and more... 

• Arguably the simplest algorithm is the Metropolis (1954) algorithm: 

• pick a starting location θ0 in parameter space, compute P0 = p(θ0|d)

• pick a candidate new location θc according to a proposal density q(θ0, θ1)

• evaluate Pc = p(θc|d) and accept θc with probability

• if the candidate is accepted, add it to the chain and move there; otherwise stay 
at θ0 and count this point once more.

� = min
�

Pc
P0

, 1
⇥
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Practicalities 

• Except for simple problems, achieving good MCMC convergence (i.e., sampling 
from the target) and mixing (i.e., all chains are seeing the whole of parameter space) 
can be tricky

• There are several diagnostics criteria around but none is fail-safe. Successful 
MCMC remains a bit of a black art! 

• Things to watch out for:

• Burn in time

• Mixing 

• Samples auto-correlation 
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MCMC diagnostics 

Burn in Mixing Power spectrum

10−3 10−2 10−1 100

10−4

10−2

100

k
m1/2 (GeV)

P(
k)

(see astro-ph/0405462 for details)
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Bayesian model comparison
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Bayesian inference chain

• Select a model (parameters + priors)

• Compute observable quantities as a function of parameters

• Compare with available data 

• derive parameters constraints: PARAMETER INFERENCE 

• compute relative model probability: MODEL COMPARISON 

• Go back and start again 
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The 3 levels of inference

LEVEL 1 
I have selected a model M

and prior P(θ|M)

LEVEL 2 
Actually, there are several 

possible models: M0, M1,...

Parameter inference
(assumes M is the true 

model)

Model comparison
What is the relative 

plausibility of M0, M1,... 
in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3 
None of the models is clearly 

the best

Model averaging
What is the inference on 

the parameters 
accounting for model 

uncertainty?

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)
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Level 2: model comparison

Bayesian evidence or model likelihood

P (d|M) =
�
� d�P (d|�, M)P (�|M)

The evidence is the integral of the likelihood over the prior: 

 Bayes’ Theorem delivers the model’s posterior:

P (M |d) = P (d|M)P (M)
P (d)

When we are comparing two models:

P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

The Bayes factor:

P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)

B01 � P (d|M0)
P (d|M1)

40



Roberto Trotta 

Scale for the strength of evidence

• A (slightly modified) Jeffreys’ scale to assess the strength of evidence (Notice: this 
is empirically calibrated!)

|lnB| relative odds favoured model’s 
probability Interpretation

< 1.0 < 3:1 < 0.750 not worth 
mentioning 

< 2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate

> 5.0 > 150:1 > 0.993 strong
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An automatic Occam’s razor

• Bayes factor balances quality of fit vs extra model complexity. 

• It rewards highly predictive models, penalizing “wasted” parameter space 

Δθ

δθ

Prior

Likelihood

Occam’s factor

�̂

P (d|M) =
R

d✓L(✓)P (✓|M)

⇡ P (✓̂)�✓L(✓̂)

⇡ �✓
�✓ L(✓̂)✓̂
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The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability 
under the model M: 

More complex model M1

Simpler model M0

P(d|M)

dObserved value dobs
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Simple example: nested models

• This happens often in practice: 
we have a more complex 
model, M1 with prior P(θ|M1), 
which reduces to a simpler 
model (M0) for a certain value of 
the parameter, 
e.g. θ = θ* = 0 (nested models)

• Is the extra complexity of M1 

warranted by the data?  

Δθ

δθ

Prior

Likelihood

θ* = 0 �̂
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Δθ

δθ

Prior

Likelihood

θ* = 0 �̂

Define: � � ⇥̂�⇥�

�⇥

For “informative” data: 

lnB01 ⇥ ln �⇥
�⇥ �

⇤2

2

wasted parameter 
space

(favours simpler model)

mismatch of 
prediction with 
observed data 
(favours more 

complex model)

Simple example: nested models

45



Roberto Trotta 

The rough guide to model comparison
wider prior

I10 � log10
�⇥
�⇥
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Computing the evidence 

• Usually computational demanding: multi-dimensional integral!

