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Parameter estimation  
c2 and likelihood 

— Introduction to estimation 
— Properties of c2, ML estimators  
— Measuring and interpreting Goodness-Of-Fit 
— Numerical issues in fitting 
— Understanding MINUIT 
— Mitigating fit stability problems  
— Bounding fit parameters 
— Simultaneous fitting 
— Multidimensional fitting 
— Fit validation studies 

— Fit validity issues at low statistics 
— Toy Monte Carlo techniques 
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Parameter estimation – Introduction 

• Given the theoretical distribution parameters p, what 
can we say about the data 
 
 
 

 

 

• Need a procedure to estimate p from D 
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Multiple methods 

• Many ways to infer information on model (parameter) from 
data 

–  c2 fit    p = 5.2 ± 0.3 

– Likelihood fit   p = 4.7 ± 0.4 

– Bayesian interval   p  [ 4.5 – 5.9 ] at 68% credibility 

– Frequentist interval   p  [ 4.4 – 5.8 ] at 68% confidence level 

• When data is abundant, methods usually give consistent 
answers 

• Issues and differences between methods arise when 
experimental result contains little information 
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Multiple methods 

• Many ways to infer information on model (parameter) 
from data 

–  c2 fit    p = 5.2 ± 0.3 

– Likelihood fit   p = 4.7 ± 0.4 

– Bayesian interval   p  [ 4.5 – 5.9 ] at 68% credibility 

– Frequentist interval  p  [ 4.4 – 5.8 ] at 68% confidence level 

 

• Will first focus c2 and likelihood estimation procedures 

– Well known, often used 

– Explore assumptions, limitations 

 

• Tomorrow we focus on interpreting experiments with 
little information content 
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A well known estimator – the c2 fit 

• Given a set of points 
and a function f(x,p) 
define the c2 

 

 

 

 

• Estimate parameters by minimizing the c2(p) with 
respect to all parameters pi 

– In practice, look for 
  
 
 
 
 
 

 

 

• Well known: but why does it work? Is it always right? 
Does it always give the best possible error? 
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Basics – What is an estimator? 

• An estimator is a procedure giving a value for a 
parameter or a property of a distribution as a function of 
the actual data values, i.e. 

 

 

 

 

• A perfect estimator is 

– Consistent:  

– Unbiased – With finite statistics you get the right answer on average 

– Efficient 

 

– There are no perfect estimators for most problems 
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How to model your data 

• Approach in c2 fit very empirical – Function f(x,y) can be any 
arbitrary function 

• Many techniques (Likelihood, Bayesian, Frequentist) require a 
more formal approach to data modeling through probability 
density functions 

• We can characterize data distributions with probability density 
functions F(x;p) 

– x = observables (measured quantities) 

– p = parameters (model/theory parameters) 

• Properties 

– Normalized to unity with respect to observable(s) x 

– Positive definite – F(x;p)>=0 for all (x,p) 
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Probability density functions 

• Properties 

– Parameters can be physics quantities of interest (life time, mass) 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

– Vehicle to infer physics parameters from data distributions 
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Decay time distribution 
observable x (decay time) 
parameter q (lifetime) 

Invariant mass distribution 
observable x (inv. mass) 
parameter m (physics mass) 
parameter  (decay width) 





















 


2

2

1
exp

2

1
);(



mx
mxf



Likelihood 

• The likelihood is the value of a probability density 
function evaluated at the measured value of the 
observable(s) 

– Note that likelihood is only function of parameters, not of 
observables 

 

 

 

• For a dataset that consists of multiple data points, the 
product is taken 
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Probability, Probability Density, and Likelihood 

• For discrete observables we have probabilities instead of 
probability densities 

– Unit Normalization requirement still applies 

• Poisson probability P(n|μ) = μn exp(-μ)/n! 

• Gaussian probability density function (pdf) p(x|μ,σ): 
p(x|μ,σ)dx is differential of probability dP. 

• In Poisson case, suppose n=3 is observed.  
Substituting n=3 into P(n|μ) yields the  
likelihood function L(μ) = μ3exp(-μ)/3! 

– Key point is that L(μ) is not a probability density in μ. (It is not a 
density!)   

