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Discovery, exclusion, 
nuisance parameters 

— Formulating discovery, exclusion 
— Dealing with syst. uncertainties as nuisance parameters 



Introduction 

• In the previous module extensive focus on fundamental 
statistics and the meaning of confidence interval and 
limits, i.e. what does a statement   “We exclude 
SuperSymmetry at 95% C.L.” precisely mean 

• Today we explore other issues that are of crucial 
importance to be able to make such statement on real-
life theories 

– Models can have uncertainties (in the form of unconstrained or 
weakly constrained parameters)  How do we incorporate that in 

our statement 

– Making statements about what we expect from both 
H0(SUSY+SM) and H1(SM) in addition to what we observe 
(especially relevant for theories with uncertainties we’ll generally 
expect a range of possibilities) 

– Incorporating p-value of the alternate hypothesis in the 
conclusion. Example: If your data says P(SM+SUSY)=0.001 we 
‘exclude SUSY’ but if p(SM)=0.003 on that same data, should we 
believe our conclusion? 
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Theories with uncertainties - Nuisance parameters 

• Have so far considered problems with one model 
parameter 
 

• Hypothetical case for “SuperSymmetry” discovery 

– Simulation for SM – Predicts 3 events (Poisson, μ exactly known) 

– Simulation for SUSY – Predicts 6 events  9 events in total 

– Observed event count in data: 8 events 

• How do you conclude (or not) that you’ve discovered 
supersymmetry? 

– You expect 9 events (with SUSY), you see 8, looks promising 

 

• Discussed three types of solution to above problem. 

• What do we do if background is not exactly known? 

– E.g. μ = 3.0 ± 1.0  (NB: this statement does not unique fix P(μ)) 
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Nuisance parameters 

• In real life, background rate, shape of background 
model are usually not exactly known 

– Need procedure to incorporate uncertainty on these ‘nuisance 
parameters’ into account when setting limits etc. 

• For preceding problems (with precisely defined null 
hypotheses) procedures exist to calculate intervals and 
significances could be exactly 

• When dealing with nuisance parameters, this generally 
not possible anymore 

• Q: Is that a problem? 

– A: Yes. If your (approximate) calculation says Z=5, but it is really 
Z=3, there is a substantial chance your discovery is fake 

– If ATLAS and CMS use different methods one experiment may 
claim discovery of e.g. Higgs with only half the data of the other 
because of differences in significance calculation 
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Treatment of nuisance parameters 

• 1 – Definition of nuisance parameters 

– A nuisance parameter is any parameter of the model that is not a 
parameter-of-interest (for physics). 

• Example: for Higgs discovery N(higgs) is of interest, everything else is nuisance 

• 2 – Introduction of nuisance parameters in Likelihood 

– Sometimes nuisance parameter arise naturally in the likelihood.  

– Systematic uncertainties always introduce nuisance parameters, 
but explicit parameterization not always obvious (e.g. how to 
parameterize effect of Pythia-vs-Herwig?) 

• 3 – Treatment of nuisance parameters in inference 

– Each of the three main classes of constructing intervals (Bayesian, 
likelihood ratio, Neyman confidence intervals) has a different way 
to incorporate the uncertainty on the nuisance parameters in the 
parameters of interest.  
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Likelihood fit – Definition of nuisance parameters 

• In ML fits, any floating fit parameter that is not the 
parameter of interest is a nuisance parameter 

• Model = Nsig*Gauss(x,m,s)+Nbkg*Uniform(x) 

– Nsig is parameter of interest 

– m,s,Nbkg are nuisance parameters,  
if not exactly known/fixed 

– Uncertainty on nuisance 
parameters will increase 
uncertainty on parameter 
of interest Nsig 

– In this example, the nuisance  
parameters can be constrained  
from the data along with the  
parameter of interest (given a sufficiently  
large dataset)  Even without any prior knowledge on m,s,Nbkg 

one is still capable of making a statement on Nsig 
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Adding uncertainties to a likelihood 

• Example 1 – Width known exactly 

 

 

 

 

 

• Example 2 – Gaussian uncertainty on width 

 



Counting with sideband – Nuisance parameters 

• In other examples, a the nuisance parameter may not 
be constrainable from the data 

– An ‘auxiliary measurement/constraint’  term must be introduced 
to define the magnitude of the uncertainty of the NP so that a 
statement can be made on the POI. 