• Several techniques available:

• Brute force: thermodynamic integration 

• Laplace approximation: approximate the likelihood to second order around 
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.

• Savage-Dickey density ratio: good for nested models, gives the Bayes factor

• Nested sampling: clever & efficient, can be used generally 

P (d|M) =
�
� d�P (d|�, M)P (�|M)evidence:

Bayes factor: B01 � P (d|M0)
P (d|M1)
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The Savage-Dickey density ratio

• This methods works for nested models and gives the Bayes factor analytically.

• Assumptions: nested models (M1 with parameters θ,Ψ reduces to M0 for e.g. Ψ =0) 
and separable priors (i.e. the prior P(θ,Ψ|M1) is uncorrelated with  P(θ|M0))

• Result: 

• Advantages:

• analytical

• often accurate 

• clarifies the role of prior

• does not rely on Gaussianity

B01 = P (�=0|d,M1)
P (�=0|M1)

Prior

Marginal posterior
under M1 

Ψ = 0
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Nested sampling

• Perhaps the method to compute the 
evidence 

• At the same time, it delivers samples 
from the posterior: it is a highly efficient 
sampler! (much better than MCMC in 
tricky situations)

• Invented by John Skilling in 2005: the 
gist is to convert a n-dimensional 
integral in a 1D integral that can be 
done easily.

Liddle et al (2006)
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Nested sampling

x1

L(x)

0

1

2
θ

θ

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where 〈·〉 denotes the expectation value with respect to the posterior)

〈m〉 ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

〈f(m)〉 ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

(animation courtesy of David Parkinson)

X(⇥) =
�
L(�)>⇥ P (�)d�

An algorithm originally aimed primarily at the Bayesian evidence computation 
(Skilling, 2006):

P (d) =
�

d�L(�)P (�) =
� 1
0 X(⇥)d⇥
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The MultiNest algorithm
• Feroz & Hobson (2007)

Target Reconstructed

Co
ur

te
sy

 M
ike

 H
ob

so
n
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The egg-box example

• MultiNest reconstruction of the egg-box likelihood:
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Ellipsoidal decomposition

Courtesy Mike Hobson

Unimodal distribution Multimodal distribution
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Multinest: Efficiency
Gaussian mixture model:

True evidence:  log(E) = -5.27
Multinest:
Reconstruction: log(E) = -5.33 ± 0.11
Likelihood evaluations ~ 104

Thermodynamic integration:
Reconstruction: log(E) = -5.24 ± 0.12
Likelihood evaluations ~ 106

Co
ur

te
sy

 M
ike

 H
ob

so
n

D Nlike efficiency likes per 
dimension

2 7000 70% 83
5 18000 51% 7

10 53000 34% 3
20 255000 15% 1.8
30 753000 8% 1.6
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Signal + Noise
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Signal: 8 sources
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Bayesian reconstruction
7 out of 8 objects correctly identified. 

Mistake happens because 2 objects very close.
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Cluster detection from Sunyaev-Zeldovich 
effect in cosmic microwave background maps 

Background
+ 3 point radio sources

Background
+ 3 point radio sources

+ cluster cluster

~ 
2 

de
g

Feroz et al 2009
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Background
+ 3 point radio sources

Background
+ 3 point radio sources

+ cluster

Bayesian model comparison: 
R = P(cluster | data)/P(no cluster | data)

R = 0.35 ± 0.05 R ~ 1033

Cluster parameters also recovered (position, temperature, profile, etc)
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The cosmological concordance model

lnB < 0: favours ΛCDMfrom Trotta (2008)
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Interlude: frequentist hypothesis testing

• Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be 
interpreted as a statement about the probability of the hypothesis! 

• Example: to test the null hypothesis H0: θ = 0, draw n normally distributed points (with 
known variance σ2). The χ2 is distributed as a chi-square distribution with (n-1) 
degrees of freedom (dof). Pick a significance level α (or p-value, e.g. α = 0.05). If P(χ2  

> χ2obs) < α reject the null hypothesis.