– Area under L is meaningless. That’s why a new word, “likelihood”, 
was invented for this function of the parameter(s), to distinguish 
from a pdf in the observable(s)! Many people nevertheless talk 
about ‘integrating the likelihood’  confusion about what is done 

in Bayesian interval (more later) 

– Likelihood Ratios L(μ1) /L(μ2) are useful and frequently used. 
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Change of variable x, change of parameter θ 

• For pdf p(x|θ) and (1-to-1) change of variable from x to y(x):  
 
  p(y(x)|θ) = p(x|θ) / |dy/dx|.  
 

• Jacobian modifies probability density, guaranties that  
 P( y(x1)< y < y(x2) ) = P(x1< x < x2), i.e., that 
 

• Probabilities are invariant under change of variable x. 

– Mode of probability density is not invariant (so, e.g., criterion of maximum 
probability density is ill-defined). 

– Likelihood ratio is invariant under change of variable x. (Jacobian in 
denominator cancels that in numerator). 
 

• For likelihood L(θ) and  
reparametrization from θ to u(θ): L(θ) = L(u(θ)) (!). 

– Likelihood L(θ) is invariant under reparametrization of parameter θ 
(reinforcing fact that L is not a pdf in θ). 
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Parameter estimation using Maximum Likelihood 

• Likelihood is high for values of p that result in 
distribution similar to data 
 
 
 
 

 

 

 

 

 

• Define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is 
maximum. 
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Parameter estimation – Maximum likelihood 

• Computational issues 

– For convenience the negative log of the Likelihood is often used 
as addition is numerically easier than multiplication 

 

 

 

– Maximizing L(p) equivalent to minimizing –log L(p) 
 

• In practice, find point where derivative is zero  
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Variance on ML parameter estimates 

• The ML estimator for the parameter variance is 
 

 

 

– I.e. variance is estimated from  
2nd derivative of –log(L) at minimum 

– Valid if estimator is  
efficient and unbiased! 
 

• Visual interpretation of variance estimate 

– Taylor expand –log(L) around minimum  
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Properties of Maximum Likelihood estimators 

• In general, Maximum Likelihood estimators are 
 

– Consistent                (gives right answer for N) 
 

– Mostly unbiased       (bias 1/N, may need to worry at small N) 
 

– Efficient for large N  (you get the smallest possible error) 
 

– Invariant:                 (a transformation of parameters  
                                  will Not change your answer, e.g                         
    
 
                 
 

• MLE efficiency theorem: the MLE will be unbiased and 
efficient if an unbiased efficient estimator exists 

– Proof not discussed here 

– Of course this does not guarantee that any MLE is unbiased and 
efficient for any given problem 
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Use of 2nd derivative of –log(L) 
for variance estimate is usually OK 
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More about maximum likelihood estimation 

• It’s not ‘right’ it is just sensible 

 

• It does not give you the ‘most likely value of p’ –  
it gives you the value of p for which this data is most likely 

 

• Numeric methods are often needed to find  
the maximum of ln(L) 

– Especially difficult if there is >1 parameter 

– Standard tool in HEP: MINUIT (more about this later) 
 

• Max. Likelihood does not give you a goodness-of-fit measure 

– If assumed F(x;p) is not capable of describing your data for any p,  
the procedure will not complain 

– The absolute value of L tells you nothing! 
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Relation between Likelihood and c2 estimators 

• Properties of c2 estimator follow from properties of ML 
estimator using Gaussian probability density functions 

 
 
 

 

 

 

 

 

 

• The c2 estimator follows from ML estimator, i.e it is 

– Efficient, consistent, bias 1/N, invariant, 

– But only in the limit that the error on xi is truly Gaussian 

– i.e. need ni > 10 if yi follows a Poisson distribution 
 

• Bonus: Goodness-of-fit measure – c2  1 per d.o.f  
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Example of c2 vs ML fit  

• Example with many low statistics bins 
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true distribution 

c2 fit 

unbinned ML fit 
binned ML fit 



Example of binned vs unbinned ML fit 

• Lowering number of bins and number of events… 
 

 

 

 

 

 

 

 

 

 

• Proper way to study bias, precision is with toy MC study 
 at the end of this module Wouter Verkerke, NIKHEF 

true distribution 

unbinned ML fit 

binned ML fit 
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Maximum Likelihood or c2 – What should you use? 