• Example:  
counting experiment with sideband: Poisson(Nsig|s+b) 

– Must have some external information on b to be able to do 
measurement 

• Example of external constraint on b:  

– We have a control region where we measure background only.  
 

Model: Poisson(Nsig|s+b)·Poisson(Nctl|τb) 
 

– Measurement now consistent of two numbers: Nsig,Nctl 

– NB: Mathematically and conceptual identical to concept of 
‘simultaneous measurements’ discussed earlier 
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Constraining nuisance parameters 

• Also in cases where the nuisance parameters can be 
measured from the data, it is possible that external 
information exists that is more constraining the inference 
from the data sample 

– Can incorporate this in the same form as ‘auxiliary measurement’ 

• Ex: Model = Nsig*Gauss(x,m,s)+Nbkg*Uniform(x) 

•  -logL = (- Σdata Model(xi,Nsig,Nbkg,m,s)) – log C(m,...) 
 

• Typical shape of C is Gaussian, or Poisson 

• Note notational convention difference in C(m)  
for Frequentist and Bayesian formalism 

– Freq: C = Gaussian(y,m,s) ‘auxiliary measurement in observable y’ 

– Bayes: C = Gaussian(m,m0,s) ‘prior on m’ 

– Note that for a Gaussian shape both are mathematically equivalent as 
Gauss(x,m,s) = Gauss(m,x,s), but this is not necessarily true for 
other shapes 
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Shape of auxiliary measurement likelihood 

• Shape of auxiliary measurements requires some careful 
thought – especially when evaluating high Z limits 

• Option A: Rescaled Poisson: Poisson(N|τb) 

– Most suitable if uncertainty on B is dominated by statistical 
uncertainty from a sideband or control region 

– (It is the exact solution for a counting measurement in a 
sideband) 

• Option B: Gaussian: Gauss(b,b0,σb) or Gauss(b0,b,σb)  

– Usually chosen if source information is known in form b0 ± σb 

– Also often chosen if true shape is unknown (e.g. ‘theory 
uncertainty’) 

– Central Limit Theorem  Sum of many uncertainties is 

asymptotically Gaussian 

– But beware of relatively large Gaussian uncertainties  
 These can result in optimistically biased significance 

calculations 
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Shape of auxiliary measurement likelihood 

• Option B: Gaussian: Gauss(b,b0,σb) [ continued] 

– Illustration of danger of large Gaussian uncertainties 

 Model = Poisson(Nsig|s+b)  Gaussian(b,b0,sb) 
                                         with b0 = 3, σb = 1 (33%) 
 
If we look at 5σ fluctuations we in principle allow the Gaussian 
term to move 5σ off its center  
 Allow downward fluctuation to b=-2 ! 
 
In reality b must be greater than zero  
 Significance of result will be optimistically biased 
 

• Option C: Gamma(b,b0,σb)  
 

 

 

– Longer positive tail than Gaussian 

– Better behavior at 0 than Gaussian 

–  Asymptotically Gaussian 

– Good ‘alternate model’ for systematics 
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Turning all uncertainties into nuisance parameters 

• For ‘simple’ measurements systematic uncertainties are 
traditionally included ‘a posteriori’ with error 
propagation 

– E.g. measure cross-section using Herwig, then again using Pythia 
and use the difference in these cross-section values for the 
fragmentation uncertainty on the cross-section (and add all such 
systematic uncertainties in quadrature) 

• For fundamental techniques (e.g. Bayesian, Likelihood 
ratio) techniques these sources must be incorporated in 
the likelihood 

– No accurate ‘a posteriori’ prescription exists to include these 

– Inclusion ensures consistent treatment of these systematics as 
nuisance parameters in inference analysis (limit or confidence 
interval) 

• But certain types of systematics are difficult to 
parameterize... 
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Parameterized template pdfs 

• In many LHC analyses (e.g. Higgs searches, top cross-
section), shapes are defined by histograms rather than 
analytical functions. While these shapes are fixed (no 
parameters), nuisance parameters can be introduced a 
posteriori through ‘morphing techniques’ 

