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This is a summary handout of the lectures. While I do not intend to cover all of the material in detail,

the hope is that this handout will give you the necessary information to fill in the unavoidable gaps that will

be left by the lectures themselves. Additional examples and applications in cosmology are given during the

lectures. An exercice sheet complements this handout and is designed to give you a hands-on experience of

some of the concepts covered here.

Notice that the list of references has been kept very minimal in this handout. Please refer to [13] for

a far more complete overview of the literature. Useful reference textbooks are Refs. [1, 2, 3, 4, 5, 6, 7, 8];

applications to cosmology and astrophysics can be found in e.g. [9, 10, 11, 12, 13].
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Guildenstern — The law of probability, as it has been oddly asserted, is something to do with the propo-

sition that [. . . ], if I have got this right, if six monkeys were thrown up in the air for long enough they would

land on their tails about as often as they would land on their. . .

Rosencratz — Heads.

Tom Stoppard, Rosencratz and Guildenstern are dead (1966)

1. FOUNDATIONAL ASPECTS

▸ Any physical theory must be validated against observations. The cycle theory→ prediction→ ob-

servation→ theory forms the pillar of the scientific process.

▸ The comparison between theory and observation is the key phase when statistical methods are

needed: how do we learn about the world from a collection of noisy observations?

▸ Statistics is at the heart of the scientific process, not merely an optional nuisance. Ernest Rutherford

is reported to have said: “If you need statistics, you did the wrong experiment”. This completely

misses the point: if you do not need statistics, it’s because you are doing the wrong kind of physics!

Five reasons why you need statistics:

(i) The complexity of the modelling of both our theories and observations will always increase,

thus requiring correspondingly more refined statistical and data analysis skills. In fact, the

scientific return of the next generation of surveys will be limited by the level of sophistication

and efficiency of our inference tools.

(ii) The discovery zone for new physics is when a potentially new effect is seen at the 3–4 σ level.

This is when tantalizing suggestions for an effect start to accumulate but there is no firm ev-

idence yet. In this potential discovery region a careful application of statistics can make the

difference between claiming or missing a new discovery.

(iii) If you are a theoretician, you do not want to waste your time trying to explain an effect that is

not there in the first place. A better appreciation of the interpretation of statistical statements

might help in identifying robust claims from spurious ones.

(iv) Limited resources mean that we need to focus our efforts on the most promising avenues.

Experiment forecast and optimization will increasingly become prominent as we need to use

all of our current knowledge (and the associated uncertainty) to identify the observations and

strategies that are likely to give the highest scientific return in a given field.

(v) Sometimes there will be no better data! This is the case for the many problems associated with

cosmic variance limited measurements on large scales, for example in the cosmic background

radiation, where the small number of independent directions on the sky makes it impossible

to reduce the error below a certain level.

1.1. The meaning of probability.

▸ There are two different ways of understanding what probability is. The classical (so-called “fre-

quentist”) notion of probability is that probabilities are tied to the frequency of outcomes over

a long series of trials. Repeatability of an experiment is the key concept. Most of this course will

follow this notion.

The Bayesian outlook1 is that probability expresses a degree of belief in a proposition, based on

the available knowledge of the experimenter. Information is the key concept. Bayesian probabil-

ity theory is more general than frequentist theory, as the former can deal with unique situations

that the latter cannot handle (e.g., “what is the probability that it will rain tomorrow?). Bayesian

probability is briefly discussed at the end of the course.

1So-called after Rev. Thomas Bayes (1701(?)–1761), who was the first to introduce this idea in a paper published posthumously

in 1763, “An essay towards solving a problem in the doctrine of chances”.
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▸ Let A,B ,C , . . . denote propositions (e.g., that a coin toss gives tails). Let Ωdescribe the sample space

(or state space) of the experiment, i.e., Ω is a list of all the possible outcomes of the experiment.

If we are tossing a coin, Ω = {T, H}, where T denotes “tails” and H denotes “head”. If we are tossing

a die, Ω = {1,2,3,4,5,6}. If we are drawing one ball from an urn containing white and black balls,

Ω = {W,B}, where W denotes a white ball and B a black ball.

▸ Frequentist definition of probability: The number of times an event occurs divided by the total

number of events in the limit of an infinite series of equiprobable trials.

▸ The joint probability of A and B is the probability of A and B happening together, and is denoted

by P(A,B).
The conditional probability of A given B is the probability of A happening given that B has

happened, and is denoted by P(A∣B).
▸ The sum rule:

(1) P(A)+P(A) = 1,

where A denotes the proposition “not A”.

The product rule:

(2) P(A,B) =P(A∣B)P(B).
By inverting the order of A and B we obtain that

(3) P(B , A) =P(B ∣A)P(A)
and because P(A,B) =P(B , A), we obtain Bayes theorem by equating Eqs. (46) and (47):

(4) P(A∣B) = P(B ∣A)P(A)
P(B) .

The marginalisation rule (follows from the two rules above):

(5) P(A) =P(A,B1)+P(A,B2)+ ⋅ ⋅ ⋅ =∑
i

P(A,Bi ) =∑
i

P(A∣Bi)P(Bi ),
where the sum is over all possible outcomes for proposition B .

▸ Two propositions (or events) are said to be independent if and only if

(6) P(A,B) = P(A)P(B).
2. RANDOM VARIABLES, PARENT DISTRIBUTIONS AND SAMPLES

▸ A random variable (RV) is a function mapping the sample space Ω of possible outcomes of a ran-

dom process to the space of real numbers.

When tossing a coin once, the RV X can be defined as

(7) X ={0, if coin lands T

1, if coin lands H.

When tossing a die, the RV X can be defined as

(8) X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if a 1 is rolled

2, if a 2 is rolled

3, if a 3 is rolled

4, if a 4 is rolled

5, if a 5 is rolled

6, if a 6 is rolled.

When drawing one ball from an urn containing black and white balls, the RV X can be defined as

(9) X ={0, if the ball drawn is white

1, if the ball drawn is black.
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A RV can be discrete (only a countable number of outcomes is possible, such as in coin tossing)

or continuous (an uncountable number of outcomes is possible, such as in a temperature mea-

surement). It is mathematically subtle to carry out the passage from a discrete to a continuous RV,

although as physicists we won’t bother too much with mathematical rigour.

▸ Each RV has an associated probability distribution to it. The probability distribution of a discrete

RV is called probability mass function (pmf), which gives the probability of each outcome: P(X =
xi) = Pi gives the probability of the RV X assuming the value xi . In the following we shall use the

shorthand notation P(xi) to mean P(X = xi).
If X is the RV of Eq. (8), and the die being tossed is fair, then Pi = 1/6 for i = 1, . . . ,6, where xi is the

outcome “a the face with i pips comes up”.

The probability distribution associated with a continuous RV is called the probability density

function (pdf), denoted by p(X ). The quantity p(x)d x gives the probabilty that the RV X assumes

the value between x and x +d x.

The choice of probability distribution to associate to a given random process is dictated by the

nature of the random process one is investigating (examples follow below).

▸ For a discrete pmf, the cumulative probability distribution function (cdf) is given by

(10) C(xi) = i∑
j=1

P(x j ).
The cdf gives the probabilty that the RV X takes on a value less than or equal to xi , i.e. C(xi) =
P(X ≤ xi).

For a continuous pdf, the cdf is given by

(11) P(x) =∫ x

−∞
p(y)d y,

with the same interpretation as above, i.e. it is the probability that the RV X takes a value smaller

than x.

▸ When we make a measurement, (e.g., the temperature of an object, or we toss a coin and observe

which face comes up), nature selects an outcome from the sample space with probability given

by the associated pmf or pdf. The selection of the outcome is such that if the measurement was

repeated an infinite number of times the relative frequency of each outcome is the same as the the

probability associated with each outcome under the pmf or pdf (this is another formulation of the

frequentist definition of probability given above).

▸ Outcomes of measurements realized by nature are called samples. They are a series of real num-

bers, {x̂1, x̂2, . . . , x̂N} (usually denoted by symbols with a hat in this course).

2.1. The likelihood function.

3. THE LIKELIHOOD FUNCTION

▸ The problem of inference can be stated as follows: given a collection of samples, {x̂1, x̂2, . . . , x̂N},
and a generating random process, what can be said about the properties of the underlying proba-

bility distribution?

You toss a coin 5 times and obtain 1 head. What can be said about the fairness of the coin?

With a photon counter you observe 10 photons in a minute. What can be said about the average

photon rate from the source?

You measure the temperature of an object twice with two different instruments, yielding the follow-

ing measurements: T = 256±10 K and T = 260±5 K. What can be said about the temperature of the

object?

▸ Schematically, we have that:

(12)
pdf - e.g., Gaussian with a given (µ,σ)→Probability of observation

Underlying (µ,σ)←Observed events

The connection between the two domains is given by the likelihood function.
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FIGURE 1. The likelihood function for the probability of heads (θ) for the coin tossing ex-

ample, with n = 5,r = 1.

▸ Given a pdf or a pmf p(X ∣θ), where X represents a random variable and θ a collection of parameters

describing the shape of the pdf2 and the observed data x̂ = {x̂1, x̂2, . . . , x̂N}, the likelihood functionL (or “likelihood” for short) is defined as

(13) L(θ) = p(X = x̂∣θ)
i.e., the probability, as a function of the parameters θ, of observing the data that have been ob-

tained. Notice that the likelihood is not a pdf in θ.

▸ In tossing a coin, let θ be the probability of obtaining heads in one throw (what we denoted pre-

viously by p . Now we use θ instead, in order to make contact with the more general formalism

introduced above. Don’t let yourself be thrown by the slightly different notation!). Suppose we

make n = 5 flips and obtain the sequence x̂ = {H ,T,T,T,T}. The likelihood is obtained by taking

the binomial, Eq. (84), and replacing for r the number of heads obtained (r = 1) in n = 5 trials, and

looking at it as a function of the parameter we are interested in determining, here θ. Thus

(14) L(θ) = (5

1
)θ1(1−θ)4 = 5θ(1−θ)4,

which is plotted as a function of θ in Fig. 1.

If instead of r = 1 heads we had obtained a different number of heads in our n = 5 trials, the

likelihood function would have looked as shown in Fig. 2 for a few choices for r .

▸ This example leads to the formulation of the Maximum Likelihood Principle (see below): if we are

trying to determine the value of θ given what we have observed (the sequence of H/T), we should

choose the value that maximises the likelihood. Notice that this is not necessarily the same as

maximising the probability of θ. Doing so requires the use of Bayes theorem, see section 3.3.

