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1 Probabilistic reasoning

1. A batch of chemistry undergraduates are screened for a dangerous medical condition called Bacil-
lum Bayesianum (BB). The incidence of the condition in the population is estimated at about 1%. If
the person has BB, the test returns positive 90% of the time. There is also a known 5% rate of false
positives, i.e., the test returning positive even if the person is free from BB.

One of your friends takes the test and it comes back positive. Should your friend be worried?

2. A pan contains 10 ravioli, of which 9 are filled with pesto and one with ricotta. You put in the pan a
further raviolo filled with pesto and cover with an opaque lid.hen you randomly draw a raviolo, eat
it and discover that it is filled with pesto. After this procedure, the pan is again in the same state as
before. What is now the probability that the next raviolo drawn will be filled with pesto?

On a different night, you cook a pan of mixed pesto and ricotta ravioli (in equal proportions). One last
raviolo remains in your plate, which could be either pesto or ricotta. Your friend tosses into your plate
her last raviolo, which she tells you is a pesto-filled one. Then you mix the two ravioli randomly, pick
one and realize it’s pesto. What is now the probability that the last raviolo in your plate is pesto?

3. In a TV debate, a politician named Barack affirms that climate change is caused by human activities.
You trust Barack to tell the truth with probability 2/3. Another politician, Silvio, then agrees that what
Barack has said is indeed true. Your trust in Silvio is much weaker, and you estimate that he lies with
probability 3/4. After you have heard Silvio, what is your probability that climate change is indeed
caused by humans? How can this help explain the polarization of political positions, e.g., in the US?

(You may assume that you have no other information or prior opinion on the origin of climate change
other than what you heard from the two politicians)

4. You are playing poker and the dealer gives himself a Three of a Kind, for which the odds are about
46:1. What is the posterior probability that the dealer is cheating, given that he is: (a) St Augustin (b)
your older brother (c) Al Capone?

5. A body has been found on the Baltimore West Side, with no apparent wounds, although it transpires
that the deceased, a Mr Fuzzy Dunlop, was a heavy drug user. The detective in charge suggests to
close the case and to attribute the death to drugs overdose, rather than murder.

Knowing that, of all murders in Baltimore, about 30% of the victims were drug addicts, and that the
probability of a dead person having died of overdose is 50% (without further evidence apart from the
body) estimate the probability that the detective’s hunch is correct.
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2 Single parameter inference

1. A coin is tossed N times and heads come up H times. Determine the bias of the coin, i.e., the proba-
bility pH that a single flip will give heads and its uncertainty. What is the probability that the (N+1)-th
flip will give heads? Plot your results as a function of H for N = 10,100,1000. Discuss your choice of
priors.

2. An astronomer wishes to know the (mono-chromatic) flux of a particular source and makes a pho-
tometric measurement which registers Nsrc photons. Assume that all the photons have come from
the source itself (i.e., there is no background or or source confusion) and that the known calibration
constant, C , is such that a source of true flux Fsrc would, on average, yield Fsrc/C photons in such a
measurement (i.e., a generic estimate of the source’s flux would be F̂src ≃C Nsrc).

(a) What is the model parameter that the astronomer is trying to infer?

(b) What is/are the datum/data?

(c) What is the likelihood [i.e., the probability Pr(Nsrc∣Fsrc)]?

(d) What prior information might the astronomer have before making (or at least making use of) the
measurement?

(e) If the astronomer had access to a catalogue of sources of similar fluxes from a different part
of the sky, how might this catalogue be used to generate an appropriate, if approximate, prior
distribution for the source’s true flux, Fsrc?

(f) If the distribution of source fluxes was known to increase as Pr(Fsrc)∝ F
−5/2
src , what would the

resultant posterior information on the source’s flux be upon combining this knowledge about the
source population and the data on the particular source of interest? Is this prior normaliseable
(i.e., proper)?

(g) Assuming, for simplicity, that C = 1, plot both the likelihood, Pr(Nsrc∣Fsrc), and the posterior dis-
tribution, Pr(Fsrc∣Nsrc), as a function of Fsrc in i) the case that Nsrc = 5 (plausible for an X-ray
observation) and ii) the case that Nsrc = 104 (plausible for an optical observation). Are any of
these functions approximately Gaussian? What is the probability that the source has Fsrc = 0?
What is the probability that the source has Fsrc < 0? How did utilising the photometric measure-
ment of the source affect these probabilities?