• Original (fixed) shape for e.g. the signal in an observable x 
 Histogram defines shape of probability density function 

– But this distribution, obtained from simulation has many systematic 
uncertainties associated with it (originating from the simulation  How 
do you turn these into nuisance parameters 

Wouter Verkerke, NIKHEF 

F(x) 



Parameterized template pdfs 

• First quantify effect by regenerating histogram from the 
source (e.g. full simulation) with a source of systematic 
uncertainty set to a shifted value 

• Example: Jet Energy scale up / down by X% 
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Parameterized template pdfs 

• Final step is to make a pdf that interpolates (bin-by-bin) 
between the histograms introducing a newly introduced 
nuisance parameter 

– Constrain size of systematic by introducing  
‘constraint’ on a in likelihood 
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Parameterized template pdfs 

• Final step is to multiply likelihood with constraint that 
defines magnitude of uncertainty as ‘one sigma’ 
 

 -logL = (- Σdata F(xi,a)) – log Gauss(a,0,1) 

 

• Can repeat this procedure for any number of systematic 
uncertainties 

 

 -logL = (- Σdata F(xi,a,b,...)) – log G(a,0,1) G(b,0,1)... 

 

• Note that data may also constrain magnitude of NP  

– In such cases the uncertainty on a,b will be less than 1 
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Treatment of nuisance parameters 

• Effort so far has been to incorporate systematic 
uncertainties as explicit nuisance parameters in model 

– In analytical pdfs, the free parameters of these models are the 
nuisance parameters 

– In template-based pdfs, parameters can be introduced by 
morphing/interpolation techniques 

– In either case the magnitude of the uncertainty represented by 
the NP can be constraint with an ‘auxiliary measurement’ type of 
constraint in the likelihood 
 “L(s,b) = Poisson(Nsig|s+b)  Gaussian(b,b0,sb)” 

• The next step is to include the effect of all these 
nuisance parameters on the statistical inference on the 
parameter-of-interest 

• Will first discuss procedure in each of the three 
‘fundamental’ approaches  
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Counting with sideband – Nuisance parameters 

• Model: Poisson(Nsig|s+b)Poisson(Nctl|τb), τ=3 (exact) 
 

• Visualization of Likelihood 

– Nsig=10, Nctl=10 
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We know how to set 
interval on s given a fixed b 
 
Now need to incorporate 
uncertainty on b… 



Reminder: intervals defined ways 

• Bayesian interval  
at 90% credibility:  
find μu such that posterior 
probability p(μ>μu) = 0.1. 
 

• Likelihood ratio method for 
approximate 90% C.L. U.L.: 
find μu such that L(μu) / L(3) 
has prescribed value.  

– Asymptotically identical 
to Frequentist interval 
(Wilks theorem) 

– Equivalent to MINOS errors 

• Frequentist one-sided 90% 
C.L. upper limit: find μu such 
that P(n≤3 | μu) = 0.1. 
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Dealing with nuisance parameters in Bayesian intervals 

• Reminder: definition of Bayesian intervals 

                 p(μ|x0) ∝ L(x0|μ) p(μ),  

where: 

– p(μ|x0) = posterior pdf for μ, given the results of this experiment 

– L(x0|μ) = Likelihood function of μ from the experiment 

– p(μ) = prior pdf for μ,  

 

• If you have nuisance parameters a, 
equation becomes 

•  p(μ,a|x0) ∝ L(x0|μ,a) p(μ) p(a)  

 

Wouter Verkerke, NIKHEF 

p(μ|x0) 

Area that integrates  
X% of posterior 



Dealing with nuisance parameters in Bayesian intervals 

• Elimination of nuisance parameters in Bayesian interval: 
Integrate over the full subspace of all nuisance 
parameters;  
 
 
 
 
 

• You are left with the posterior pdf for the parameter of 
interest.  
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Illustration of nuisance parameters in Bayesian intervals 

• Example: data with Gaussian model (mean,sigma) 

 ∫ = 

MLE fit fit data -logLR(mean,sigma) 

LR(mean,sigma) prior(mean,sigma) posterior(mean) 



Dealing with nuisance parameters in Bayesian intervals 

• Issues 

– The multi-D prior pdf is a problem for both subjective and non-
subjective priors.  