3.1. The Maximum Likelihood Principle.

2For example, for a Gaussian θ = {µ,σ}, for a Poisson distribution, θ = λ and for a binomial distribution, θ = p, the probability

of success in one trial.
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FIGURE 2. The likelihood function for the probability of heads (θ) for the coin tossing ex-

ample, with n = 5 trials and different values of r .

▸ The Maximum Likelihood Principle (MLP): given the likelihood function L(θ) and seeking to de-

termine the parameter θ, we should choose the value of θ in such a way that the value of the likeli-

hood is maximised. The Maximum Likelihood Estimator (MLE) for θ is thus

(15) θML ≡max
θ
L(θ)

▸ Properties of the MLE: it is asymptotically unbiased (i.e., θML → θ for N →∞, i.e., the ML estimate

converges to the true value of the parameters for infinitely many data points) and it is asymptoti-

cally the minimum variance estimator, i.e. the one with the smallest errors.

▸ To find the MLE, we maximise the likelihood by requiring its first derivative to be zero and the

second derivative to be negative:

(16)
∂L(θ)
∂θ
∣
θML

= 0, and
∂2L(θ)
∂θ2

∣
θML

< 0.

In practice, it is often more convenient to maximise the logarithm of the likelihood (the “log-likelihood”)

instead. Since log is a monotonic function, maximising the likelihood is the same as maximising

the log-likelihood. So one often uses

(17)
∂ lnL(θ)

∂θ
∣
θML

= 0, and
∂2 lnL(θ)

∂θ2
∣
θML

< 0.

▸ MLE of the mean of a Gaussian. Imagine we have done N independent measurements of a Gaussian-

distributed quantity, and let’s denote them by {x̂1, x̂2, . . . , x̂N}. Here the parameters we are inter-

ested in determining are µ (the mean of the distribution) and σ (the standard deviation of the dis-

tribution), hence we write θ = {µ,σ}.Then the joint likelihood function is given by

(18) L(µ,σ) = p(x̂∣µ,σ) = N

∏
i=1

1√
2πσ

exp(−1

2

(x̂i −µ)2
σ2

) ,

Note: often the Gaussian above is written as

(19) L= L0 exp(−χ2/2)
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where the so-called “chi-squared” is defined as

(20) χ2 = N

∑
i=1

(x̂i −µ)2
σ2

.

We want to estimate the (true) mean of the Gaussian. The MLE for the mean is obtained by

solving

(21)
∂ lnL
∂µ
= 0⇒µML = 1

N

N

∑
i=1

x̂i ,

i.e., the MLE for the mean is just the sample mean (i.e., the average of the measurements).

▸ MLE of the standard deviation of a Gaussian. If we want to estimate the standard deviation σ of

the Gaussian, the MLE for σ is:

(22)
∂ lnL
∂σ
= 0⇒σ2

ML = 1

N

N

∑
i=1

(x̂i −µ)2.

However, the MLE above is “biased”, i.e. it can be shown that

(23) E(σ2
ML) = (1− 1

N
)σ2 ≠σ2,

i.e., for finite N the expectation value of the ML estimator is not the same as the true value, σ2. In

order to obtain an unbiased estimator we replace the factor 1/N by 1/(N − 1). Also, because the

true µ is usually unknown, we replace it in Eq. (22) by the MLE estimator for the mean, µML.

Therefore, the unbiased MLE estimator for the variance is

(24) σ̂2 = 1

N −1

N

∑
i=1

(x̂i −µML)2.

In general, you should always use Eq. (24) as the ML estimator for the variance (and not Eq. (22)).

A numerical application of the above results. The surface temperature on Mars is measured by a

probe 10 times, yielding the following data (units of K):

(25) 197.2,202.4,201.8,198.8,207.6,191.4, 201.4,198.2,195.7,201.2.

Assuming that each measurement is independently Gaussian distributed with known variance σ2 =
5 K2, what is the likelihood function for the whole data set?

Answer: the measurements are independent, hence the total likelihood is the product of the likeli-

hoods for each measurement, see Eq. (18):

(26) L(T ) = 10

∏
i=1

1√
2πσ

exp(−1

2

(T̂i −T )2
σ2

)
What is the MLE of the mean, TML?

Answer: the MLE for the mean of a Gaussian is given by the mean of the sample, see Eq. (21), hence

(27) TML = 1

10

10

∑
i=1

T̂i = 199.6K .

▸ MLE for the success probability of a binomial distribution. We go back to the coin tossing ex-

ample, but this time we solve it in all generality. Let’s define “success” as “the coin lands heads”

(H). Having observed H heads in a number n of trials, the likelihood function of a binomial is given

by (see Eq. (84)), again using the notation θ = p , where the unknown parameter is p (the success

probability for one trial, i.e., the probability that the coin lands H):

(28) L(p) = P(H ∣p,n) = (n

H
)p H(1−p)n−H ,
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The Maximum Likelihood Estimator the success probability is found by maximising the log likeli-

hood:

∂ lnL(p)
∂p

= ∂

∂p
(ln(n

H
)+H ln p +(n−H) ln(1−p)) = H

p
− n−H

1−p

!= 0

⇔ pML = H

n
.

(29)

Thus the MLE is simpy given by the observed fraction of heads, which is intuitively obvious.

▸ MLE for the rate of a Poisson distribution. The likelihood function is given by (see Eq. (87)), using

the notation θ = λ (i.e., the parameter θ we are interested in is here the rate λ):

(30) L(λ) = P(n∣λ) = (λt)n
n!

exp(−λt),
The unknown parameter is the rate λ, while the data are the observed counts, n, in the amount of

time t . The Maximum Likelihood Estimate for λ is obtained by finding the maximum of the log

likelihood as a function of the parameter (here, the rate λ). Hence we need to find the value of λ

such that:

(31)
∂ lnP(n∣λ)

∂λ
= 0.

The derivative gives

(32)
∂ lnP(n∣λ)

∂λ
= ∂

∂λ
(n ln(λt)− ln n!−λt) =n

t

λt
− t = 0⇔λMLE = n

t
.

So the maximum likelihood estimator for the rate is the observed average number of counts.

▸ MLE recipe:

(i) Write down the likelihood. This depends on the kind of random process you are considering.

Identify what is the parameter that you are interested in, θ.

(ii) Find the “best fit” value of the parameter of interest by maximising the likelihood L as a func-

tion of θ. This is your MLE, θML.

(iii) Evaluate the uncertainty on θML, i.e. compute the confidence interval (see next section).

3.2. Frequentist confidence intervals. Confidence is what you have before you understand the problem.

Woody Allen

▸ Consider a general likelihood function, L(θ) and let us do a Taylor expansion of the log-likelihood

lnL around its maximum, given by θML:

(33) lnL(θ) = lnL(θML)+ ∂ lnL(θ)
∂θ

∣
θML

(θ−θML)+ 1

2

∂2 lnL(θ)
∂θ2

∣
θML

(θ−θML)2+ . . .

The second term on the RHS vanishes (by definition of the Maximum Likelihood value), hence we

can approximate the likelihood as

(34) L(θ) ≈ L(θML)exp(−1

2

(θ−θML)2
Σ

2
θ

)+ . . . ,

with

(35)
1

Σθ
2
=−∂2 lnL(θ)

∂θ2
∣
θML

.

So a general likelihood function can be approximated as a Gaussian around the ML value, as shown

by Eq. (34). Therefore, to the extent that a probability distribution can be approximated as a Gauss-

ian around its peak, the uncertainty around the ML value, Σθ, is approximately given by Eq. (35).
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▸ Let’s go back to the Gaussian problem of Eq. (18). We have seen in Eq. (21) that the sample mean

is the MLE for the mean of the Gaussian. We now want to compute the uncertainty on this value.

Applying Eq. (35) to the likelihood of Eq. (18) we obtain

(36) Σ
2
µ =σ2/N .

This means that the the uncertainty on our ML estimate for µ (as expressed by the standard devia-

tion Σµ) is proportional to 1/√N , with N being the number of measurements.

▸ Going back to the numerical example of Eq. (25), we now wish to estimate the uncertainty on our

MLE for the mean. The variance of the mean is given by Σ
2
µ = σ2/N , where σ2 = 5 K2 and N = 10.

Therefore the standard deviation of our temperature estimate TML is given by ΣT = 5/√10 = 1.6 K.

The measurement can thus be summarized as T = 199.6±1.6 K, where the ±1.6 K gives the range of

the 1σ (or 68.3%) confidence interval (see below).

▸ As the likelihood function can be approximated as a Gaussian (at least around the peak), we can use

the results for a Gaussian distribution to approximate the probability content of an interval around

the ML estimate for the mean. The interval [µmin,µmax] is called a 100α% confidence interval for

the mean µ if P(µmin <µ < µmax) =α.

So, for example, the interval [µML −Σµ < µ < µML+Σµ] is a 68.3% confidence interval for the mean

(a so-called “1σ interval”), while [µML −2Σµ < µ < µML+2Σµ] is a 95.4% confidence interval (a “2σ

interval”).

In the temperature measurement example of Eq. (25), the 68.3% confidence interval for the mean

is 198.0 K <µ < 201.2 K. The 95.4% confidence interval is 196.4 K <µ < 202.8 K.

▸ Generally, the value after the “±” sign will usually give the 1σ (i.e., 68.3%) region. Sometimes you

might find a notation like 50±10 (95% CL), where “CL” stands for “Confidence Level”. In this case,

±5 encompasses a region of 95% confidence (rather than 68.3%), which corresponds to 1.96 σ (see

Table 2).

▸ One has to be careful with the interpretation of confidence intervals as this is often misunderstood!

Interpretation: if we were to repeat an experiment many times, and each time report the observed

100α% confidence interval, we would be correct 100α% of the time. This means that (ideally) a

100α% confidence intervals contains the true value of the parameter 100α% of the time.

▸ In a frequentist sense, it does not make sense to talk about “the probability of θ”. This is because

every time the experiment is performed we get a different realization (different samples), hence a

different numerical value for the confidence interval. Each time, either the true value of θ is inside

the reported confidence interval (in which case, the probability of θ being inside is 1) or the true

value is outside (in which case its probability of being inside is 0). Confidence intervals do not give

the probability of the parameter! In order to do that, you need Bayes theorem.

New Year Test sample question. The surface temperature on Mars is measured by a probe 10 times,

yielding the following data (units of K):

(37) 191.9,201.6,206.1,200.4,203.2,201.6, 196.5,199.5,194.1,202.4

(i) Assume that each measurement is independently Normally distributed with known variancee

σ2 = 25 K2. What is the likelihood function for the whole data set?