(h) What would be a reasonable “best estimate” of the source’s flux? (There are several plausible
answers.) How do these best estimates relate to the naive estimate F̂src =C Nsrc? Does this make
sense?

3. This problem takes you through the steps to derive the posterior distribution for a quantity of interest
θ, in the case of a Gaussian prior and Gaussian likelihood.

Let us assume that we have made N independent measurements, x̂ = {x̂1, x̂2, . . . , x̂N} of a quantity of
interest θ (this could be the temperature of an object, the distance of a galaxy, the mass of a planet,
etc). We assume that each of the measurements in independently Gaussian distributed with known
experimental standard deviation σ. Let us denote the sample mean by x̄, i.e.

x̄ =
1

N

N

∑
i=1

x̂i . (1)

Before we do the experiment, our state of knowledge about the quantity of interest θ is described by a
Gaussian distribution on θ (i.e., the prior in Bayes theorem), centered around 0 (we can always choose
the units in such a way that this is the case). Such a prior might come e.g. from a previous experiment
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we have performed. The new experiment is however much more precise, i.e. Σ≫ σ. Our prior state
of knowledge be written in mathematical form as the following Gaussian pdf:

p(θ) ∼N (0,Σ2
). (2)

(a) Write down the likelihood function for the measurements and show that it can be recast in the
form:

L(θ) = L0 exp(−
1

2

(θ− x̄)2

σ2/N
) , (3)

where L0 is a constant that does not depend on θ.

(b) By using Bayes theorem, compute the posterior probability for θ after the data have been taken

into account, i.e. compute p(θ∣x̂). Show that it is given by a Gaussian of mean x̄ Σ2

Σ2+σ2/N and

variance [ 1
Σ2 +

N
σ2 ]

−1
.

Hint: you may drop the normalization constant from Bayes theorem, as it does not depend on θ

(c) Show that as N →∞ the posterior distribution becomes independent of the prior.

(d) Show that as N →∞ the mean of the posterior distribution converges to the MLE of the mean
for θ. This means that for a large number of measurements, the Bayesian result matches the
frequentist MLE result.
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3 Model selection

1. A coin is tossed N = 250 times and it returns H = 140 heads. Evaluate the evidence that the coin
is biased using Bayesian model comparison and contrast your findings with the usual (frequentist)
hypothesis testing procedure (i.e., testing the null hypothesis that pH = 0.5). Discuss the dependency
on the choice of priors.

2. In 1919 two expeditions sailed from Britain to measure the light deflection from stars behind the Sun’s
rim during the solar eclipse of May 29th. Einstein’s General Relativity predicts a deflection angle

α =
4GM

c2R
,

where G is Newton’s constant, c is the speed of light, M is the mass of the gravitational lens and R is the
impact parameter. It is well known that this result it exaclty twice the value obtained using Newtonian
gravity. For M = M⊙ and R =R⊙ one gets from Einstein’s theory that α = 1.74 arc seconds.

The team led by Eddington reported 1.61±0.40 arc seconds (based on the position of 5 stars), while
the team headed by Crommelin reported 1.98±0.16 arc seconds (based on 7 stars).

What is the Bayes factor between Einstein and Newton gravity from those data? Comment on the
strength of evidence.

3. The astronomer from Section 2, Question 2 makes another photometric observation of a different
source, again measuring Nsrc photon counts. (And, again, all the photons are assumed to have come
from the source and the calibration constant, C , to be known perfectly.) This time, however, the source
is known to be either of Type A, in which case its flux would be FA, or Type B, in which case its flux
would be FB. Sources of Type A are ten times more common than sources of Type B. The astronomer’s
main aim is to classify the source as Type A or Type B.

(For those who prefer reasoning in a less abstract context, you could think of Type A objects as, say,
high-redshift quasars which are very faint at the wavelength of the observation, and Type B objects
as stars, which are relatively much brighter. The situation described above might arise if a source
was detected in an observation at longer wavelengths and the astronomer was trying to determine
whether the source might be an “interesting” quasar or a “mundane” star. A full spectrum would give
the answer, but it would be much cheaper observationally to determine the source’s nature using just
a photometric measurement if possible.)

(a) This problem can still be treated using the parameter estimation formalism described above.
The data and likelihood are the same as before, but now the prior is different; write down this
new flux prior [i.e., Pr(Fsrc)]. Having done so, then write down the posterior for the source’s true
flux, Pr(Fsrc∣Nsrc). How can this statement about the astronomer’s knowledge of the source’s flux
be simply converted to a probabilistic classification that the source is of Type A or Type B?

