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Getting started 

• The input files (all very small) for the various exercises are located on 
the web at 

– http://www.nikhef.nl/~verkerke/statcourse_2011/ 

– NB: If you run linux, easiest way to download a file to the local directory is   
‘wget <url>’ (the file ‘course.tar’ contains all files if you find that easier) 

• Very basic ROOT (for those who have never used it) 

– ROOT is the analysis environment used in High Energy Physics. The application 
consists of a C++ interpreter (C++ is the command line language) and a large 
series of classes that define the ROOT functionality (divided in several major 
topics such as IO, Graphics, Histogramming, Fitting & Minimization etc...) 

– Starting root: Lunix/MacOS: ‘root –l’  (-l suppressing splash screen when 
opening), Windows: click on ROOT icon from installations 

– The command line is interpreted C++ 

– To quit ROOT type ‘.q’ 

– To load a macro file (file with one ore more C++ functions) in the interpreter do 
‘.L filename.C’. Loading a macro does not execute any code 

– You can then execute any function defined in the file in it by simply calling the 
function name on the command line 

– To load a macro and execute the function with the name identical to the macro 
type ‘.x blah.C’ (will load macro and execute function blah(), if defined) 
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Getting started 

• Very basic ROOT introduction (cont’d) 

• In addition to plain C++, many classes are defined that 
implement ROOT functionality. 

– We will only use very few in this tutorial, and examples will be 
provided. 

– You can find the complete documentation for any class online at 
root.cern.ch  Documentation  Reference Guide 

– Look at demo macro ex0.C which illustrates the use some of the 
very basic ROOT classes that we need for this tutorial 

– Histogramming  class TH1 

– Random number generation  class TRandom 

– Math functions  class TMath 

– Vectors  class TVectorD 

– Matrices  class TMatrixD 

– Graphics windows  class TCanvas  
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ROOT practicalities when running locally on laptop 

• Practical workflow: 

– Choose a directory where you put the downloaded input files and 
where you will work on your exercises 

– Have one window with ROOT session in the directory where you have 
put the input files 

• (1) Linux/MacOS: just cd to the directory where you put these files prior to starting 
ROOT.  Windows: either change the startup location of ROOT (right-click on icon, select 
Properties, and change the “Start in field”), or on your ROOT command line type 
gDirectory->cd(“C:\\your\\directory\\name”) – please note that you need to use a double 
backslash here! 

– Have one editor open with the exercise file you are working on 

– Then iterate: edit your .C file, then run it by e.g. typing ‘.x ex1.C’  

 

• Annotations in exercises: 

– ‘CODE’ – means that you need to write some code 

– ‘EXEC’ – means that you need to run your code and interpret its 
output 

• Macros have been tested with ROOT 5.26, 5.28, 5.30 

– Problems? Please ask (I didn’t test everything on all platforms) 
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Exercise 1 – The central limit theorem 

• In module 1 we saw that the Central Limit Theorem 
predicts that the sum of N measurements has a 
Gaussian distribution in the limit of N  ∞, independent 
of the distribution of each individual measurement 

– In this exercise we will investigate how quickly this convergence 
happens as function of N. 

– We start with a ‘fake’ measurement resulting in a value x with a 
uniform distribution between [0,1] (i.e. this is very non-Gaussian) 

– Then we will look at the distribution of x1+x2, x1+x2+x3, etc and 
compare these with the properties of a Gaussian distribution 

• Start with file ex1.C 

– This macro books a ROOT histogram, runs 10000 experiments 
and fills the ‘measured’ value of x in the histogram and plots the 
histogram and the end of the run. 

– EXEC: Look at the macro and run it (‘root -l ex1.C’ from the OS 
command line, or ‘.x ex1.C’ from the ROOT command line) 
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Exercise 1 – The central limit theorem 

• Modify the loop so that instead of filling the result of a 
single measurement in the histogram you store the 
result of Nsum measurements 

– CODE: Allocate a variable xsum that it is initialized to zero 

• The variable Nsum is already defined in the macro as first argument to macro 
ex1(). Its default value when unspecified is 1. 

– CODE: Make a loop from from j=1,Nsum (inside the existing loop 
over i) and in new inner the loop add  the value ‘measurement’ as 
returned by the ‘gRandom...’ line to the value of xsum.  