Answer: The measurements are independent, hence the total likelihood is the product of the

likelihoods for each measurement:

(38) Ltot(T ) = 10

∏
i=1

1√
2πσ

exp(−1

2

(T̂i −T )2
σ2

)
where T̂i are the data given, T is the temperature we are trying to determine (unknown param-

eter) and σ = 5 K.

(ii) Find the Maximum Likelihood Estimate (MLE) for the surface temperature, TML, and express

your result to 4 significant figures accuracy.

Answer: The MLE for the mean of a Gaussian is given by the mean of the sample, see Eq. (21),
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hence

(39) TML = 1

10

10

∑
i=1

Ti = 199.7K.

(iii) Determine symmetric confidence intervals at 68.3%, 95.4% and 99% around TML (4 significant

figures accuracy).

Answer: The variance of the mean is given by σ2/N , see Eq. (36). Therefore the standard de-

viation of our estimate TML is given by ΣT = σ/√N = 5/√10 = 1.58 K, which corresponds to

the 68.3% interval: 199.7± 1.6 K, i.e. the range [198.1,201.3] K (4 s.f. accuracy). Confidence

intervals at 95.4% and 99% corresponds to symmetric intervals around the mean of length

2.0 and 2.57 times the standard deviation ΣT . Hence the required confidence intervals are[196.5,202.9] K (95.4%) and [195.6,203.8] K (99%).

(iv) How many measurements would you need to make if you wanted to have a 1σ confidence

interval around the mean of length less than 1 K (on each side)?

Answer: A 1σ confidence interval lenght 1 K means that the value of ΣT should be 1 K. Using

that the standard deviation scales as 1/√N , we have

(40) 1 = 5/√N⇒N = 25.

You would need N = 25 measurements to achieve the desired accuracy.

A laser beam is used to measure the deviation of the distance between the Earth and the Moon from its

average value, giving the following data, in units of cm:

(41) 119, 119, 122, 121, 116.

(i) Assuming that each measurement above follows an independent Gaussian distribution of known

standard deviation σ = 3 cm, write down the joint likelihood function for ∆, the deviation of the

Earth-Moon distance from its average value.

Answer: The joint Gaussian likelihood function for ∆ is given by

(42) P(∆∣d) ≡L(∆) = 5

∏
i=1

1√
2πσ

exp(−1

2

(∆−di)2
σ2

) ,

where σ= 3 cm and di are the measurements given in the question.

(ii) Compute the maximum likelihood estimate for ∆ and its uncertainty, both to 3 significant figures.

Answer: The maximum likelihood estimate for ∆ is found by maximising the log-likelihood func-

tion wrt ∆:

(43)
∂ lnL
∂∆
=− 5

∑
i=1

∆−di

σ2
= 0→∆MLE = 1

N

5

∑
i=1

di

The numerical value is ∆MLE = 119.4cm ≈ 119 (cm, 3 s.f.).

The uncertainty Σ on ∆ is estimated from the inverse curvature of the log likelihood function at

the MLE point:

(44) −∂
2 lnL
∂∆2

= N∆

σ2
→Σ =(−∂2 lnL

∂∆2
)−1/2 = σ√

N

Numerically this gives Σ = 3/√5 = 1.34 ≈ 1 cm.

(iii) How would you report the measurement of ∆?

Answer: The measurement of ∆ would thus be reported as ∆ = (119±1) cm.

3.3. Bayes theorem.

▸ Bayes theorem, Eq. (48), encapsulates the notion of probability as degree of belief. The Bayesian

outlook on probability is more general than the frequentist one, as the former can deal with un-

repeatable situations that the latter cannot address. We begin with some simple definitions and

consequences.
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▸ The joint probability of A and B is the probability of A and B happening together, and is denoted

by P(A,B).
The conditional probability of A given B is the probability of A happening given that B has hap-

pened, and is denoted by P(A∣B).
▸ The sum rule:

(45) P(A)+P(A) = 1,

where A denotes the proposition “not A”.

▸ The product rule:

(46) P(A,B) =P(A∣B)P(B).
By inverting the order of A and B we obtain that

(47) P(B , A) =P(B ∣A)P(A)
and because P(A,B) =P(B , A), we obtain, by equating Eqs. (46) and (47):

▸ Bayes theorem

(48) P(A∣B) = P(B ∣A)P(A)
P(B) .

▸ The marginalisation rule (follows from the two rules above):

(49) P(A) =P(A,B1)+P(A,B2)+⋅ ⋅ ⋅ =∑
i

P(A,Bi ) =∑
i

P(A∣Bi)P(Bi ),
where the sum is over all possible outcomes for proposition B .

▸ Two propositions (or events) are said to be independent if and only if

(50) P(A,B) = P(A)P(B).
▸ We replace in Bayes theorem, Eq. (48), A → θ (the parameters) and B → d (the observed data, or

samples), obtaining

(51) P(θ∣d) = P(d ∣θ)P(θ)
P(d) .

On the LHS, P(θ∣d) is the posterior probability for θ (or “posterior” for short), and it represents our

degree of belief about the value of θ after we have seen the data d .

On the RHS, P(d ∣θ) = L(θ) is the likelihood we already encountered. It is the probability of the

data given a certain value of the parameters. The quantity P(θ) is the prior probability distribution

(or “prior” for short). It representes our degree of belief in the value of θ before we see the data. This

is an essential ingredient of Bayesian statistics. In the denominator, P(d) is a normalizing constant

(often called “the evidence”), which ensures that the posterior is normalized to unity:

(52) P(d) =∫ dθP(d ∣θ)P(θ).
The evidence is important for Bayesian model selection (see section 5).

▸ Interpretation: Bayes theorem relates the posterior probability for θ (i.e., what we know about the

parameters after seeing the data) to the likelihood. It can be thought of as a general rule to update

our knowledge about a quantity (here, θ) from the prior to the posterior. A result known as Cox

theorem shows that Bayes theorem is the unique generalization of boolean algebra in the presence

of uncertainty.

▸ Remember that in general P(θ∣d) ≠P(d ∣θ) (see ex. of pregnant woman!), i.e. the posterior and the

likelihood are two different quantities with different meaning!
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4. BAYESIAN INFERENCE

4.1. Advantages of the Bayesian approach. Irrespectively of the philosophical and epistemiologi-

cal views about probability, as physicists we might as well take the pragmatic view that the approach

that yields demonstrably superior results ought to be preferred. In many real–life cases, there are

several good reasons to prefer a Bayesian viewpoint:

(i) Classic frequentist methods are often based on asymptotic properties of estimators. Only a

handful of cases exist that are simple enough to be amenable to analytic treatment (in phys-

ical problems one most often encounters the Normal and the Poisson distribution). Often,

methods based on such distributions are employed not because they accurately describe the

problem at hand, but because of the lack of better tools. This can lead to serious mistakes.

Bayesian inference is not concerned by such problems: it can be shown that application of

Bayes’ Theorem recovers frequentist results (in the long run) for cases simple enough where such

results exist, while remaining applicable to questions that cannot even be asked in a frequentist

context.

(ii) Bayesian inference deals effortlessly with nuisance parameters. Those are parameters that have

an influence on the data but are of no interest for us. For example, a problem commonly en-

countered in astrophysics is the estimation of a signal in the presence of a background rate

The particles of interest might be photons, neutrinos or cosmic rays. Measurements of the

source s must account for uncertainty in the background, described by a nuisance parame-

ter b. The Bayesian procedure is straightforward: infer the joint probability of s and b and

then integrate over the uninteresting nuisance parameter b (“marginalization”, see Eq. (63)).

Frequentist methods offer no simple way of dealing with nuisance parameters (the very name

derives from the difficulty of accounting for them in classical statistics). However neglecting

nuisance parameters or fixing them to their best–fit value can result in a very serious underes-

timation of the uncertainty on the parameters of interest.

(iii) In many situations prior information is highly relevant and omitting it would result in seri-

ously wrong inferences. The simplest case is when the parameters of interest have a physical

meaning that restricts their possible values: masses, count rates, power and light intensity are

examples of quantities that must be positive. Frequentist procedures based only on the likeli-

hood can give best–fit estimates that are negative, and hence meaningless, unless special care

is taken (for example, constrained likelihood methods). This often happens in the regime of

small counts or low signal to noise. The use of Bayes’ Theorem ensures that relevant prior in-

formation is accounted for in the final inference and that physically meaningless results are

weeded out from the beginning.

(iv) Bayesian statistics only deals with the data that were actually observed, while frequentist meth-

ods focus on the distribution of possible data that have not been obtained. As a consequence,

frequentist results can depend on what the experimenter thinks about the probability of data

that have not been observed. (this is called the “stopping rule” problem). This state of af-

fairs is obviously absurd. Our inferences should not depend on the probability of what could

have happened but should be conditional on whatever has actually occurred. This is built into

Bayesian methods from the beginning since inferences are by construction conditional on the

observed data.

▸ The cosmology and astrophysics communities have been embracing Bayesian mehods since the

turning of the Millennium, spurred by the availability of cheap computational power that has ush-

ered in an era of high-performance computing, thus allowing for the first time to deploy the power

of Bayesian statistics thanks to numerical implementations (in particular, MCMC and related tech-

niques). The steep increase in the number of Bayesian papers in the astrophysics literature is shown

in Fig. 3.

▸ Bayesian inference works by updating our state of knowledge about a parameter (or hypothesis) as

new data flow in. The posterior from a previous cycle of observations becomes the prior for the next.
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FIGURE 3. Number of articles in astronomy and cosmology with “Bayesian” in the title, as

a function of publication year (upper data points) and total number of articles (lower data

points) as a function of publication year. Numbers are normalized to 1980 levels for each

data series. The number of Bayesian papers doubles every 4.3 years, while the total number

of papers doubles “only” every 12.6 years. At the present rate, by 2060 all papers on the

archive will be Bayesian. (source: NASA/ADS).

(a) (b) (c) (d)

FIGURE 4. Converging views in Bayesian inference. Two scientists having different prior

believes p(θ) about the value of a quantity θ (panel (a), the two curves representing two

different priors) observe one datum with likelihood L(θ) (panel (b)), after which their pos-

teriors p(θ∣d) (panel (c), obtained via Bayes Theorem, Eq. (48)) represent their updated

states of knowledge on the parameter. This posterior then becomes the prior for the next

observation. After observing 100 data points, the two posteriors have become essentially

indistinguishable (d).

The price we have to pay is that we have to start somewhere by specifying an initial prior, which is

not determined by the theory, but it needs to be given by the user. The prior should represent

fairly the state of knowledge of the user about the quantity of interest. Eventually, the posterior

will converge to a unique (objective) result even if different scientists start from different priors

(provided their priors are non-zero in regions of parameter space where the likelihood is large). See

Fig. 4 for an illustration.