– In HEP there is almost no use of the favored non-subjective priors 
(reference priors of Bernardo and Berger), so we do not know 
how well they work for our problems.  

– In case of many nuisance parameters, the high-dimensional 
numeric integral can be a technical problem (use of Markov Chain 
Monte Carlo can help) 
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Dealing with nuisance parameters in Likelihood ratio intervals 

• Likelihood ratio intervals with one parameter 

 

 

 

 

 

 

• With nuisance parameters – modify definition of the 
likelihood ratio 
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Dealing with nuisance parameters in Likelihood ratio intervals 

• Construct ‘profile likelihood’ 

– For each value of the parameter of interest, search the full 
subspace of nuisance parameters for the point at which the 
likelihood is maximized.  

 

MLE fit fit data 

-logLR(mean,sigma) -logLR(mean,sigma) 
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Dealing with nuisance parameters in Likelihood ratio intervals 
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Likelihood Ratio 

Profile Likelihood Ratio 
 
Minimizes –log(L)  
for each value of fsig  
by changing bkg shape params 
(a 6th order Chebychev Pol) 



Link between MINOS errors and profile likelihood 

 
 
 
 
 
 
 
 

• Note that MINOS algorithm in  
MINUIT gives same errors as  
Profile Likelihood Ratio 

– MINOS errors is bounding box  
around (s) contour 

– Profile Likelihood = Likelihood 
minimized w.r.t. all nuisance  
parameters 
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Dealing with nuisance parameters in Likelihood ratio intervals 

• Profile likelihood ratio intervals asymptotically equivalent 
to frequentist intervals 

– Just like plain LR intervals asymptotically equivalent to frequentist 
intervals  

• Issues with Profile Likelihood 

– Has a reputation of underestimating the true uncertainties.  

– In Poisson problems, this is partially compensated by effect due to 
discreteness of n, and profile likelihood (MINUIT MINOS) gives good 
performance in many problems. 

• NB: Computationally Profile Likelihood is quite 
manageable, even with a large number of nuisance 
parameters 

– Minimize likelihood w.r.t. 20 parameters quite doable 

– Especially compared to numeric integration over 20 parameters, or 
constructing confidence belt in 20 dimensions… 

– But beware of finding the wrong minimum, General problem with 
algorithmic minimization 

• But in profile likelihoods many minimizations are performed with incrementally different 
starting points  How to choose starting point? 
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Dealing with nuisance parameters in Frequentist intervals 

• Incorporating nuisance parameters in the Neyman 
construction of the confidence belt makes the belt 
multi-dimensional 

 

 

 

 
 

– The goal is that the parameter of interest should be covered at 
the stated confidence for every value of the nuisance 
parameter 

– if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that parameter 
point should be considered: eg. don’t claim discovery if any 
background scenario is compatible with data 

– But: technically very challenging and significant problems with 
over-coverage  Practical approach: absorb nuisance parameters 
in profile likelihood then make confidence belt on PLR and POI 
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How much do answers differ between methods? 

These slide discuss the earlier 
shown problem: 
 
Poisson(Nsig|s+b)  Poisson(Nctl|τb) 
 
NB: This is one of the very few 
problems with nuisance parameters 
with can be exactly calculation 



Recent comparisons results from PhyStat 2007 
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Summary on incorporating nuisance parameters 

• 1 – Definition of nuisance parameters 

– A nuisance parameter is any parameter of the model that is not a 
parameter-of-interest (for physics). 

• Example: for Higgs discovery N(higgs) is of interest, everything else is nuisance 

• 2 – Introduction of nuisance parameters in Likelihood 

– Sometimes nuisance parameter arise naturally in the likelihood.  