•  c2 fit is fastest, easiest 

– Works fine at high statistics  

– Gives absolute goodness-of-fit indication 

– Make (incorrect) Gaussian error assumption on low statistics bins 

– Has bias proportional to 1/N 

– Misses information with feature size < bin size 

 

• Full Maximum Likelihood estimators most robust  

– No Gaussian assumption made at low statistics 

– No information lost due to binning 

– Gives best error of all methods (especially at low statistics) 

– No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually 
‘pretty bad’ 

– Has bias proportional to 1/N 

– Can be computationally expensive for large N 
 

• Binned Maximum Likelihood in between 

– Much faster than full Maximum Likihood 

– Correct Poisson treatment of low statistics bins 

– Misses information with feature size < bin size 

– Has bias proportional to 1/N 
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You can (almost) always avoid c2 fits 

• Case study: Fit for efficiency function 

– Have some simulation sample:  
need to parameterize which fraction  
of events passes as function of  
observable x 
 
 

• ‘Traditional c2 approach’ 

– Make histogram of Npassed/Ntotal 

– Fit parameterized efficiency function to histogram 
 

– Tricky question: what errors to use? √N is wrong.  
 
Can use binomial errors 
 
However still quite approximate: true errors will be asymmetric 
(i.e. no upward error on bin with Npass=10, Ntotal=10) 
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)1()1()( pnppnprV  



You can (almost) always avoid c2 fits 

• MLE approach 

– Realize that your dataset has two observables (x,c), where c is a 
discrete observable with states ‘accept’ and ‘reject’ 

– Corresponding probability density function: 

 

 

 

– Clearly unit-normalized over c for each value of (x,p)  
(e must be between 0 and 1 for all (x,p)) 

– Write –log(L) as usual, using above p.d.f. and minimize 
 

 

 

– Result: estimation of e(x,p) using correct binomial/poisson 
assumption on distribution of observables.  

– Fit can also be performed unbinned 
Wouter Verkerke, NIKHEF 
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You can (almost) always avoid c2 fits 

• Example of unbinned MLE fit for efficiency 
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Weighted data 

• Sometimes input data is weighted 

• Examples:  

– Certain Next-to-leading order event generator for LHC physics produce 
simulated events with weights +1 and -1. 

– You’ve subtracted a distribution of background events from a sideband in 
data (also results in events with weight +1 and -1) 

– You work with reweighted data samples for a variety of reasons 
(e.g. not enough data was available for one background sample, rescale 
available events with some non-unit weight to match available amounts of 
other samples) 

• How to deal with event weights in c2, MLE parameter estimation 

•  c2 fit of histograms with weighted data are straightforward 
 
 
 
 
 
 
 
 

– NB: You may no longer be able to interpret                         as a Gaussian error 
(i.e. 68% contained in 1) 
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Weighted data – c2 vs MLE 

• Adding event weights to –log(L) straightforward, but does not 
yield correct estimates on parameter variance 
 
 
 
 
 

– Variance estimate on parameters will be proportional to   

– If                 errors will be too small, if                 errors will be too large! 
 

• No clean solution available that retains all good properties of 
MLE, but it is possible to perform sum-of-weights-like correction 
to covariance matrix to correct for effect of on-unit weights 
 

 

– where V is the cov. matrix calculated from a –log(L) with event weights w,  
   and C is the cov. matrix calculated from a –log(L) with event weights w2 

– It is easy to see that in the case of 1 parameter this is equivalent to 
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Hypothesis testing – Goodness of fit 

• Hypothesis testing and goodness-of-fit 

– Reminder:  
classical hypothesis test compares data to two hypothesis H0 and 
H1 (e.g background-only vs signal+background).  
Type-I error  = claiming signal when you should not have 
Type-II error = not claiming signal when you should have 

– If there is no alternate (H0) hypothesis, hypothesis test is called 
‘goodness-of-fit’ test. NB: Can only quantify Type-I error thus 
question “which g.o.f. test is best” (e.g. c2, Kolmogorov) is ill 
posed 
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‘Not a good fit’ 



Wouter Verkerke, UCSB 

Estimating and interpreting Goodness-Of-Fit 

• Most common test: the c2 test 
 
 
 
 

– If f(x) describes data then c2  N,  if c2 >> N something is wrong 
 

• How to quantify meaning of ‘large c2’? 

– What you really want to know: the probability that a function 
which does genuinely describe the data on N points would give a 
c2 probability as large or larger than the one you already have. 