▸ There is a vast literature about how to select a prior in an appropriate way. Some aspects are fairly

obvious: if your parameter θ describes a quantity that has e.g. to be strictly positive (such as the

number of photons in a detector, or an amplitude), then the prior will be 0 for values θ < 0.
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FIGURE 5. Illustration of the phenomenon of the concentration of measure in parameter

spaces with a large number of dimensions. The coloured band represents the density of

samples (as a function of the number of dimensions sampled) obtained with a flat prior on

the axis coordinates of a D-dimensional hypercube. It can be seen that samples from the

prior concentrate in a thin shell of constant variance, leaving most of the parameter space

unexplored. The radius of the shell is given in the vertical axis.

A standard (but by no means harmless, see below) choice is to take a uniform prior (also called

“flat prior”) on θ, defined as:

(53) P(θ) ={ 1
(θmax−θmin) for θmin ≤ θ ≤ θmax

0 otherwise

With this choice of prior in Bayes theorem, Eq. (51), the posterior becomes functionally identical to

the likelihood up to a proportionality constant:

(54) P(θ∣d)∝ P(d ∣θ) =L(θ).
In this case, all of our previous results about the likelihood carry over (but with a different inter-

pretation). In particular, the probability content of an interval around the mean for the posterior

should be interpreted as a statement about our degree of belief in the value of θ (differently from

confidence intervals for the likelihood).

▸ Under a change of variable, Ψ =Ψ(θ), the prior transforms according to:

(55) P(Ψ) =P(θ)∣det( ∂θ
∂Ψ
)∣.

In particular, a flat prior on θ is no longer flat in Ψ if the variable transformation is non-linear.

▸ Important notes about priors:

(i) Beware! A flat prior is far from harmless, especially in parameter spaces of high dimensionality.

Example (concentration of measure): sampling uniformly along each dimension xi ∈ [0,1] of

a D-dimensional hypercube leads to the radius r = (∑D
i=1 x2

i )1/2
of the samples to concentrate

around the value ⟨r ⟩ = (D/3)1/2 with constant variance. As a consequence, all of the samples

are found on a thin shell (see Fig. 5 for an illustration). Even worse, in D dimensions the volume

of the hypercube is much larger than the volume of the hypersphere, hence most of the volume

is in the corners of the hypercube which are not sampled.

(ii) A sensitivity analysis should always be performed (i.e., change the prior in a reasonable way

and assess how robust your posterior is). This is seldom done in the astrophysics and cosmol-

ogy literature!
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(iii) There is a vast body of literature on different types of priors, when to use them and what they

are good for. It is a good idea to browse the literature when faced with a new problem, as there

is no point in re-inventing the wheel everytime. There are essentially two schools of thought:

one maintains that priors should be chosen according to subjective degree of belief; the other,

that they should be selected according to some formal rule, i.e. priors should be chosen by

convention. None of the two approaches is free from difficulties, see [15]. Some examples:

– reference priors: the idea is to define a prior wrt which the contribution of the data to the

posterior is maximised. This is achieved by choosing a prior with maximum entropy. For

example, in the case of a Gaussian likelihood this leads to the conclusion that the proper

prior for the mean µ is flat on µ, while for the standard deviation σ is should be flat in

logσ (with appropriate cutoffs of course).

– ignorance priors: in 1812 Laplace set forth the principle that when nothing else is known

priors should be chosen so as to give equal probability to all alternatives (“the principle of

indifference”). Unfortunately this is very difficult to do in the case of continous param-

eters (also because indifference on a certain parameter is not invariant wrt non-linear

reparameterizations). In some relatively simple cases, ignorance priors can be derived

using symmetry or invariance arguments, see [3].

– conjugate priors: a prior is said to be conjugate to the likelihood if the resulting posterior

is of the same family as the likelihood. The covenience of having conjugate priors is that

the likelihood updates the prior to a posterior which is of the same type (i.e., same distri-

butional family). For example, Gaussian distributions are self-conjugate (i.e., a Gaussian

prior with a Gaussian likelihood leads to a Gaussian posterior); the conjugate prior to

both the Poisson and the exponential likelihood is the Gamma distribution; the conju-

gate prior to a Binomial likelihood is the Beta distribution.

4.3. General Bayesian solution to inference problems.

▸ Choose a model containing a set of hypotheses in the form of a vector of parameters, θ (e.g., the

mass of an extra–solar planet or the abundance of dark matter in the Universe).

▸ Specify the priors for the parameters. Priors should summarize our state of knowledge about the

parameters before we consider the new data, including an relevant external source of information.

▸ Construct the likelihood function for the measurement, which usually reflects the way the data are

obtained (e.g., a measurement with Gaussian noise will be represented by a Normal distribution,

while γ–ray counts on a detector will have a Poisson distribution for a likelihood). Nuisance param-

eters related to the measurement process might be present in the likelihood, e.g. the variance of the

Gaussian might be unknown or the background rate in the absence of the source might be subject

to uncertainty.

▸ Obtain the posterior distribution (possibly unnormalized) either by analytical or, more often, nu-

merical methods (see below for MCMC).

▸ The posterior pdf for one parameter at the time is obtained by marginalization, i.e., by integrating

over the uninteresting parameters. E.g., assume θ = {φ,ψ}, then the 1D posterior pdf for φ alone is

given by

(56) p(φ∣d)∝∫ L(φ,ψ)p(φ,ψ)dψ.

The final inference on φ from the posterior can then be communicated by plotting p(φ∣d), with the

other components marginalized over.

▸ An alternative statistical measure to the marginal posterior given by (56) is the profile likelihood,

defined, say, for the parameter θ1 as

(57) L(θ1) ≡ max
θ2,...,θN

P(d ∣θ),
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where in our case P(d ∣θ) is the full likelihood function. Thus in the profile likelihood one max-

imises the value of the likelihood along the hidden dimensions, rather than integrating it out as

in the marginal posterior. The profile likelihood is obtained from the samples by maximising the

value of the likelihood in each bin. The profile likelihood is expected to be prior-independent, as

long as the scan has gathered a sufficient number of samples in the favoured region, which is in

general a difficult task for multi-dimensional parameter spaces. In fact, the profile likelihood and

the Bayesian posterior ask two different statistical questions of the data: the latter evaluates which

regions of parameter space are most plausible in the light of the measure implied by the prior; the

former singles out regions of high quality of fit, independently of their extent in parameter space,

thus disregarding the possibility of them being highly fine tuned. The information contained in

both is relevant and interesting, and for non-trivial parameter spaces the two different approaches

do not necessarily lead to the same conclusions (in the paradigmatic case of a Gaussian distributed

quantity, both the pdf and the profile likelihood are identical and thus the question of which to

choose does not arise).

▸ The profile likelihood can be directly interpreted as a likelihood function, except of course that

it does account for the effect of the hidden parameters. Approximate confidence intervals from

the profile likelihood can be obtained via the usual likelihood ratio test as follows. Starting from

the best-fit value in parameter space, an α% confidence interval encloses all parameter values for

which minus twice the log–likelihood increases less than ∆χ2(α,n) from the best fit value. The

threshold value depends on α and on the number n of parameters one is simultaneously consider-

ing (usually n = 1 or n = 2), and it is obtained by solving

(58) α =∫ ∆χ2

0
χ2

n(x)d x,

where χ2
n(x) is the chi–square distribution for n degrees of freedom.

4.4. Markov Chain Monte Carlo in practice.

▸ The purpose of the Markov chain Monte Carlo algorithm is to construct a sequence of points (or

“samples”) in parameter space (called “a chain”). The crucial property of the chain is that the den-

sity of samples is proportional to the posterior pdf. This allows to construct a map of the posterior

distribution.

▸ A Markov chain is defined as a sequence of random variables {X (0), X (1), . . . , X (M−1)} such that the

probability of the (t + 1)–th element in the chain only depends on the value of the t –th element.

The crucial property of Markov chains is that they can be shown to converge to a stationary state

(i.e., which does not change with t ) where successive elements of the chain are samples from the

target distribution, in our case the posterior p(θ∣d).
▸ The generation of the elements of the chain is probabilistic in nature, and is described by a tran-

sition probability T (θ(t),θ(t+1)), giving the probability of going from the point θ(t) to the point

θ(t+1) in parameter space. A sufficient condition to obtain a Markov Chain is that the transition

probability satisfy the detailed balance condition

(59) p(θ(t)∣d)T (θ(t),θ(t+1)) = p(θ(t+1)∣d)T (θ(t+1),θ(t)).
This means that the ratio of the probabilities for jumping from θ(t) to θ(t+1) is inversely propor-

tional to the ratio of the posterior probabilities at the two points.

The simplest (and widely used) MCMC algorithm is the Metropolis algorithm:

(i) Start from a random point θ(0), with associated posterior probability p0 ≡ p(θ(0)∣d).
(ii) Propose a candidate point θ(c) by drawing from the proposal distribution q(θ(0),θ(c)). The

proposal distribution might be for example a Gaussian of fixed width σ centered around the

current point. The distribution q must satisfy the symmetry condition q(x, y)= q(y, x).
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(iii) Evaluate the posterior at the candidate point, pc = p(θ(c)∣d). Accept the candidate point with

probability

(60) α(θ(0),θ(c)) =min(pc

p0

,1) .

This accept/reject step can be performed by generating a random number u from the uniform

distribution [0,1) and accepting the candidate sample if u <α, and rejecting it otherwise.

(iv) If the candidate point is accepted, add it to the chain and move there. Otherwise stay at the old

point (which is thus counted twice in the chain). Go back to (ii).

Notice from Eq. (60) that whenever the candidate sample has a larger posterior than the previous

one (i.e., pc > p0) the candidate is always accepted. Also, in order to evaluate the acceptance func-

tion (60) only the unnormalized posterior is required, as the normalization constant drops out of

the ratio. It is easy to show that the Metropolis algorithm satisfies the detailed balance condition,

Eq. (59), with the transition probability given by T (θ(t),θ(t+1)) = q(θ(t),θ(t+1))α(θ(t),θ(t+1)).
▸ Once samples from the posterior pdf have been gathered, obtaining Monte Carlo estimates of ex-

pectations for any function of the parameters becomes a trivial task. For example, the posterior

mean is given by (where ⟨⋅⟩ denotes the expectation value with respect to the posterior)

(61) ⟨θ⟩ ≈∫ P(θ∣d)θdθ = 1

M

M−1

∑
t=0

θ(t),

where the equality with the mean of the samples from the MCMC follows because the samples θ(t)

are generated from the posterior by construction.