(b) This problem could also be thought of in terms of model comparison, with two models A and
B. Do either of these models have any parameters? What are the evidences for Type A and Type
B? Including the model priors, what is the final probabilistic classification? Does this differ from
the result obtained above using parameter estimation techniques?

(c) Before heading off to the telescope, the astronomer decides to check if the source has been ob-
served previously and finds an “upper limit”, Flim, in the literature. For simplicity this is taken to
imply that the photon counts of the source in that observation were less than Flim/C . What is the
likelihood, Pr(Nsrc < Flim/C ∣Fsrc)? What is the resultant posterior classification if Flim/C = 10.0?
If FA = 0.1Flim and FB = 1.2Flim (i.e., the observation is of an “interesting” depth that the source
might be detected if it was of Type A but almost certainly wouldn’t have been if it was of Type B),
what is the resultant probabilistic classification?
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(d) The astronomer then sends off a polite e-mail to the author of the “upper limit” paper requesting
the raw data in which the source was not detected. After reanalysing the data the astronomer is
now able to replace the constraint Nsrc < Flim/C with an actual measurement Nsrc = 0.9Flim/C .
Assuming FA = 0.1Flim and FB = 1.2Flim again, and Nsrc = 9 (consistent with the figures for the
above limit), what are the probabilistic inferences now? How has the inclusion of the full data
changed this inference relative to the use of a limit only (and relative to the situation when only
the prior information was available)?

4. Assume that the combined constraints from CMB, BAO and SNIa on the density parameter for the
cosmological constant can be expressed as a Gaussian posterior distribution onΩΛ with mean 0.7 and
standard deviation 0.05. Use the Savage-Dickey density ratio to estimate the Bayes factor between a
model with ΩΛ = 0 (i.e., no cosmological constant) and the ΛCDM model, with a flat prior on ΩΛ in
the range 0 ≤ΩΛ ≤ 2. Comment on the strength of evidence in favour ofΛCDM.

5. If the cosmological constant is a manifestation of quantum fluctuations of the vacuum, QFT argu-
ments lead to the result that the vacuum energy density ρΛ scales as

ρΛ ∼
ch̵

16π
k4

max (4)

where kmax is a cutoff scale for the maximum wavenumber contributing to the energy density1. Adopt-
ing the Planck mass as a plausible cutoff scale (i.e., kmax = c/h̵MPl) leads to “the cosmological constant
problem”, i.e., the fact that the predicted energy density

ρΛ ∼ 1076 GeV4 (5)

is about 120 orders of magnitude larger than the observed value, ρobs ∼ 10−48 GeV4.

Repeat the above estimation of the evidence in favour of a non-zero cosmological constant, adopting
this time a flat prior in the range 0 ≤ ΩΛ/Ω

obs
Λ < 10120. What is the meaning of this result? What is

the required observational accuracy (as measured by the posterior standard deviation) required to
override the Occam’s razor penalty in this case?

It seems that it would be very difficult to create structure in a universe with ΩΛ≫ 100, and so life (at
least life like our own) would be unlikely to evolve. How can you translate this “anthropic” argument
into a quantitative statement, and how would it effect our estimate of ΩΛ and the model selection
problem?

1See e.g. Carroll & Press, Ann. Rev. Astron. Astrophys. 30:499-542, 1992.
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4 Multiple parameter inference

1. The astronomer, having become disillusioned with the lazy data-reporting practices in optical astron-
omy, has moved into X-ray astronomy. Having found a source of interest, the astronomer falls back
on old habits and can’t resist trying to do some photometry, just for old time’s sake. This is something
of a shock, however, both because the expected number of photons from the source is very small (i.e.,
single figures) and also because there is now an appreciable background (i.e., maybe a third of the
photons registered might not have been emitted from the target source). The basic task is the same
as in Section 2 – to infer the flux of the source – but now there is the additional complication of a
background which must be included in the model. Just as a source of (true) flux Fsrc would provide
an average of N̄src = Fsrc/C photons in this measurement, the background flux (in the measurement
aperture), Fbkg, would be expected to contribute N̄bkg = Fbkg/C photons in such a measurement.