– For large N, sqrt(2c2) has a Gaussian distribution  
with mean sqrt(2N-1) and =1  ‘Easy’ 

– How to make a well calibrated statement for intermediate N 
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How to quantify meaning of ‘large c2’ 

• Probability distr. for c2 is given by 

 

 

 

 

 

 

 

 

 

 

• Good news: Integral of c2 pdf is analytically calculable! 
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Goodness-of-fit – c2 

• Example for c2 probability 

– Suppose you have a function f(x;p) which gives a c2 of 20 for 5 
points (histogram bins).  

– Not impossible that f(x;p) describes data correctly, just unlikely 
  

– How unlikely?  
 

• Note: If function has been fitted to the data 

– Then you need to account for the fact that parameters have been 
adjusted to describe the data 
 

 

• Practical tips  

– To calculate the probability in ROOT ‘TMath::Prob(chi2,ndf)’ 
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Practical estimation – Numeric c2 and -log(L) minimization 

• For most data analysis problems minimization of c2 or –
log(L) cannot be performed analytically 

– Need to rely on numeric/computational methods 

– In >1 dimension generally a difficult problem! 
 
 

• But no need to worry – Software exists to solve this 
problem for you: 

– Function minimization workhorse in HEP many years: MINUIT 

– MINUIT does function minimization and error analysis 

– It is used in the PAW,ROOT fitting interfaces behind the scenes 

– It produces a lot of useful information, that is sometimes 
overlooked 

– Will look in a bit more detail into MINUIT output and functionality 
next 
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Numeric c2/-log(L) minimization – Proper starting values 

• For all but the most trivial scenarios it is not possible to 
automatically find reasonable starting values of 
parameters 

– This may come as a disappointment to some… 

– So you need to supply good starting values for your parameters 

 

 

 

 

 

 

 

– Supplying good initial uncertainties on your parameters helps too 

– Reason: Too large error will result in MINUIT coarsely scanning a 
wide region of parameter space. It may accidentally find a far away 
local minimum 

Reason: There may exist  
multiple (local) minima 
in the likelihood or c2 
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Example of interactive fit in ROOT 

• What happens in MINUIT behind the scenes 

1) Find minimum in –log(L) or c2 – MINUIT function MIGRAD 

2) Calculate errors on parameters – MINUIT function HESSE 

3) Optionally do more robust error estimate – MINUIT function MINOS 
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Minuit function MIGRAD 

• Purpose: find minimum  

 

 

 

 

 

     ********** 

 **   13 **MIGRAD        1000           1 

 ********** 

 (some output omitted) 

 MIGRAD MINIMIZATION HAS CONVERGED. 

 MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. 

 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 

 FCN=257.304 FROM MIGRAD    STATUS=CONVERGED      31 CALLS          32 TOTAL 

                     EDM=2.36773e-06    STRATEGY= 1      ERROR MATRIX ACCURATE  

  EXT PARAMETER                                   STEP         FIRST    

  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE  

   1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02 

   2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02 

                               ERR DEF= 0.5 

 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 

  1.049e-01  3.338e-04  

  3.338e-04  5.739e-02  

 PARAMETER  CORRELATION COEFFICIENTS   

       NO.  GLOBAL      1      2 

        1  0.00430   1.000  0.004 

        2  0.00430   0.004  1.000 

Parameter values and approximate 
errors reported by MINUIT 

 
Error definition (in this case 0.5 for 

a likelihood fit) 

Progress information, 
watch for errors here 
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Minuit function MIGRAD 

• Purpose: find minimum  

 

 

 

 

 

     ********** 

 **   13 **MIGRAD        1000           1 

 ********** 

 (some output omitted) 

 MIGRAD MINIMIZATION HAS CONVERGED. 

 MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. 

 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 

 FCN=257.304 FROM MIGRAD    STATUS=CONVERGED      31 CALLS          32 TOTAL 

                     EDM=2.36773e-06    STRATEGY= 1      ERROR MATRIX ACCURATE  

  EXT PARAMETER                                   STEP         FIRST    

  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE  

   1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02 

   2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02 

                               ERR DEF= 0.5 

 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 

  1.049e-01  3.338e-04  

  3.338e-04  5.739e-02  

 PARAMETER  CORRELATION COEFFICIENTS   

       NO.  GLOBAL      1      2 

        1  0.00430   1.000  0.004 

        2  0.00430   0.004  1.000 

Approximate  
Error matrix 

And covariance matrix 
 

Value of c2 or likelihood at 
minimum 

 
(NB: c2 values are not divided 

by Nd.o.f) 
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Minuit function MIGRAD 

• Purpose: find minimum  

 

 

 

 

 

     ********** 

 **   13 **MIGRAD        1000           1 

 ********** 

 (some output omitted) 

 MIGRAD MINIMIZATION HAS CONVERGED. 

 MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX. 

 COVARIANCE MATRIX CALCULATED SUCCESSFULLY 

 FCN=257.304 FROM MIGRAD    STATUS=CONVERGED      31 CALLS          32 TOTAL 

                     EDM=2.36773e-06    STRATEGY= 1      ERROR MATRIX ACCURATE  

  EXT PARAMETER                                   STEP         FIRST    

  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE  

   1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02 

   2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02 

                               ERR DEF= 0.5 

 EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5 

  1.049e-01  3.338e-04  

  3.338e-04  5.739e-02  

 PARAMETER  CORRELATION COEFFICIENTS   

       NO.  GLOBAL      1      2 

        1  0.00430   1.000  0.004 

        2  0.00430   0.004  1.000 

Status:  
Should be ‘converged’ but can be ‘failed’ 

 
Estimated Distance to Minimum 

should be small O(10-6) 
 

Error Matrix Quality 
should be ‘accurate’, but can be 
‘approximate’ in case of trouble 
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Minuit function MINOS 

• MINOS errors are calculated by ‘hill climbing algorithm’. 

– In one dimension find points where DL=+0.5.  

– In >1 dimension find contour with DL=+0.5. Errors are defined by 
bounding box of contour. 

– In >>1 dimension very time consuming, but more in general more 
robust. 

• Optional – activated by option “E” in ROOT or PAW 
 

 

 

 

 

 

 

 

  

 ********** 

 **   23 **MINOS        1000 

 ********** 

 FCN=257.304 FROM MINOS     STATUS=SUCCESSFUL     52 CALLS          94 TOTAL 

                     EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE  

  EXT PARAMETER                  PARABOLIC         MINOS ERRORS         

  NO.   NAME      VALUE            ERROR      NEGATIVE      POSITIVE    

   1  mean         8.84225e-02   3.23861e-01  -3.24688e-01   3.25391e-01 

   2  sigma        3.20763e+00   2.39539e-01  -2.23321e-01   2.58893e-01 

                               ERR DEF= 0.5 

 

Symmetric error 
 

(repeated result 
from HESSE) 

MINOS error 
Can be asymmetric 

 
(in this example the ‘sigma’ error 

is slightly asymmetric) 
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Illustration of difference between HESSE and MINOS errors 

• ‘Pathological’ example likelihood with multiple minima 
and non-parabolic behavior 

MINOS error 

HESSE error 

Extrapolation 
of parabolic 
approximation 
at minimum 

Parameter 

-l
o
g
L
(p

) 
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Practical estimation – Fit converge problems 

• Sometimes fits don’t converge because, e.g.  

– MIGRAD unable to find minimum 

– HESSE finds negative second derivatives  
(which would imply negative errors) 
 

• Reason is usually numerical precision and stability 
problems, but 

– The underlying cause of fit stability problems is usually  
by highly correlated parameters in fit 
 

• HESSE correlation matrix in primary investigative tool 
 
 
 
 
 

– In limit of 100% correlation, the usual point solution becomes a line 
solution (or surface solution) in parameter space.  
Minimization problem is no longer well defined 

PARAMETER  CORRELATION COEFFICIENTS   

       NO.  GLOBAL      1      2 

        1  0.99835   1.000  0.998 

        2  0.99835   0.998  1.000 

Signs of trouble… 
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Practical estimation – Bounding fit parameters 

• Sometimes is it desirable to bound the allowed range of 
parameters in a fit 

– Example: a fraction parameter is only defined in the range [0,1] 

– MINUIT option ‘B’ maps finite range parameter to an internal infinite 
range using an arcsin(x) transformation: 
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Practical estimation – Bounding fit parameters 

• If fitted parameter values is close to boundary, errors will 
become asymmetric (and possible incorrect) 

 

 

 

 

 

 

 

 

• So be careful with bounds! 