▸ One can easily obtain the expectation value of any function of the parameters f (θ) as

(62) ⟨ f (θ)⟩ ≈ 1

M

M−1

∑
t=0

f (θ(t)).
It is usually interesting to summarize the results of the inference by giving the 1–dimensional mar-

ginal probability for the j –th element of θ, θ j , obtained by integrating out all other parameters from

the posterior:

(63) P(θ1∣d)=∫ P(θ∣d)dθ2 . . .dθn ,

where P(θ1∣d) is the marginal posterior for the parameter θ1.

▸ From the Markov chain it is trivial to obtain and plot the marginal posterior on the left–hand–side

of Eq. (63): since the elements of the Markov chains are samples from the full posterior, P(θ∣d),
their density reflects the value of the full posterior pdf. It is then sufficient to divide the range of

θ1 in a series of bins and count the number of samples falling within each bin, simply ignoring the

coordinates values θ2, . . . ,θn . A 2–dimensional posterior is defined in an analogous fashion. A 1D

2–tail α% credible region is given by the interval (for the parameter of interest) within which fall

α% of the samples, obtained in such a way that a fraction (1−α)/2 of the samples lie outside the

interval on either side. In the case of a 1–tail upper (lower) limit, we report the value of the quantity

below (above) which α% of the sample are to be found.

▸ There are several important practical issues in working with MCMC methods which are worth men-

tioning. Especially for high–dimensional parameter spaces with multi–modal posteriors it is impor-

tant not to use MCMC techniques as a black box, since poor exploration of the posterior can lead to

serious mistakes in the final inference if it remains undetected. Some of the most relevant aspects

are:

(i) Initial samples in the chain must be discarded, since the Markov process is not yet sampling

from the equilibrium distribution (so–called burn–in period). The burn–in can roughly be as-

sessed by looking at the evolution of the posterior density as a function of the number of steps

in the chain. When the chain is started at a random point in parameter space, the posterior

probability will typically be small and becomes larger at every step as the chain approaches
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FIGURE 6. Illustration of the burn-in period. Left panel: the logarithm of the log-likelihood,

− lnP(d ∣θ), as a function of the step number for four Monte Carlo chains. After the burn-in

period (dotted, vertical lines), the value flattens and the chains are sampling from the target

distribution. Right panel: the four chains (in different colors) are started in different points

of a 6-dimensional parameter space and all converge to the same region after the burn-in.

The vertical axis gives the number of steps.

the region where the fit to the data is better. Only when the chain has moved in the neigh-

borhood of the posterior peak the curve of the log posterior as a function of the step number

flattens and the chain begins sampling from its equilibrium distribution. Samples obtained

before reaching this point must be discarded, see Fig. 6

(ii) A difficult problem is presented by the assessment of chain convergence, which aims at es-

tablishing when the MCMC process has gathered enough samples so that the Monte Carlo

estimate (62) is sufficiently accurate. Useful diagnostic tools include the Raftery and Lewis

statistics [22] and the Gelman and Rubin criterion [23].

(iii) One has to bear in mind that MCMC is a local algorithm, which can be trapped around lo-

cal maxima of the posterior density, thus missing regions of even higher posterior altogether.

Considerable experimentation is sometimes required to find an implementation of the MCMC

algorithm that is well suited to the exploration of the parameter space of interest. Experiment-

ing with different algorithms (each of which has its own strength and weaknesses) is highly

recommended.

(iv) Successive samples in a chain are in general correlated. Although this is not prejudicial for a

correct statistical inference, it is often interesting to obtain independent samples from the pos-

terior. This can be achieved by “thinning” the chain by an appropriate factor, i.e. by selecting

only one sample every K . A discussion of samples independence and how to assess it can be

found in [24], along with a convergence test based on the samples’ power spectrum.

5. BAYESIAN MODEL SELECTION

5.1. The three levels of inference.

▸ It is convenient to divide Bayesian inference in three different levels:
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(i) Level 1: We have chosen a modelM0, assumed true, and we want to learn about its parame-

ters, θ0. E.g.: we assume ΛCDM to be the true model for the Universe and try to constrain its

parameters. This is the usual parameter inference step.

(ii) Level 2: We have a series of alternative models on the table (M1,M2, . . . ) and we want to deter-

mine which of those is in best agreement with the data. This is a problem of model selection,

or model criticism. For example, we might want to decide whether a dark energy equation of

state w = −1 is a sufficient description of the available observations or whether we need an

evolving dark energy model, w =w(z).
(iii) Level 3: Of the N models considered in Level 2, there is no clear “best” model. We want to

report inferences on parameters that account for this model uncertainty. This is the subject of

Bayesian model averaging (not covered in these lectures). For example, we want to determine

Ωm independently of the assumed dark energy model.

▸ The Frequentist approach to model criticism is in the form of hypothesis testing (e.g., “chi-squared-

per-degree-of-freedom“ type of tests). One ends up rejecting (or not) a null hypothesis H0 based

on the p-value, i.e., the probability of getting data as extreme or more extreme than what has been

observed if one assumes that H0 is true. Notice that this is not the probability for the hypothesis!

Classical hypothesis testing assumes the hypothesis to be true and determines how unlikely are our

observations given this assumption. Studying Ref. [20] is highly recommended.

▸ The Bayesian approach takes the view that there is no point in rejecting a model unless there are

specific alternatives available: it takes therefore the form of model comparison. The key quantity for

model comparison is the Bayesian evidence, which automatically implements a quantitative ver-

sion of Occam’s razor (i.e., the notion that simpler models ought to be preferred if they can explain

the data sufficiently well).

5.2. The Bayesian evidence.

▸ The evaluation of a model’s performance in the light of the data is based on the Bayesian evidence.

As seen above, this is the normalization integral on the right–hand–side of Bayes’ theorem, Eq. (52),

which we rewrite here for a continuous parameter space ΩM and conditioning explicitly on the

model under consideration,M:

(64) p(d ∣M) ≡∫
ΩM

p(d ∣θ,M)p(θ∣M)dθ (Bayesian evidence).
▸ The Bayesian evidence is the average of the likelihood under the prior for a specific model choice.

From the evidence, the model posterior probability given the data is obtained by using Bayes’ The-

orem to invert the order of conditioning:

(65) p(M∣d)∝ p(M)p(d ∣M),
where we have dropped an irrelevant normalization constant that depends only on the data and

p(M) is the prior probability assigned to the model itself. Usually this is taken to be non–committal

and equal to 1/Nm if one considers Nm different models.

▸ When comparing two models,M0 versusM1, one is interested in the ratio of the posterior proba-

bilities, or posterior odds, given by

(66)
p(M0∣d)
p(M1∣d) = B01

p(M0)
p(M1) .

▸ The Bayes factor B01 is the ratio of the models’ evidences:

(67) B01 ≡ p(d ∣M0)
p(d ∣M1) (Bayes factor).

A value B01 > (<) 1 represents an increase (decrease) of the support in favour of model 0 versus

model 1 given the observed data (see [16] for more details on Bayes factors).

▸ Bayes factors are usually interpreted against the Jeffreys’ scale [2] for the strength of evidence, given

in Table 1. This is an empirically calibrated scale, with thresholds at values of the odds of about 3 ∶ 1,

12 ∶ 1 and 150 ∶ 1, representing weak, moderate and strong evidence, respectively.
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∣ lnB01∣ Odds Probability Strength of evidence< 1.0 ∼< 3 ∶ 1 < 0.750 Inconclusive

1.0 ∼ 3 ∶ 1 0.750 Weak evidence

2.5 ∼ 12 ∶ 1 0.923 Moderate evidence

5.0 ∼ 150 ∶ 1 0.993 Strong evidence

TABLE 1. Empirical scale for evaluating the strength of evidence when comparing two mod-

els, M0 versusM1 (so–called “Jeffreys’ scale”). Threshold values are empirically set, and

they occur for values of the logarithm of the Bayes factor of ∣ lnB01∣ = 1.0, 2.5 and 5.0. The

right–most column gives our convention for denoting the different levels of evidence above

these thresholds. The probability column refers to the posterior probability of the favoured

model, assuming non–committal priors on the two competing models, i.e., p(M0) =
p(M1) = 1/2 and that the two models exhaust the model space, p(M0∣d)+p(M1∣d) = 1.

5.3. The Occam’s razor effect.

▸ Example (nested models): Consider two competing models: M0 predicting that a quantity θ = 0

with no free parameters, andM1 which assigns θ a Gaussian prior distribution with 0 mean and

variance Σ
2. Assume we perform a measurement of θ described by a normal likelihood of standard

deviation σ, and with the maximum likelihood value lying λ standard deviations away from 0, i.e.∣θmax/σ∣ =λ. Then the Bayes factor between the two models is given by, from Eq. (67)

(68) B01 =√1+(σ/Σ)−2 exp(− λ2

2(1+(σ/Σ)2)) .

For λ≫ 1, corresponding to a detection of the new parameter at many sigma, the exponential term

dominates and B01 ≪ 1, favouring the more complex model with a non–zero extra parameter, in

agreement with the usual conclusion. But if λ ∼< 1 and σ/Σ≪ 1 (i.e., the likelihood is much more

sharply peaked than the prior and in the vicinity of 0), then the prediction of the simpler model

that θ = 0 has been confirmed. This leads to the Bayes factor being dominated by the Occam’s razor

term, and B01 ≈ Σ/σ, i.e. evidence accumulates in favour of the simpler model proportionally to

the volume of “wasted” parameter space. If however σ/Σ≫ 1 then the likelihood is less informative

than the prior and B01→ 1, i.e. the data have not changed our relative belief in the two models.

▸ In the above example, if the data are informative with respect to the prior on the extra parameter

(i.e., for σ/Σ≪ 1) the logarithm of the Bayes factor is given approximately by

(69) lnB01 ≈ ln(Σ/σ)−λ2/2,

where as before λ gives the number of sigma away from a null result (the “significance” of the mea-

surement). The first term on the right–hand–side is approximately the logarithm of the ratio of the

prior to posterior volume. We can interpret it as the information content of the data, as it gives

the factor by which the parameter space has been reduced in going from the prior to the poste-

rior. This term is positive for informative data, i.e. if the likelihood is more sharply peaked than the

prior. The second term is always negative, and it favours the more complex model if the measure-

ment gives a result many sigma away from the prediction of the simpler model (i.e., for λ≫ 0). We

are free to measure the information content in base–10 logarithm (as this quantity is closer to our

intuition, being the order of magnitude of our information increase), and we define the quantity

I10 ≡ log10 (Σ/σ). Figure 7 shows contours of ∣ lnB01∣ = const for const = 1.0,2.5,5.0 in the (I10,λ)
plane, as computed from Eq. (69). The contours delimit significative levels for the strength of ev-

idence, according to the Jeffreys’ scale (Table 1). For moderately informative data (I10 ≈ 1−2) the

measured mean has to lie at least about 4σ away from 0 in order to robustly disfavor the simpler

model (i.e., λ ∼> 4). Conversely, for λ ∼< 3 highly informative data (I10 ∼> 2) do favor the conclusion that

the extra parameter is indeed 0. In general, a large information content favors the simpler model,

because Occam’s razor penalizes the large volume of “wasted” parameter space of the extended

model.
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FIGURE 7. Illustration of Bayesian model comparison for two nested models, where the

more complex model has one extra parameter. The outcome of the model comparison de-

pends both on the information content of the data with respect to the a priori available

parameter space, I10 (horizontal axis) and on the quality of fit (vertical axis, λ, which gives

the number of sigma significance of the measurement for the extra parameter). Adapted

from [14].