(a) It is quite possible that the background rate is known precisely (or with so much more accuracy
than the measurement that it is effectively exact), so that Fbkg can be treated as a known con-
stant. Given a single on-source measurement of Non photons, what is the likelihood and the

posterior for the source flux [again assuming the prior Pr(Fsrc)∝ F
−5/2
src ]?

(b) Unfortunately, the uncertainty in the background is often significant; in such cases it must also
be measured and its level inferred. The astronomer now makes two measurements: one with the
telescope aperture centred on the source, which yields Non photons, and one with the telescope
aperture pointed at a “blank” patch of sky, which yields Noff photons. Although the astronomer
is only really interested in Fsrc, it is also necessary to include the unknown Fbkg in the modelling
(to be marginalized over later).

Write down the likelihood [i.e., Pr(Non, Noff∣Fsrc,Fbkg)] and the prior [i.e., Pr(Fsrc,Fbkg)]. (Think
carefully about the prior for the background flux. If you have a strongly motivated choice of prior
make sure it is justified; if you are less certain try working through the problem with different
plausible priors that you think might span the possibilities.)

(c) The full posterior Pr(Fsrc,Fbkg∣Non, Noff) is fairly complicated (whatever prior for the background
level was chosen). To explore this distribution without the need for any significant additional
programming (or algebgra), generate 105 samples from the full posterior using MCMC in the
case that Non = 9 and Noff = 3 (and, again for convenience, that C = 1). Make a scatter plot
showing the range of plausible Fsrc and Fbkg values. Are they independent or correlated? Can
you explain this intuitively? Are these two parameters linked physically at all (i.e., does the flux
of a particular source have anything to do with the background)?

(d) It is only the marginal posterior of the source flux, Pr(Fsrc∣Non, Noff), that is really of interest. To
obtain this marginalized distribution, post-process the MCMC output by making a histogram of
the Fsrc values, ignoring the Fbkg values.

2. Supernovae type Ia can be used as standardizable candles to measure distances in the Universe. This
series of problems explores the extraction of cosmological information from a simplified SNIa toy
model.

The cosmological parameters we are interested in constraining are

C = {Ωm ,ΩΛ,h} (6)

where Ωm is the matter density (in units of the critical energy density) and ΩΛ is the dark energy
density, assumed here to be in the form of a cosmological constant, i.e. w = −1 at all redshifts. Also,
we will fix h = 0.72, where the Hubble constant today is given by H0 = 100hkm/s/Mpc.
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In an FRW cosmology defined by the parameters C , the distance modulus µ (i.e., the difference be-
tween the apparent and absolute magnitudes, µ =m−M) to a SN at redshift z is given by

µ(z,C ) = 5log[
DL(z,Ωm ,ΩΛ,h)

Mpc
]+25, (7)

where DL denotes the luminosity distance to the SN. Recalling that DL = c/H0dL , We can rewrite this
as

µ(z,C ) = η+5logdL(z,Ωm ,ΩΛ), (8)

where

η =−5log
100h

c
+25 (9)

and c is the speed of light in km/s. We have defined the dimensionless luminosity distance

dL(z,Ωm ,ΩΛ) =
(1+ z)
√

∣Ωκ∣
sinn{

√
∣Ωκ∣∫

z

0
dz′[(1+z′)3Ωm+ΩΛ+(1+z′)2Ωκ]

−1/2
}. (10)

The curvature parameter is given by the constraint equation

Ωκ = 1−Ωm −ΩΛ (11)

and the function sinn(x) = x, sin(x), sinh(x) for a flat Universe (Ωκ = 0), a closed Universe (Ωκ < 0) or
an open Universe, respectively.

We now assume that from each SNIa in our sample we get a measurement of the distance modulus
with Gaussian noise2, i.e., that the likelihood function for each SN i (i = 1, . . . , N ) is of the form

Li(zi ,C , M) =
1

√
2πσi

exp(−
1

2

(µ̂i −µ(zi ,C ))2

σ2
i

) . (12)

The observed distance modulus is given by µ̂i = m̂i−M , where m̂i is the observed apparent magnitude
and M is the intrinsic magnitude of the SNIa. We assume that each SN observation is independent of
all the others.

The provided data file3 (SNe_simulated.dat) contains simulated observations from the above sim-
plified model of N = 300 SNIa. The two columns give the redsfhit zi and the observed apparent mag-
nitude m̂i . The observational error is the same for all SNe, σi = σ = 0.4 mag for i = 1, . . . , N . A plot of
the data set is shown in the left panel of Fig. 1. The characteristics of the simulated SNe are designed
to mimic currently available datasets4.