– If boundaries are imposed to avoid region of instability, look into other 
parameterizations that naturally avoid that region 

– If boundaries are imposed to avoid ‘unphysical’, but statistically valid 
results, consider not imposing the limit and dealing with the ‘unphysical’ 
interpretation in a later stage 
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Mitigating fit stability problems -- Polynomials 

• Warning: Regular parameterization of polynomials 
a0+a1x+a2x

2+a3x
3 nearly always results in strong 

correlations between the coefficients ai.  

– Fit stability problems, inability to find right solution common at 
higher orders 

• Solution: Use existing parameterizations of 
polynomials that have (mostly) uncorrelated variables 

– Example: Chebychev polynomials 

 



Extending models to more than one dimension 

• If you have data with many observables, 
there are  two common approaches 

– Compactify information with test statistic (see previous section) 

– Describe full N-dimensional distribution with a p.d.f. 
 

• Choice of approach largely correlated with understanding 
of correlation between observables and amount of 
information contained in correlations 

– No correlation between observables   
‘Big fit’ and ‘Compactification’ work equally well.  
 

– Important correlations that are poorly understood  
Compactification preferred. Approach:  

1. Compactify all-but-one observable  (ideally uncorrelated with the compactified 
observables) 

2. Cut on compactification test statistic to reduce backgrounds 

3. Fit remaining observable  Estimate from data remaining amount of background 
(smallest systematic uncertainty due to poor understanding of test statistic and its 
inputs) 

– Important correlations that are well understood  Big fit preferred 



Extending models to more than one dimension 

• Bottom line: N-dim models used when either no 
correlations or well understood correlations 

• Constructing multi-dimensional models without 
correlations is easy 

– Just multiply N 1-dimensional p.d.f.s. 

 

 

 

 

 

 

 

– No complex issues with p.d.f. normalization: if 1-dim p.d.f.s are 
normalized then product is also by construction 
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Writing multi-dimensional models with correlations 

• Formulating  N-dim models with correlations may seem 
daunting, but it really isn’t so difficult. 

– Simplest approach: start with one-dimensional model, replace one 
parameter p with a function p’(y) of another observable 

– Yields correction distribution of x for every given value of y 
 

 

 

 

 

 

 

 

 

– NB: Distribution of y probably not correct… 
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F(x,m,s) F’(x,[a0+a1y],s)  



Writing multi-dimensional models with correlations 

• Solution: see F’(x,y,p) as a conditional p.d.f. F’(x|y) 

– Difference is in normalization 
 
 
 

 

– Then multiply with a separate p.d.f describing distribution in y 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

• Almost all modeling issues with correlations can be treated this way 

– Iteration 1) Exponential Missing ET distr. of ‘background’ is independent of Transverse mass 

– Iteration 2) Slope depends linearly on MT  write conditional pdf F(ET|MT) 

– Iteration 3) Multiply F(ET|MT) with empirical shape for MT 

 1),( dxdyyxF  1)|( dxyxF for each value of y 

)()|('),( yGyxFyxM 
F’(x|y) G(y) M(x,y) = * 



Visualization of multi-dimensional models 

• Visualization of multi-dimensional models presents 
some additional challenges w.r.t. 1-D 

• Can show 2D,3D distribution 

– Graphically appealing, but not so useful as you cannot overlay 
model on data and judge goodness-of-fit 

– Prefer to project on one dimension (there will be multiple choices) 

– But plain projection discards a lot of information contained in both 
model and data 

Significance of signal 
less apparent 

Reason: Discriminating information in  
y observable in both data and model is ignored 



Visualizing signal projections of N-dim models 

• Simplest solution, only show model and data in  
“signal range” of observable y 

– Significance shown in “range projection” much more in line with  
that of 2D distribution 
 
 
 
 
 
 

 

 

 

 

 

 

• Easy to define a “signal range” simple model above.  
How about 6-dimensional model with non-trivial shape?  

– Need generic algorithm  Likelihood ratio plot 
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y[-10,10] y[-2,2] 



Likelihood ratio plots 

• Idea: use information on S/(S+B) ratio in projected 
observables to define a cut 

• Example: generalize previous toy model  
to 3 dimensions 
 

• Express information on S/(S+B) ratio of model in terms 
of integrals over model components 
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Integrate over x 

Plot LR vs (y,z) 



Likelihood ratio plots 

• Decide on s/(s+b) purity 
contour of LR(y,z) 

– Example s/(s+b) > 50% 
 

• Plot both data and model  
with corresponding cut. 