▸ An useful properties of Figure 7 is that the impact of a change of prior can be easily quantified. A

different choice of prior width (i.e., Σ) amounts to a horizontal shift across Figure 7, at least as long

as I10 > 0 (i.e., the posterior is dominated by the likelihood). Picking more restrictive priors (reflect-

ing more predictive theoretical models) corresponds to shifting the result of the model comparison

to the left of Figure 7, returning an inconclusive result (white region) or a prior–dominated outcome

(hatched region). Notice that results in the 2–3 sigma range, which are fairly typical in cosmology,

can only support the more complex model in a very mild way at best (odds of 3 ∶ 1 at best), while ac-

tually being most of the time either inconclusive or in favour of the simpler hypothesis (pink shaded

region in the bottom right corner).

▸ Notice that Bayesian model comparison is usually conservative when it comes to admitting a new

quantity in our model, even in the case when the prior width is chosen “incorrectly” (whatever that

means!). In general the result of the model comparison will eventually override the “wrong” prior

choice (although it might take a long time to do so), exactly as it happens for parameter inference.

▸ Bayesian model selection does not penalize parameters which are unconstrained by the data. This

is easily seen from Eq. (69): if a parameter is unconstrained, its posterior width σ is approximately

equal to the prior width, Σ, and the Occam’s razor penalty term goes to zero. In such a case, con-

sideration of the Bayesian model complexity might help in judging model performance, see [25] for

details.

5.4. Computation of the evidence.

▸ Nested sampling. A powerful and efficient alternative to classical MCMC methods has emerged

in the last few years in the form of the so–called “nested sampling” algorithm, invented by John

Skilling [18]. Although the original motivation for nested sampling was to compute the evidence

integral of Eq. (64), the recent development of the multi–modal nested sampling technique [17] has
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FIGURE 8. Example of posterior reconstruction using Nested Sampling. Left panel: target

likelihood in a 2D parameter space (x, y). Right panel: reconstructed posterior (with flat

priors) using Nested Sampling. From Ref. [17].

delivered an extremely powerful and versatile algorithm which has been demonstrated to be able

to deal with extremely complex likelihood surfaces, see Fig. 8.

– The gist of nested sampling is that the multi–dimensional evidence integral is recast into a

one–dimensional integral, by defining the prior volume X as dX ≡ p(θ∣M)dθ so that

(70) X (λ) =∫L(θ)>λ p(θ∣M)dθ
whereL(θ) ≡ p(d ∣θ,M) is the likelihood function and the integral is over the parameter space

enclosed by the iso–likelihood contourL(θ) =λ. So X (λ) gives the volume of parameter space

above a certain level λ of the likelihood.

– The Bayesian evidence, Eq. (64), can be written as

(71) p(d ∣M) =∫ 1

0
L(X )dX ,

where L(X ) is the inverse of Eq. (70). Samples from L(X ) can be obtained by drawing uni-

formly samples from the likelihood volume within the iso–contour surface defined by λ. This

is the difficult part of the algorithm.

– Finally, the 1–dimensional integral of Eq. (71) can be obtained by simple quadrature, thus

(72) p(d ∣M) ≈∑
i

L(Xi)Wi ,

where the weights are Wi = 1
2
(Xi−1−Xi+1), see [18, 19] for details3.

▸ Thermodyamic integration. The numerical method of choice until recently has been thermody-

namic integration, which computes the evidence integral by definining

(73) E(µ) ≡∫
ΩM

L(θ)µp(θ∣M)dθ,

where µ is an annealing parameter and L(θ) ≡ p(d ∣θ,M). Obviously the desired evidence cor-

reponds to E(1). One starts by performing a standard MCMC sampling with µ = 0 (i.e., sampling

from the prior), then gradually increases µ to 1 according to some annealing schedule. The log of

3Publicly available software implementing nested sampling can be found at cosmonest.org and

http://www.mrao.cam.ac.uk/software/cosmoclust/. The latest release of the SUSY constraints package SuperBayeS

also implements the MultiNest algorithm, see http://superbayes.org.
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the evidence is then given by

(74) lnE(1) = lnE(0)+∫ 1

0

d lnE

dµ
dµ =∫ 1

0
⟨lnL⟩µdµ,

where the average log-likelihood is taken over the posterior with annealing parameter µ, i.e.

(75) ⟨lnL⟩µ = ∫ΩM(lnL)L(θ)
µp(θ∣M)dθ

∫ΩML(θ)µp(θ∣M)dθ .

The drawback is that the end result might depend on the annealing schedule used and that typically

this methods takes 10 times as many likelihood evaluations as parameter estimation.

▸ Laplace approximation. An approximation to the Bayesian evidence can be obtained when the

likelihood function is unimodal and approximately Gaussian in the parameters. Expanding the

likelihood around its peak to second order one obtains the Laplace approximation

(76) p(d ∣θ,M) ≈Lmax exp[−1

2
(θ−θmax)t L(θ−θmax)] ,

where θmax is the maximum–likelihood point, Lmax the maximum likelihood value and L the likeli-

hood Fisher matrix (which is the inverse of the covariance matrix for the parameters). Assuming as

a prior a multinormal Gaussian distribution with zero mean and Fisher information matrix P one

obtains for the evidence, Eq. (64)

(77) p(d ∣M) =Lmax
∣F ∣−1/2

∣P ∣−1/2 exp[−1

2
(θmax

t Lθmax−θt
Fθ)] ,

where the posterior Fisher matrix is F = L+P and the posterior mean is given by θ = F−1Lθmax.

▸ The Savage-Dickey density ratio. A useful approximation to the Bayes factor, Eq. (67), is available

for situations in which the models being compared are nested into each other, i.e. the more com-

plex model (M1) reduces to the original model (M0) for specific values of the new parameters.

This is a fairly common scenario in cosmology, where one wishes to evaluate whether the inclu-

sion of the new parameters is supported by the data (e.g., do we need isocurvature contributions

to the initial conditions for cosmological perturbations, or whether a curvature term in Einstein’s

equation is needed, or whether a non–scale invariant distribution of the primordial fluctuation is

preferred). Writing for the extended model parameters θ = (φ,ψ), where the simpler modelM0 is

obtained by setting ψ = 0, and assuming further that the prior is separable (which is usually the case

in cosmology), i.e. that

(78) p(φ,ψ∣M1) = p(ψ∣M1)p(φ∣M0),
the Bayes factor can be written in all generality as

(79) B01 = p(ψ∣d ,M1)
p(ψ∣M1) ∣ψ=0

.

This expression is known as the Savage–Dickey density ratio (see [14] and references therein). The

numerator is simply the marginal posterior under the more complex model evaluated at the simpler

model’s parameter value, while the denominator is the prior density of the more complex model

evaluated at the same point. This technique is particularly useful when testing for one extra pa-

rameter at the time, because then the marginal posterior p(ψ∣d ,M1) is a 1–dimensional function

and normalizing it to unity probability content only requires a 1–dimensional integral, which is

simple to do using for example the trapezoidal rule.

▸ Information criteria. Sometimes it might be useful to employ methods that aim at an approximate

model selection under some simplifying assumptions that give a default penalty term for more

complex models, which replaces the Occam’s razor term coming from the different prior volumes

in the Bayesian evidence [21].
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(i) Akaike Information Criterion (AIC): the AIC is an essentially frequentist criterion that sets the

penalty term equal to twice the number of free parameters in the model, k :

(80) AIC ≡−2lnLmax+2k

where Lmax ≡ p(d ∣θmax,M) is the maximum likelihood value.

(ii) Bayesian Information Criterion (BIC): the BIC follows from a Gaussian approximation to the

Bayesian evidence in the limit of large sample size:

(81) BIC ≡−2lnLmax+k ln N

where k is the number of fitted parameters as before and N is the number of data points. The

best model is again the one that minimizes the BIC.

(iii) Deviance Information Criterion (DIC): the DIC can be written as

(82) DIC ≡−2DKL+2Cb .

In this form, the DIC is reminiscent of the AIC, with the lnLmax term replaced by the estimated

KL divergence DKL and the number of free parameters by the effective number of parameters,Cb (see [13] for definitions).

The information criteria ought to be interpreted with care when applied to real situations. Com-

parison of Eq. (81) with Eq. (80) shows that for N > 7 the BIC penalizes models with more free pa-

rameters more harshly than the AIC. Furthermore, both criteria penalize extra parameters regard-

less of whether they are constrained by the data or not, unlike the Bayesian evidence. In conclusion,

what makes the information criteria attractive, namely the absence of an explicit prior specifica-

tion, represents also their intrinsic limitation.
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APPENDIX A. SOME BACKGROUND MATERIAL

A.1. The uniform, binomial and Poisson distributions.

▸ The uniform distribution: for n equiprobable outcomes between 1 and n, the uniform discrete

distribution is given by

(83) P(r ) ={ 1/n for 1 ≤ r ≤n

0 otherwise

It is plotted in Fig. 9 alongside with its cdf for the case of the tossing of a fair die (n = 6).

▸ The binomial distribution: the binomial describes the probability of obtaining r “successes” in a

sequence of n trials, each of which has probability p of success. Here, “success” can be defined as

one specific outcome in a binary process (e.g., H/T, blue/red, 1/0, etc). The binomial distribution

B(n, p) is given by:

(84) P(r ∣n, p) ≡B(n, p)= (n

r
)pr (1−p)n−r ,

where the “choose” symbol is defined as

(85) (n

r
) ≡ n!

(n− r )!r !

for 0 ≤ r ≤ n (remember, 0! = 1). Some examples of the binomial for different choices of n, p are

plotted in Fig. 10.

A bent coin has a probability of landing heads p = 0.7. You toss it n = 10 times. What is the proba-

bility of getting 6 heads?

Answer:

(86) P(6∣n = 10, p = 0.7) = (10

6
)0.760.34 = 0.2.