(a) We begin by assuming that the intrinsic magnitude is known and fix M = M0 = −19.3. We also
assume that the observational error is known, given by the value above. Using a language of your
choice, write a code to carry out an MCMC sampling of the posterior probability for (Ωm ,ΩΛ)
and plot the resulting 68% and 95% posterior regions, both in 2D and marginalized to 1D. Be
careful in defining and discussing your priors on (Ωm ,ΩΛ) explicitly. You should get something
similar to the 2D plot shown in the right panel of Fig. 1.

2We neglect the important issue of applying the empirical corrections known as Phillip’s relations to the observed light curve.
This is of fundamental important in order to reduce the scatter of SNIa within useful limits for cosmological distance measure-
ments, but it would introduce a technical complication here without adding to the fundamental scope of this exercice.

3Thanks to Marisa March for help with the simulation.
4See Kowalski et al, Astrophys. J., 686:749-778, 2008 (arXiv:0804.4142) and Amanullah et al, 2010 (arXiv:1004.1711). For a fully

Bayesian treatment, see March et al (arXiv: 1102.3237).
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Figure 1: Left: Simulated SNIa dataset, SNe_simulated.dat. The solid line is the true underlying cosmol-
ogy. Right: constraints onΩm ,ΩΛ from this dataset, with contours delimiting 2D joint 68% and 95% regions
(flat priors on the variables Ωm ,ΩΛ, assuming M = M0 fixed and h = 0.72). The red cross denotes the true
value.

(b) Add the quantity σ to the set of unknown parameters and estimate it from the data along with
C . Notice that since σ is a “scale parameter”, the appropriate (improper) prior is p(σ)∝ 1/σ.

(c) In reality the SNe intrinsic magnitude is not fixed, but there is an “intrinsic dispersion” (even
after Phillips’ corrections) reflecting perhaps intrinsic variability in the explosion mechanism,
or environmental parameters which are currently poorly understood. Suppose that the intrinsic
magnitude of each SNIa, Mi , is probabilistically drawn from a Gaussian distribution with mean
M0 and standard deviation ∆, i.e.

Mi ∼N (M0,∆2
), i = 1, . . . , N . (13)

Derive the effective likelihood accounting for intrinsic dispersion by introducing a vector M =

{M1, M2, . . . , MN} of unobserved intrinsic magnitudes and marginalizing over it analytically (as-
sume for this that the observational error is known, as in part (a)).

Hints: recall that N (m,Σ) denotes a Normal distribution of mean m and covariance matrix Σ,
i.e.

p(x) =
1

√
det(2πΣ)

exp[−
1

2
(x−m)

tΣ−1
(x−m)] (14)

It is useful to rewrite the joint likelihood in matrix form and carry out all of the Gaussian integrals
at once by using this standard result:

∫ exp[−
1

2
(x−m)

tΣ−1
(x−m)]dx =

√
det(2πΣ) (15)

(d) The location of the peaks in the CMB power spectrum gives a precise measurement of the angu-
lar diameter distance to the last scattering surface, divided by the sound horizon at decoupling.
This approximately translates into an effective constraint5 on the following degenerate combi-
nation ofΩm andΩΛ:

1.41ΩΛ+Ωm = 1.30±0.04. (16)

5For full details, see Spergel et al, Astrophys. J. Suppl., 170:377, 2007 (astro-ph/0603449), Fig. 20.
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Add this constraint (assuming a Gaussian distribution) to the SNIa likelihood and plot the ensu-
ing combined 2D and 1D limits on (Ωm ,ΩΛ).

(e) The measurement of the baryonic acoustic oscillation scale in the galaxy power spectrum at
small redshift gives an effective constraint on the angular diameter distance D A out to z ∼ 0.3
(see lectures by Daniel Eisenstein and Bruce Bassett). This measurement can be summarized6

(simplifying somewhat) by the constraint:

D A(z = 0.3) = (893±27) Mpc. (17)

Add this constraints (again assuming it is Gaussian distributed) to the above CMB+SNIa limits
and plot the resulting combined 2D and 1D limits on (Ωm ,ΩΛ).
Hint: recall that DL(z) = (1+ z)2D A(z).

6For details, see Percival et al, Mon. Not. Roy. Astron. Soc., 401:2148-2168, 2010 (arXiv:0907.1660).
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