– For data: calculate LR(y,z) for each event, plot only event with LR>0.5 

– For model: using Monte Carlo integration technique: 
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N

dydzzyxM
Dataset with values of (y,z) 
sampled from p.d.f and 
filtered for events that meet 
LR(y,z)>0.5 

All events Only LR(y,z)>0.5 



Wouter Verkerke, UCSB 

Multidimensional fits – Goodness-of-fit determination 

• Goodness-of-fit determination of >1 D models is difficult 

– Standard c2 test does not work very will in N-dim because of natural 
occurrence of large number of empty bins  

– Simple equivalent of (unbinned) Kolmogorov test in >1-D does not 
exist 
 

• This area is still very much a work in progress 

– Several new ideas proposed but sometimes difficult to calculate, or 
not universally suitable 

– Some examples 

• Cramer-von Mises (close to Kolmogorov in concept) 

• Anderson-Darling 

• ‘Energy’ tests 

– No magic bullet here, “best” generally an ill-posed question 

– Some references to recent progress: 

• PHYSTAT2001/2003/2005 
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Practical fitting – Error propagation between samples 

• Common situation: you want to fit  
a small signal in a large sample 

– Problem: small statistics does not  
constrain shape of your signal very well  

– Result: errors are large 
 
 

 

• Idea: Constrain shape of your signal  
from a fit to a control sample 

– Larger/cleaner data or MC sample with  
similar properties 
 
 

 

• Needed: a way to propagate the information from the 
control sample fit (parameter values and errors) to your 
signal fit 
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Practical fitting – Simultaneous fit technique 

• given data Dsig(x) and model Fsig(x;a,b) and 
         data Dctl(x) and model Fctl(x;b,c) 
                           

– Construct –log[Lsig(a,b)] and –log[Lctl(b,c)] and 
 
 
 
 
 
 
 
 
 
 
   
 
                        

• Minimize -logL(a,b,c)= -logL(a,b)+ -logL(b,c) 

– Errors, correlations on common param. b automatically propagated 

Dsig(x), Fsig(x;a,b) Dctl(x), Fctl(x;b,c) 

‘CTL’ ‘SIG’ 

Combined 

-l
o
g
(L

) 

  b 

Likelihood view 



Practical fitting – Simultaneous fit technique 

• Simultaneous fit with visualization of error 



Another application of simultaneous fits 

• You can also use simultaneous fits to samples of the same 
type (“signal samples”) with different purity 

• Go back to example of NN with one observable left out 

– Fit xN after cut on N(x) 

– But instead of just fitting data with 
N(x)>a, slice data in bins of N(x) 
and fit each bin.  

– Now you exploit all data instead 
of just most pure data. Still no 
uncontrolled systematic uncertainty 
as purity is measured from data in 
each slide 

– Combine information of all slices in 
simultaneous fit 

 

 

 

– a 
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Practical Estimation – Verifying the validity of your fit 

• How to validate your fit? – You want to demonstrate that 

1) Your fit procedure gives on average the correct answer ‘no bias’ 

2) The uncertainty quoted by your fit is an accurate measure for the statistical 
spread in your measurement ‘correct error’ 

 

• Validation is important for low statistics fits 

– Correct behavior not obvious a priori due to intrinsic ML bias 
proportional to 1/N 
 

• Basic validation strategy – A simulation study 

1) Obtain a large sample of simulated events 

2) Divide your simulated events in O(100-1000) samples with the same size as 
the problem under study 

3) Repeat fit procedure for each data-sized simulated sample 

4) Compare average value of fitted parameter values with generated value  
Demonstrates (absence of) bias 

5) Compare spread in fitted parameters values with quoted parameter error  
Demonstrates (in)correctness of error 
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Fit Validation Study – Practical example 

• Example fit model in 1-D (B mass) 

– Signal component is Gaussian  
centered at B mass 

– Background component is  
Argus function (models phase  
space near kinematic limit) 
  
 

 

• Fit parameter under study: Nsig  

– Results of simulation study:  
1000 experiments  
with NSIG(gen)=100, NBKG(gen)=200 

– Distribution of Nsig(fit)  

– This particular fit looks unbiased… 

 

 

);();(),,,;( bkgsigbkgsig BSBS pmANpmGNppNNmF 


                                  Nsig(fit) 

Nsig(generated) 
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Fit Validation Study – The pull distribution 

• What about the validity of the error? 