• This is a statement about the likelihood of observing data as extreme or more extreme 
than have been measured assuming the null hypothesis is correct.

• It is not a statement about the probability of the null hypothesis itself and cannot 
be interpreted as such! (or you’ll make gross mistakes)  

• The use of p-values implies that a hypothesis that may be true can be rejected 
because it has not predicted observable results that have not actually occurred. 
(Jeffreys, 1961)
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The significance of significance
• Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the 

time: at least 29% of 2-sigma results are wrong!

• Take an equal mixture of H0, H1 

• Simulate data, perform hypothesis testing for H0

• Select results rejecting H0 at 1-α CL

• What fraction of those results did actually come from H0 ("true nulls", should not 
have been rejected)?

Recommended: Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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“Prior-free” evidence bounds
• What if we do not know how to set the prior? For nested models, we can still choose a 

prior that will maximise the support for the more complex model: 

maximum evidence for Model 1 

wider prior (fixed data)

larger sample (fixed prior and significance)
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Maximum evidence for a detection

• The absolute upper bound: put all prior mass for the alternative onto the observed 
maximum likelihood value. Then

• More reasonable class of priors: symmetric and unimodal around Ψ=0, then 
(α = significance level)

If the upper bound is small, no other choice of prior 
will make the extra parameter significant.

B < exp(��2/2)

B < �1
exp(1)� ln �

 Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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How to interpret the “number of sigma’s”

α sigma Absolute bound 
on lnB (B)

“Reasonable” 
bound on lnB

(B)

0.05 2.0
2.0
(7:1)
weak

0.9
(3:1)

undecided

0.003 3.0
4.5

(90:1)
moderate

3.0
(21:1)

moderate

0.0003 3.6
6.48

(650:1)
strong

5.0 
(150:1)
strong
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A conversion table

Rule of thumb: 
a n-sigma result should be interpreted as 

a n-1 sigma result
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Application: the spectral tilt

• Is the spectrum of primordial fluctuations scale-invariant?

• Model comparison: 
n = 1 vs n ≠ 1 (with inflation-motivated prior)

• Results: 
n ≠ 1 favoured with odds of 17:1  (Trotta 2007)
n ≠ 1 favoured with odds of 15:1  (Kunz, Trotta & Parkinson 2007)
n ≠ 1 favoured with odds of 7:1  (Parkinson 2007 et al 2006)

• Upper bound: odds of 49:1 at best for n ≠ 1 (Gordon and Trotta 2007) 
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Application: dipole modulation 

• Eriksen et al (2004) found hints 
for a dipolar modulation in 
WMAP1 ILC map

• Adding a phenomenological 
dipole pattern improves the chi-
square by 9 units (for 3 extra 
parameters)

• Is this significant evidence?

• Not really: upper bound on B is 
odds of 9:1 
The absolute upper bound is 
about the same
(Gordon and Trotta 2007)
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Model complexity

• "Number of free parameters" is a relative concept. The relevant scale is set by the 
prior range

• How many parameters can the data support, regardless of whether their detection is 
significant?

• Bayesian complexity or effective number of parameters:

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006) 
Following Spiegelhalter et al (2002)
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Polynomial fitting

• Data generated from a model with n = 6:

GOOD DATA
Max supported complexity ¼ 9

INSUFFICIENT DATA
Max supported complexity ¼ 4
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How many parameters does the CMB 
need?

b4+ns+τ
measured &

favoured

Ωκ

measured &
unnecessary

7 params  measured 

only 6 
sufficient

WMAP3+HST (WMAP5 qualitatively the same)
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Bayesian Model-averaging

Model averaged inferences

Lid
dl

e 
et
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P(θ|d) = ∑i P(θ|d,Mi)P(Mi|d)
An application to dark energy: 
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Key points

• Bayesian model comparison extends parameter inference to the space of models

• The Bayesian evidence (model likelihood) represents the change in the degree of 
belief in the model after we have seen the data

• Models are rewarded for their predictivity (automatic Occam’s razor)

• Prior specification is for model comparison a key ingredient of the model building 
step. If the prior cannot be meaningfully set, then the physics in the model is 
probably not good enough. 