• The histogram defined by the macro has its range already defined as [0,Nsum] so 
that the summed measurement values always fit in the range of the histogram 

– EXEC: Run the macro again now passing value 2 as argument for 
Nsum ‘.x ex1.C(2)’ (or root –l ‘ex1.C(2)’ from the OS command 
line. Note that in this case the quotations are essential). Look at 
the distribution 

– EXEC: Repeat for Nsum=3,5,10,20 and 100. 
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Exercise 1 – The central limit theorem 

• You will see that around Nsum=10 the distribution is already 
looks quite Gaussian.  

– This is however mostly for the ‘core’ of the distribution. The convergence of 
the tails of the distribution is much slower as we will see next in this 
exercise 

• To compare the distribution to a Gaussian we compare the 
number of events in the 1,2,3,4,5 sigma range to that expected 
for a true Gaussian distribution 

– I.e. we expect for a true Gaussian that 68% of the events is in the ±1 
sigma range. Then we count which fraction of the xsum distribution is in 
that range 

– And we repeat for 2,3,4,5 sigma 

• To do so we need to calculate the expected sigma of the Gaussian 
by calculating the root of the variance of the distribution 

– Calculate first (on a piece of paper) the variance of a uniform distribution in 
the range [0,1]. 
 

– To do so, use the formula 
 
 
where you can use                               to calculate it, where F(x) is the 
distribution you are averaging over (F(x) is uniform  distribution in range 
[0,1] in this case) 
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Exercise 1 – The central limit theorem 

• Then once you have variance for a single measurement of 
x, determine what the variance is for the sum of N 
identical measurements 

– If you need help, look at the slides on Central Limit Theorem of 
module one 

• Update the code to add this additional information 

– CODE: At the beginning allocate a variable Nsigma1 and initialize it to 
zero. This will hold the number of events in the ‘one-sigma’ range. 

– CODE: In the ‘experiment loop’, once you have calculated Xsum, 
determine if the answer is inside or outside the ‘one-sigma range’, i.e. 
it is outside the range [-1*sigma,+1,sigma]. 

– CODE: At the end of the loop print the fraction of events 
Nsigma1/Ntot, which is the fraction of events outside the one-sigma 
range of the distribution. 

– Compare it the fraction expected for a Gaussian distribution. 
Tip: You can get the exact fraction of events outside a n-sigma 
Gaussian distribution from the following ROOT expression: 

 double  gaussfrac = 1-TMath::Erfc(n/sqrt(2))  
 
 where ‘n’ is the number of sigmas (i.e. 1 will give you 100%-
68%≈32%) 
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Exercise 1 – The central limit theorem 

• Note that there is a statistical error on the measurement of 
Nsigma1/Ntot which is (to good approximation) 
sqrt(Nsigma1)/Ntot 

– Compare Nsigma1, error(Nsigma1), and the ‘true value’ of Nsigma1 for a 
Gaussian distribution on one line 

– EXEC: Do this for Nsum=2,5,10,20,100 

– You will see that 10000 experiments provides plenty precision to see that 
the one-sigma range of the distribution of Xsum converges rapidly to that 
expected for a Gaussian distribution. 

• Now repeat the exercise for 2,3 sigma range. 

– CODE: To do so, add variables Nsigma2, Nsigma3, fill them in the event 
loop with the corresponding ranges and compare them (with their errors) to 
the matching fractions for a true Gaussian distribution. 

– EXEC: Do this for Nsum=2,5,10,20,100 

– Do you have enough statistics to measure the convergence for 2 and 3 
sigma? If not, increase the number of experiments by e.g. a factory of 10 

• Finally add the 4,5 sigma range 

– CODE & EXEC: How many experiments do you need to verify 5-sigma 
convergence? 
(Feel free to stop this exercise if runs start to take too long) 
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Exercise 1 – The central limit theorem 

• What does it mean? 