– Distribution of error from simulated  
experiments is difficult to interpret… 

– We don’t have equivalent of  
Nsig(generated) for the error 
 

• Solution: look at the pull distribution 
 
 

– Definition: 
 
 

– Properties of pull: 

• Mean is 0 if there is no bias 

• Width is 1 if error is correct 
 

– In this example: no bias, correct error 
within statistical precision of study 

(Nsig) 

fit

N

true

sig

fit

sig NN




)pull(Nsig

                   pull(Nsig) 
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Fit Validation Study – Low statistics example 

• Special care should be taken when fitting small data 
samples 

– Also if fitting for small signal component in large sample 
 

• Possible causes of trouble  

–  c2 estimators may become approximate as Gaussian 
approximation of Poisson statistics becomes inaccurate 

– ML estimators may no longer be efficient 
 error estimate from 2nd derivative may become inaccurate 

– Bias term proportional to 1/N of ML and c2 estimators may  
no longer be small compared to 1/sqrt(N) 
 

• In general, absence of bias, correctness of error can not 
be assumed. How to proceed? 

– Use unbinned ML fits only – most robust at low statistics 

– Explicitly verify the validity of your fit 
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Demonstration of fit bias at low N – pull distributions 

• Low statistics example: 

– Scenario as before but now with  
200 bkg events and  
only 20 signal events (instead of 100) 

 

• Results of simulation study 

 

 

 

 

 

 

• Absence of bias, correct error at low statistics not obvious! 

– Small yields are typically overestimated 

NBKG(gen)=200 

NSIG(gen)=20 

Distributions become 
asymmetric at low statistics 

NSIG(fit) (NSIG) pull(NSIG) 

NSIG(gen) 
 Fit is positively biased! 
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Fit Validation Study – How to obtain 10.000.000 simulated events? 

• Practical issue: usually you need very large amounts of 
simulated events for a fit validation study 

– Of order 1000x number of events in your fit, easily >1.000.000 events 

– Using data generated through a full GEANT-based detector  
simulation can be prohibitively expensive 
 

• Solution: Use events sampled directly from your fit function 

– Technique named ‘Toy Monte Carlo’ sampling 

– Advantage: Easy to do and very fast 

– Good to determine fit bias due to low statistics, choice of 
parameterization, boundary issues etc 

– Cannot be used to test assumption that went into model  
(e.g. absence of certain correlations). Still need full GEANT-based 
simulation for that. 
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Toy MC generation – Accept/reject sampling 

• How to sample events directly from your fit function? 

• Simplest: accept/reject sampling 
 

1) Determine maximum of function fmax 

2) Throw random number x 

3) Throw another random number y 

4) If y<f(x)/fmax keep x,  
otherwise return to step 2) 
 
 
 

– PRO: Easy, always works 

– CON: It can be inefficient if function  
         is strongly peaked. 
         Finding maximum empirically  
         through random sampling can 
         be lengthy in >2 dimensions 

x 

y 

fmax 
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Toy MC generation – Inversion method 

• Fastest: function inversion 
 

1) Given f(x) find inverted function F(x)  
so that f( F(x) ) = x 

2) Throw uniform random number x 

3) Return F(x) 
 
 
 
 

– PRO: Maximally efficient 

– CON: Only works for invertible functions 

Take –log(x) 

x 

-ln(x) 

Exponential 
distribution 
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Toy MC Generation in a nutshell 

• Hybrid: Importance sampling 
 

1) Find ‘envelope function’ g(x)  
that is invertible into G(x) 
and that  fulfills g(x)>=f(x)  
for all x 

2) Generate random number x  
from G using inversion method 

3) Throw random number ‘y’ 

4) If y<f(x)/g(x) keep x,  
otherwise return to step 2 
 
 
 
 

– PRO: Faster than plain accept/reject sampling 
        Function does not need to be invertible 

– CON: Must be able to find invertible envelope function 

 

 

G(x) 

y 

g(x) 

f(x) 



Toy MC Generation in a nutshell 

• General algorithms exists that can construct empirical 
envelope function  

– Divide observable space recursively into smaller boxes and take 
uniform distribution in each box 

– Example shown below from FOAM algorithm 
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