The derivation of the binomial distribution proceeds from considering the probability of obtain-

ing r successes in n trials (pr ), while at the same time obtaining n − r failures ((1− p)n−r ). The

combinatorial factor in front is derived from considerations of the number of permutations that

leads to the same total number of successes.
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FIGURE 10. Some examples of the binomial distribution, Eq. (84), for different choices of

n, p , and its corresponding cdf.

▸ The Poisson distribution: the Poisson distribution describes the probability of obtaining a certain

number of events in a process where events occur with a fixed average rate and independently of

each other. The process can occur in time (e.g., number of planes landing at Heathrow, number

of photons arriving at a photomultiplier, number of murders in London, number of electrons at a

detector, etc . . . in a certain time interval) or in space (e.g., number of galaxies in a patch on the sky).

Let’s assume that λ is the average number of events occuring per unit time or per unit length

(depending on the problem being considered). Furthermore, λ = constant in time or space.
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For example, λ = 3.5 busses/hour is the average number of busses passing by a particular bus stop

every hour; or λ = 10.3 droplets/m2 is the average number of drops of water hitting a square meter

of the surface of an outdoor swimming pool in a certain day. Notice that of course at every given

hour an integer number of busses actually passes by (i.e., we never observe 3 busses and one half

passing by in an hour!), but that the average number can be non-integer (for example, you might

have counted 7 busses in 2 hours, giving an average of 3.5 busses per hour). The same holds for the

droplets of water.

For problems involving the time domain (e.g., busses/hour), the probability of r events happen-

ing in a time t is given by the Poisson distribution:

(87) P(r ∣λ, t) ≡ Poisson(λ) = (λt)r
r !

e−λt .

If the problem is about the spatial domain (e.g., droplets/m2), the probability of r events happening

in an area A is given by:

(88) P(r ∣λ, A) ≡ Poisson(λ) = (λA)r
r !

e−λA.

Notice that this is a discrete pmf in the number of events r , and not a continuous pdf in t or A.

The probability of getting r events in a unit time interval is obtained by setting t = 1 in Eq. (87);

similarly, the probability of getting r events in a unit area is obtained by setting A = 1 in Eq. (88)

A particle detector measures protons which are emitted with an average rate λ = 4.5/s. What is the

probability of measuring 6 protons in 2 seconds?

Answer:

(89) P(6∣λ = 4.5s−1, t = 2s) = (4.5 ⋅2)6
6!

e−4.5⋅2 = 0.09.

So the probability is about 9%.

The Poisson distribution of Eq. (87) is plotted in Fig. 11 as a function of r for a few choices of λ

(notice that in the figure t = 1 has been assumed, in the appropriate units). The derivation of the

Poisson distribution follows from considering the probability of 1 event taking place in a small time

interval ∆t , then taking the limit ∆t → d t → 0. It can also be shown that the Poisson distribution

arises from the binomial in the limit pn→λ for n→∞, assuming t = 1 in the appropriate units (see

lecture).

In a post office, people arrive at the counter at an average rate of 3 customers per minute. What is

the probability of 6 people arriving in a minute?

Answer: The number of people arriving follows a Poisson distribution with average λ = 3 (peo-

ple/min). The probability of 6 people arriving in a minute is given by

(90) P(n = 6∣λ, t = 1min) = (λt)n
n!

e−λt ≈ 0.015

So the probability is about 1.5%.

▸ The discrete distributions above depend on parameters (such as p for the binomial, λ for Poisson),

which control the shape of the distribution. If we know the value of the parameters, we can compute

the probability of an observation (as done it the examples above). This is the subject of probability

theory, which concerns itself with the theoretical properties of the distributions. The inverse prob-

lem of making inferences about the parameters from the observed samples (i.e., learning about the

parameters from the observations made) is the subject of statistical inference, addressed later.

A.2. Expectation value and variance.

▸ Two important properties of distributions are the expectation value (which controls the location

of the distribution) and the variance or dispersion (which controls how much the distribution is

spread out). Expectation value and variance are functions of a RV.
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FIGURE 11. Some examples of the Poisson distribution, Eq. (87), for different choices of λ,

and its corresponding cdf.

▸ The expectation value E(X ) (often called “mean”, or “expected value”4) of the discrete RV X is

defined as

(91) E(X )= ⟨X ⟩ ≡∑
i

xi Pi .

4We prefer not to use the term “mean” to avoid confusion with the sample mean.
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You toss a fair die, which follows the uniform discrete distribution, Eq. (83). What is the expectation

value of the outcome?

Answer: the expectation value is given by E(X ) =∑i i ⋅ 1
6
= 21/6.

▸ The variance or dispersion Var(X ) of the discrete RV X is defined as

(92) Var(X ) ≡ E[(X −E(X ))2] = E(X 2)−E(X )2.

The square root of the variance is often called “standard deviation” and is usually denoted by the

symbol σ, so that Var(X ) =σ2.

For the case of tossing a fair die once, the variance is given by

(93) Var(X ) =∑
i

(xi − ⟨X ⟩)2Pi =∑
i

x2
i Pi −(∑

i

xi Pi)
2 =∑

i

i 2 1

6
−(21

6
)2 = 105

36
.

▸ For the binomial distribution of Eq. (84), the expectation value and variance are given by:

(94) E(X ) =np, Var(X ) =np(1−p).

(95)

E(x) = n

∑
x=0

x(n

x
)px(1−p)n−x = n

∑
x=1

x(n

x
)px(1−p)n−x

=np
n

∑
x=1

x
n!

(n− x)!x!

px

np
(1−p)n−x =np

n

∑
x=1

(n−1)!
(n− x)!(x −1)! px−1(1−p)n−x

=np
n

∑
x=1

(n−1)!
((n−1)−(x −1))!(x −1)! px−1(1−p)(n−1)−(x−1),

where in the first line we have made use of the fact that the x = 0 term in the sum is 0, hence we can

sum from x = 1 onwards. Using the substituion s = x −1 and m =n−1 we obtain

(96) E(x) =np
m

∑
s=0

m!

(m− s)!s!
p s(1−p)m−s =np,

as the sum above equals 1, being the sum of the terms of a binomial distribution which is normal-

ized to unity total probability content.

To compute the variance, we start from by noticing that

(97) Var(x) = E(x2)−E(x)2 = E(x(x −1)+ x)−E(x)2 = E(x(x −1))+E(x)−E(x)2,

hence we only need to compute E(x(x −1)):

(98)

E(x(x −1)) = n

∑
x=0

x(x −1)(n

x
)px(1−p)n−x = n

∑
x=2

n!

(n− x)!(x −2)! px(1−p)n−x

= n(n−1)p2
n

∑
x=2

n!

(n− x)!(x −2)!
px

n(n−1)p2
(1−p)n−x

= n(n−1)p2
n

∑
x=2

(n−2)!
((n−2)−(x −2))!(x −2)! px−2(1−p)(n−2)−(x−2).

Substituting s = x −2 and m = n−2 we obtain

(99) E(x(x −1)) = n(n−1)p2
m

∑
s=0

m!

(m− s)!s!
p s(1−p)m−s =n(n−1)p2.

Thus

(100) Var(x) = E(x(x −1))+E(x)−E(x)2 =n(n−1)p2+np −(np)2 = np(1−p).
A fair coin is tossed N times. What is the expectation value for the number of heads, H? What is its

variance? For N = 10, evaluate the probability of obtaining 8 or more heads.
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Answer: The expectation values and variance are given by Eq. (94), with p = 1/2 (as the coin is fair),

thus

(101) E(H)=N p =N/2 and Var(H) =N p(1−p) =N/4.

The probability of obtaining 8 or more heads is given by

(102) P(H = 8 = 10

∑
H=8

P(H heads∣N , p = 1/2) = 1

210

10

∑
H=8

(10

H
) = 56

1024
≈ 0.055.

So the probability of obtaining 8 or more heads is about 5.5%.

▸ For the Poisson distribution of Eq. (87), the expectation value and variance are given by:

(103) E(X ) =λt , Var(X ) = λt ,

while for the spatial version of the Poisson distribution, Eq. (88), they are given by:

(104) E(X )= λA, Var(X ) = λA.

Setting t = 1 in the appropriate units). Since ex =∑k
xk

k !
and dex

dx
= ex , we have that

(105)
dex

d x
=∑

k

k
xk−1

k !
= ex

and multiplying both sides by x we obtain:

(106) xex =∑
k

k
xk

k !
.

The expectation value is given by

(107) E(n)= ∞∑
n=0

n ⋅Poisson(λ) = ∞∑
n=0

n
λn

n!
e−λ = λeλe−λ = λ,

where in the penultimate step we have made use of Eq. (106).

To compute the variance, we need Var(n) = E(n2)−E(n)2. Use the same trick:

(108)
d 2ex

d 2x
=∑

k

k(k −1)xk−2

k !
= ex

hence

(109) x2ex =∑
k

k(k −1)xk

k !
=∑

k

(k2−k)xk

k !
.

Therefore

(110) ∑
k

k2 xk

k !
= x2ex + xex .

We can now compute

(111) E(n2) = ∞∑
n=0

n2 ⋅Poisson(λ) = ∞∑
n=0

n2λ
n

n!
e−λ = (λ2+λ)eλe−λ = λ2+λ,

so that

(112) Var(n) =λ2+λ−λ2 =λ.

▸ As we did above for the discrete distribution, we now define the following properties for continuous

distributions.

▸ The expectation value E(X ) of the continuous RV X with pdf p(X ) is defined as

(113) E(X ) = ⟨X ⟩ ≡∫ xp(x)d x.
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▸ The variance or dispersion Var(X ) of the continuous RV X is defined as

(114) Var(X ) ≡ E[(X −E(X ))2] = E(X 2)−E(X )2 =∫ x2p(x)d x −(∫ xp(x)d x)2

.

A.3. The exponential distribution.

▸ The exponential distribution describes the time one has to wait between two consecutive events

in a Poisson process, e.g. the waiting time between two radioactive particles decays. If the Poisson

process happens in the spatial domain, then the exponential distribution describes the distance

between two events (e.g., the separation of galaxies in the sky). In the following, we will look at

processes that happen in time (rather than in space).

▸ To derive the exponential distribution, one can consider the arrival time of Poisson distributed

events with average rate λ (for example, the arrival time particles in a detector). The probability

that the first particle arrives at time t is obtained by considering the probability (which is Poisson

distributed) that no particle arrives in the interval [0, t], given by P(0∣λ, t) = exp(−λt) from Eq. (87),

times the probability that one particle arrives during the interval [t , t +∆t], given by λ∆t . Taking

the limit ∆t → 0 it follows that the probability density (denoted by a symbol p()) for observing the

first event happening at time t is given by

(115) p(1st event happens at time t ∣λ)= λe−λt ,

where λ is the mean number of events per unit time. This is the exponential distribution.