• Bayesian model complexity can help (together with the Bayesian evidence) in 
assessing model performance.
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Prediction and optimization
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The Bayesian perspective

• In the Bayesian framework, we can use present-day knowledge to produce 
probabilistic forecasts for the outcome of a future measurement

• This is not limited to assuming a model/parameter value to be true and to determine 
future errors

• Many questions of interest today are of model comparison: e.g.

• is dark energy Lambda or modified gravity?

• is dark energy evolving with time? 

• Is the Universe flat or not? 

• Is the spectrum of perturbations scale invariant or not? 
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Predictions for future observations

• Toy model: the linear Gaussian 
model (see Exercices 7-9)

y = θ0 + xθ1
y - Fx = ε

• Gaussian noise on ε

• True values: (θ0, θ1) = (0,1)
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The predictive distribution 

• Use present knowledge (and 
uncertainty!) to predict what a future 
measurement will find (with 
corresponding probability)

• True values: (θ0, θ1) = (0,1) 

• Present-day data: d 

• Future data: D 

Predictive probability = future likelihood weighted by 
present posterior 

P (D|d) =
�

d�P (D|�)P (�|d)

77



Predictive distribution

range of 
present-day 

data
Possible locations of 
future measurements
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Extending the power of forecasts

• Thanks to predictive probabilities we can increase the scope and power of 
forecasts: 

• Level 0: assume a model M and a fiducial value for the parameters, θ*
produce a forecast for the errors that a future experiment will find if M and θ* are the 
correct choices

• Level 1: average over current parameter uncertainty within M

• Level 2: average over current model uncertainty: replace M by M1, M2,...
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Predictive posterior odds distribution

Model uncertainty
P(ns=1|WMAP3+) = 0.05

ns=1 vs 0.8<ns<1.2

P(lnB < -5) = 0.93
P(-5<lnB<0) = 0.01

P(lnB > 0) = 0.06

Trotta (2008), Parkinson et al 
(2006), Pahud et al (2006)

Bayes factor forecast for Planck
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Experiment design 
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Utility and optimization 

• The optimization problem is fully specified once we define a utility function U 
depending on the outcome e of a future observation (e.g., scientific return). We write 
for the utility U(e, o, θ), where o is the current experiment and θ are the true values of 
the parameters of interest

• We can then evaluate the expected utility:  

E [U |e, o] =
�

d�U(�, e, o)P (�|o)
Example: an astronomer measures y = θ x (with Gaussian noise) at a few 

points 0 < x < 1. She then has a choice between building 2 equally 
expensive instruments to perform a new measurement: 

1. Instrument (e) is as accurate as today’s experiments but extends to 
much larger values of x (to a maximum xmax)

2. Instrument (a) is much more accurate but it is built in such a way as 
has to have a “sweet spot” at a certain value of y, call it y*, and much less 

accurate elsewhere  
Which instrument should she go for? 
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Answer 
• The answer depends on how good her current knowledge is - i.e. is the current 

uncertainty on θ* small enough to allow her to target accurately enough x=x* so that 
she can get to the “sweet spot” y*= θ*x*? 
(try it out for yourself! Hint: use for the utility the inverse variance of the future posterior 
on  θ and assume for the noise levels of experiment (a) the toy model:

where y* is the location of the sweet spot and Δ is the width of the sweet spot)
�2
a = �2

⇥ exp
�

(y�y�)2

2�2

⇥
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Making predictions: Dark Energy

Fisher Matrix 
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Bayesian evidence

A model comparison question: is dark energy Lambda, i.e. (w0, wa) = (-1, 0)?
How well will the future probe SNAP be able to answer this? 

Simulates from LCDM
Assumes LCDM is true

Ellipse not invariant when  
changing model assumptios

Simulate from all DE models
Assess “model confusion”

Allows to discriminate against LCDM
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Key points

• Predictive distributions incorporate present uncertainty in forecasts for the future 
scientific return of an experiment 

• Experiment optimization requires the specification of an utility function. The “best” 
experiment is the one that maximises the expected utility. 
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