– If you have done your exercise correctly you’ll see the following 
results for the Nsum=20 run with Nexp=1.000.000 for 1,2,3,4,5 
sigma 

• n = 3198780 frac = 0.319879  +/- 0.00017 Gauss = 0.317311   rel. = 0.008 

• n = 450384  frac = 0.0450384 +/- 6.7e-05 Gauss = 0.0455003  rel. = -0.010 

• n = 22954   frac = 0.0022954 +/- 1.5e-05 Gauss = 0.0026998  rel. = -0.149 

• n = 329     frac = 3.29e-05 +/- 1.8e-06  Gauss = 6.33425e-05 rel. = 0.480 

• n = 0       frac = 0        +/- 0        Gauss = 5.73303e-07 

– While the 2,3 sigma fractions are fairly close to Gaussian 
(rel=frac-Gauss/Gauss) the 4-sigma number is 50% off  

– E.g. your interpretation of how often a result 4 times the 
sqrt(variance) away from the central value happens is 50% off 
w.r.t the Gaussian distribution 

– Verifying 5 sigma results is a very time consuming business (even 
when a simulation of your measurement is as trivial as throwing a 
single random number) 
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Exercise 2 – Error propagation 

• In module 1 we saw that errors on measurements x,y 
can be propagated to any function f(x,y) as follows 

 

 

• If we assume that df/dx is linear over the range of σx 
one can also calculate V(f) as follows 
 

– V(f) = [0.5*(f(x+σx)-f(x-σx)))]
2    σ(f) = 0.5*(f(x+σx)-f(x-σx)) 

 

• We will now exercise this type of error propagation in a 
ROOT macro 

– Input file ex2.C is a self-contained ROOT macro with a  
function ex2() and a function f(x,a,b).  

– EXEC: Look at the contents of ex2.C and run the macro once (run 
‘root –l ex2.C’ from the OS command line, or start root first with 
‘root –l’ and then type ‘.x ex2.C’ on the ROOT command line 
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Exercise 2 – Error propagation 

• Calculate the error on f, propagating the error on input 
variables x,a,b (without correlations) 

– CODE: Calculate the value of f(x+dx,a,b)-f(x,a,b) and store it in a 
variable dfx 

– CODE: Along the same lines, calculate 0.5*(f(x,a+da,b)-f(x,a,b)) 
and store it in dfa and the equivalent things for parameter b 

– CODE: Calculate the variance on f from dfx, dfa, dfb 

• Now we redo this exercise in the matrix formalism 

– Given a vector d=(dfx,dfa,dfb) we can express V(f) as follows 

 

 

 where C is the correlation matrix 

– For example in 2 dimensions w/o correlations for f(x,y) we can 
write 
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Exercise 2 – Error propagation 

• Now write this in C++ code 

– ROOT has vector and matrix classes that can do the matrix 
algebra for us 

– CODE: Create a TVectorD object named df and fill it with 
(dfx,dfa,dfb) 

– CODE: Create a 3x3 identity TMatrixD object named C and fill it 
with the contents of the identity matrix (all elements are 
initialized to zero so you only have to fill the diagonal) 
Calculate V(f) using vector df and matrix C as follows 
 
double vf = df*(C*df) ; 
 
and compare the answer to the first calculation 
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Exercise 2 – Error propagation 

• In the matrix formalism it is trivial to add correlations 
between the variables a,b,x in the error propagation 

– CODE, EXEC: Add a 50% correlation between a,b (remember that 
the correlation matrix must be symmetric) and evaluate the 
variance on F again 

– CODE, EXEC: Now add a 50% anti-correlation between a,b and 
evaluate the variance again. 

(NB: Remember that the error on f is always sqrt(Vf)) 
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Exercise 3 – Multi-Variate Analysis 

• ROOT is distributed with the ‘Toolkit for Multivariate 
Analysis’, a toolkit that allows to train and apply many 
of the multi-variate analysis techniques shown in 
Module 2. 

– Here we will run it on a number of sample events 

– Copy input file ex3_makesample.C. This is a macro that can 
generate several ‘toy’ input samples. 

– Copy input file ex3_driver_rootXXX.C. where XXX is the 3-digit 
version code of ROOT (526,528,530) This is the driver macro to 
run the TMVA toolkit. 