Let’s assume that busses in London arrive according to a Poisson distribution, with average rate

λ = 5 busses/hour. You arrive at the bus stop and a bus has just departed. What is the probability

that you will have to wait more than 15 minutes?

Answer: the probability that you’ll have to wait for t0 = 15 minutes or more is given by

(116) ∫
∞

t0

p(1st event happens at time t ∣λ)d t =∫ ∞

t0

λe−λt d t = e−λt0 = 0.29,

where we have used λ = 5 busses/hour = 1/12 busses/min.

▸ If we have already waited for a time s for the first event to occur (and no event has occurred), then

the probability that we have to wait for another time t before the first event happens satisfies

(117) p(T > t + s∣T > s) = p(T > t).
This means that having waited for time s without the event occuring, the time we can expect to

have to wait has the same distribution as the time we have to wait from the beginning. The expo-

nential distribution has no “memory” of the fact that a time s has already elapsed (this is proved in

Appendix ??).

▸ For the exponential distribution of Eq. (115), the expectation value and variance for the time t are

given by

(118) E(t)= 1/λ, Var(t) = 1/λ2.

The expectation value is given by

(119) E(t)=∫ ∞

0
tλe−λt d t = 1

λ
∫
∞

0
xe−xd x = 1

λ
(−xe−x∣∞

0
−∫

∞

0
(−e−x)d x) = 1

λ
,

where the integral has been performed by integrating by parts. The variance can be calculated in a similar

way but integrating by parts twice:

Var(t)= E(t 2)−E(t)2 =∫ ∞

0
t 2λe−λt d t −E(t)2 = 1

λ
∫
∞

0
t 2λ2e−λt d t − 1

λ2
(120)

= 1

λ2 ∫
∞

0
x2e−x d x − 1

λ2
= 1

λ2
.(121)
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FIGURE 12. Two examples of the Gaussian distribution, Eq. (125), for different choices of

µ,σ, and its corresponding cdf. The expectation value µ controls the location of the pdf (i.e.,

when changing µ the peak moves horizontally, without changing its shape), while the stan-

dard deviation σ controls its width (i.e., when changing σ the spread of the peak changes

but not its location).

We now prove the “lack of memory” property, i.e. Eq. (117). The probability that at least one event has

happened until time t is given by the cumulative distribution function

(122) Fλ(t)=∫ t

0
λe−λτdτ=λ∫ λt

0

1

λ
e−xd x =−e−x ∣t

0
= 1−e−λt .

Therefore the probability that no events happen until time t is 1−Fλ(t). Let’s call this the probability that

we have to wait a time T > t for an event to happen. Then

(123) P(T > t + s∣T > s) = P(T > t + s,T > s)
P(T > s) = P(T > t + s)

P(T > s) ,

where in the last passage we have used that if T > t + s then it must also trivially be T > s (i.e., if we have

waited for a time t + s we must have waited for a time s, too). Thus

(124) P(T > t + s∣T > s) = 1−Fλ(t + s)
1−Fλ(s) =

e−λ(t+s)

e−λs
= e−λt =P(T > t).

A.4. The Gaussian (or Normal) distribution.

▸ The Gaussian pdf (often called “the Normal distribution”) is perhaps the most important distribu-

tion. It is used as default in many situations involving continuous RV (the reason becomes clear

once we have studied the Central Limit Theorem, section A.5). A heuristic derivation of how the

Gaussian arises follows from the example of darts throwing (see Appendix ??).

▸ The Gaussian pdf is a continuous distribution with mean µ and standard deviation σ is given by

(125) p(x∣µ,σ) = 1√
2πσ

exp(−1

2

(x −µ)2
σ2

) ,

and it is plotted in Fig. 12 for two different choices of {µ,σ}. The Gaussian is the famous bell-shaped

curve.

▸ For the Gaussian distribution of Eq. (125), the expectation value and variance are given by:

(126) E(X ) =µ, Var(X ) =σ2.

The expectation value is given by

(127) E(X ) =∫ x
1√
2πσ

e
−

1
2

(x−µ)2

σ2 d x = 1√
2π
∫ (σt +µ)e−

1
2

t 2

d t ,
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where we have used the variable transformation x = σt +µ. The first integral (containing a linear

term in t ) vanishes because of symmetry, hence

(128) E(X ) = µ√
2π
∫ e−

1
2

t 2

d t =µ
since ∫ e−

1

2
t 2

d t =√2π.

To compute the variance, we exploit the usual trick: Var(X ) = E(X 2)−E(X )2, hence we need to

compute

E(X 2) =∫ x2 1√
2πσ

e
−

1
2

(x−µ)2

σ2 d x
1√
2π
∫ (σt +µ)2 e−

1

2
t 2

d t(129)

= σ2√
2π
∫ t 2e−

1

2
t 2

d t + µ2√
2π
∫ e−

1

2
t 2

d t + µ√
2π
∫ t e−

1

2
t 2

d t(130)

=σ2+µ2+0,(131)

and therefore Var(X ) =σ2+µ2−µ2 =σ2.

▸ It can be shown that the Gaussian arises from the binomial in the limit n→∞ and from the Poisson

distribution in the limit λ → ∞. As shown in Fig. 13, the Gaussian approximation to either the

binomial or the Poisson distribution is very good even for fairly moderate values of n and λ. Here is

an heuristic derivation of how the Gaussian arises.

Suppose we are throwing darts towards a target (located at the center of the coordinate system,

at the position x = 0, y = 0), with the following rules:

(i) Throws are independent.

(ii) Errors in the x and y directions are independent.

(iii) Large errors are less probable than small ones.

The probability of a dart landing in an infinitesimal square located at coordinates (x, y) and of size(∆x,∆y) (i.e., the dart landing in the interval [x, x +∆x] and [y, y +∆y]) is given by:

(132) p(x)∆x ⋅p(y)∆y = f (r )∆x∆y,

where p(x) is the probability density of landing at position x (and similarly for p(y)), which is

what we are trying to determine. On the l.h.s. of this equation, we can multiply the probabilities of

landing in the x and y direction because of rule number (1) and (2). On the l.h.s., f (r ) is a function

that only depends on the radial distance from the center, because of rule (2).

We now differentiate the above equation w.r.t. the polar coordinate φ:

(133) (p(x)d p(x)
dφ

+p(y)d p(y)
dφ

)∆x∆y = 0.

(Note that the r.h.s. becomes 0 as it does not depend on φ). In polar coordinates, x = r cosφ, y =
r sinφ, hence

d p(x)
dφ

= ∂p

∂x

∂x

∂φ
=−∂p

∂x
y,(134)

d p(y)
dφ

= ∂p

∂y

∂y

∂φ
= ∂p

∂y
x.(135)

Eq. (133) becomes

(136) (−p(x)∂p

∂x
y +p(y)∂p

∂y
x)∆x∆y = 0,

which implies

(137)
p(x)

x

∂p

∂x
= p(y)

y

∂p

∂y
.
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FIGURE 13. Gaussian approximation to the binomial (left panel) and the Poisson distribu-

tion (right panel). The solid curve gives in each case the Gaussian approximation to each

pmf.

Since each side only depends on one of the variables, they must both equal a constant C , and we

obtain the differential equation:

(138)
∂p

∂x
=C xp(x)

(and similarly for y). Integration gives the solution

(139) p(x) = Ae
C

2
x2

and C < 0 because of rule (3). We thus define C =−1/σ2. Requiring that the distribution is normal-

ized gives A = 1√
2πσ

, and therefore p(x) has the shape of a Gaussian (similarly for p(y)).

▸ The probability content of a Gaussian of standard deviation σ for a given symmetric interval around

the mean of width κσ on each side is given by

P(µ−κσ < x < µ+κσ)=∫ µ+κσ

µ−κσ

1√
2πσ

exp(−1

2

(x −µ)2
σ2

)d x(140)

= 2√
π
∫

κ/
√

2

0
exp(−y2)d y(141)

= erf(κ/√2),(142)

where the error function erf is defined as

(143) erf(x) = 2√
π
∫

x

0
exp(−y2)d y,

and can be found by numerical integration (also often tabulated and available as a built-in function

in most mathematical software). Also recall the useful integral:

(144) ∫
∞

−∞

exp(−1

2

(x −µ)2
σ2

)d x =√2πσ.

▸ Eq. (140) allows to find the probability content of the Gaussian pdf for any symmetric interval

around the mean. Some commonly used values are given in Table 2.

▸ Measurements are often reported with the notation T = (100±1) K (in this case, we assume we have

measured a temperature, T ). If nothing else is specified, it is usually implied that the error follows
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κ P(−κ < x−µ
σ
< κ) Usually called

“number of sigma” Probability content

1 0.683 1σ

2 0.954 2σ

3 0.997 3σ

4 0.9993 4σ

5 1−5.7×10−7 5σ

1.64 0.90 90% probability interval

1.96 0.95 95% probability interval

2.57 0.99 99% probability interval

3.29 0.999 99.9% probability interval

TABLE 2. Relationship between the size of the interval around the mean and the probability

content for a Gaussian distribution.

a Gaussian distribution. In the example above, ±1 K is the so-called “1σ interval”. This means that

68.3% of the probability is contained within the range [99,101] K. A “2σ interval” would have a

length of 2 K on either side, so 95.4% of the probability is contained in the interval [98,102] K. If one

wanted a 99% interval, one would need a 2.57σ range (see Table 2). Since in this case the 1σ error

is 1 K, the 2.57σ error is 2.57 K and the 99% interval is [97.43,102.57] K.

A.5. The Central Limit Theorem.

▸ The Central Limit Theorem (CLT) is a very important result justifying why the Gaussian distribution

is ubiquitous.

▸ Simple formulation of the CLT: Let X1, X2, . . . , XN be a collection of independent RV with finite

expectation value µ and finite variance σ2. Then, for N →∞, thir sum is Gaussian distributed with

mean Nµ and variance Nσ2.

Note: it does not matter what the detailed shape of the underlying pdf for the individual RVs is!

Consequence: whenever a RV arises as the sum of several independent effects (e.g., noise in a

temperature measurement), we can be confident that it will be very nearly Gaussian distributed.

▸ More rigorous (and more general) formulation of the CLT: Let X1, X2, . . . , XN be a collection of

independent RV, each with finite expectation value µi and finite variance σ2
i . Then the variable

(145) Y = ∑N
i=1 Xi −∑N

i=1µi

∑N
i=1σ

2
i

is distributed as a Gaussian with expectation value 0 and unit variance.

▸ Proof: Very simple using characteristic functions.
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