– Copy both files (makesample and driver) to the ROOT 
ROOT installation subdirectory tmva/test and set your 
working directory there 

• Linux/MacOS: cd $ROOTSYS/tmva/test, copy files here 

• Windows: right-click on root icon, click on properties and then set ‘Start in’  to the 
right directory. To get the ROOT base path, look at the path to the root executable 
and remove, ‘/bin/root.exe’. Then your starting directory will be the ROOT base 
path with /tmva/test appended. 
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Exercise 3 – Multi-Variate Analysis 

• Make sample #0 

– EXEC: Linux/MacOS: execute from the OS command line ‘root -l –
b  -q ex3_makesample.C(0)’ (windows: do .x 
ex3_makesample.C(0) from the ROOT command line) 

– This make a file sample0.root which contains a sample of ‘toy’ 
background events and ‘toy’ signal events 

– Signal: Gaussian distribution in x (mean=-3, sigma=3) 

– Background: Gaussian distribution in x(mean=+3, sigma=3) 

– NB: There is a dummy (uniform) Y variable in the data because 
TMVA refuses to work with a single variable in some versions 
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Exercise 3 – Multi-Variate Analysis 

• To analyze the first sample, start a ROOT session 

– EXEC: Execute ‘.L ex3_driver_rootXXX.C’, this loads the driver 
application 

– EXEC: Now analyze the first sample by issuing the following 
command on the ROOT prompt 
ex3_driver_rootxxx(0,”x,y”,”Fisher,BDT,MLP”) ; 

– This will train a Fisher discriminant, a Boosted Decision Tree and a 
Multi-Layer Perceptron on this sample 

– Observe how e.g. a BDT trains a lot quicker than a MLP, but takes 
longer to evaluate on the data. 

– While the training is running (~5 minutes), take a moment to 
review the techniques being trained in the slides of Module 2 

– When the training is finished, a window will pop up with various 
choices. 
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Exercise 3 – Multi-Variate Analysis 

• Explore the following menu items in this order 

– 1a) Input distributions (just one for this example) 

– 4a) Classifier output distributions (observe characteristic spikiness 
of BDT output) 

– 4b) Same, but overlay of both test and training samples. 
Difference in these are indicative of overtraining (not in this 
sample) 

– 5b) ROC curve (signal vs background efficiency) 

– 5a) Efficiency curves (show signal and background efficiency vs 
discriminant, as well as S/sqrt(S+B) which helps to find optimal 
cut for a given amount of signal and background (Skip this one 
if you run on windows)  

– Change the amounts of signal and background in the dialog box 
and see how the S/sqrt(S+B) changes shape 

– 9) – 11) Control plots for individual algorithms (these show e.g. 
network architecture, BDT structure etc...)  

– NB: If you run on Windows or don’t have a compiler installed 
not all options will work (notable 5a will crash ROOT on windows 
w/o compiler, but some others may also not work.  
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Exercise 3 – Multi-Variate Analysis 

• Now create sample 1  

– by running ‘root -l –b –q ex3_makesample.C(1)’ 

– Sample 1 has three observables :x,y,z 

– Signal = Gaussian(x,0,3)*Gaussian(y,0,3)*Gaussian(z,0,3) 

– Background = Flat in (x,y,z) 

• Now analyze sample 1 

– Add the likelihood discriminant: execute 

– .x ex3_driver_rootXXX.C(0,”x”,”Fisher,BDT,MLP,Likelihood”) 
 
from the ROOT command line nd look at the plots as for sample 0, 
but add the plots that the correlation (2a) and the plots that show 
the performance of decorrelation (2b,2c,2d,1b,1c,1d) 

• You will see that the performance of Fisher is very good 
for sample 0, but much worse for sample 1 

– Try to understand why that is (see slides on Fisher discriminant 
and MLP) 
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Exercise 3 – Multi-Variate Analysis 

• Sample 2 

– Signal and background differ only in their correlation information 

– Signal = Gaussian({x,z,y},0,3) 80% correlation between (x,y)  
and 50% correlation between (y,z) 

– Background = Gaussian({x,z,y},0,3) 80% anti-correlation between 
(x,y) and 50% anti-correlation between (y,z) 
 

• Sample 3 

– Multi-dimensional variant of sample 0 

– Signal = Gaussian(x,-3,3)*Gaussian(y,-3,3)*Gaussian(z,-3,3) 

– Background = Gaussian(x,+3,5)*Gaussian(y,+3,5)*Gaussian(z,-+3,5) 
 

• Sample 4 

– Intertwined donuts. Two observables (x,y) 

– Signal = donut in (x,y) centered at (-2,-2), radius 5, width 1 

– Signal = donut in (x,y) centered at (+2,+2), radius 5, width 1 
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