– In other cases they can be introduces with techniques like template 
morphing to parameterize underlying systematic uncertaintis 

– For proper treatment of systematic uncertainties in fundamental 
methods all uncertainties must be described as nuisance parameters 
(i.e. no ad-hoc solutions allows as can be done for ‘simple’ 
measurements) 

• 3 – Treatment of nuisance parameters in inference 

– Each of the three main classes of constructing intervals (Bayesian, 
likelihood ratio, Neyman confidence intervals) has a way to incorporate 
the uncertainty on the nuisance parameters in the parameters of 
interest. Answers can differ sizable – even for simple problems. 
This remains a subject of frontier statistics research. 
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Discovery, exclusion – expectation and observation 

• Now that we have discussed techniques on how formulate 
model uncertainties in likelihood and how to incorporate 
these in the statements on the p-value of models (or 
correspondingly on intervals) 

• How to we use those models to make sensible physics 
conclusions, e.g. 

– Did we discover the Higgs? 

– Can we exclude Supersymmetry? 
 

• First need to decided on formulating answer as discovery 
or exclusion 

– Discovery: Make statement based on p-value of background only 
hypothesis (i.e. data is inconsistent with SM). Low p-value means data 
is inconsistent with SM only, we’ve discovered ‘something’ in the data 

– Exclusion: Make statement based on p-value of background + new 
physics hypothesis (ps+b). Low p-value means new physics is excluded 
at some C.L. 

• While to first order discover and exclusion amount to 
swapping H0 and H1 we treat these scenarios in practice 
somewhat asymmetrically 
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Discovery, exclusion – expectation and observation 

• Discovery (this scenario has not been exercised much 
yet at the LHC unfortunately) 

– Canonically aim for ‘5 sigma’  p-value (SM resulting in excess 

seed on data or better) of 1.2 · 10-7  

– Can (and should) in principle also make a statement on p-value of 
‘SM+new physics’ scenario to quantify to which extent the 
observed result is consistent with the alternate hypothesis, but 
this is quite complicated in practice  models have usually several 

free parameters, so what precisely you want to compare to. 

– So, can publish exclusion of SM first, and follow up later what it 
means precisely  

• Exclusion (this scenario has been exercised much 
already!) 

– Canonically aim for 95%  p-value of (SM+NewPhysics) of 5% 

– Explicitly look at p-value of SM-only of the data also. Did you 
expect to be able to exclude this point? 
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Exclusion statements – in a bit more detail 

• Simple example again –  
counting experiment, no nuisance parameters 

– Nexp(SM+NewPhys) = 20 

– Nexp(SM only) = 10 

– Nobs = 10 

• p-value (SM+NewPhys) =  
 

• p-value (SM) = 
 

• New physics scenario predicting 10 additional events is 
clearly excluded at high C.L. (p=0.005). 
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Exclusion statements – in a bit more detail 

• Usually reframe this statement: rather than excluding a fixed 
Nsig at some C.L, fix C.L. at 95% and find Nsig that is just 
excluded at that C.L. 
 

 

 

 

 

 

 

 

 

• Plot p-value for Nobs=10 vs mu=s+b  

– Can do this analytically for a Poisson counting exp w/o nuisance params 

– In this example: can exclude N(NewPhys) of ~6 events at 95% C.L. 
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Exclusion statements – low fluctuations 

• What if we observe only 5 events (instead of 10?) 

– Nexp(SM+NewPhys) = 20,  Nexp(SM only) = 10 

– Nobs = 5 

• We can exclude Nsig=0 at >95% C.L! Hmm.... 

– But we don’t expect to have sensitivity to do that. 

– Also p(SM)≈6%  
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Exclusion statements – CLs 

• What should you do with such cases? 

– I.e. low stat fluctuation in observed data gives limit on signal that 
(far) exceeds expected sensitivity 

• HEP invented procedure do deal with such situations is a 
technique called ‘CLS’ 

– Instead of taking the p-value of S+B case  
p(S+B) = 7.2 · 10-5 (Nobs=5, Nexp=20) 

 

take the ratio of p-values of p(S+B)/p(B) 
 
 p(S+B) = 7.2 · 10-5 (Nobs=5, Nexp=20) 

 p(B)      = 6.7 · 10-2 (Nobs=5, Nexp=10) 
‘CLs’     = 1.1 · 10-3  (Nobs=5)   
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Exclusion statements – CLs 

• Effectively CLs prevents you from making exclusions in 
areas where you do not expect to have sensitivity 

– Example case with Nobs is 5, signal limit is now ~3.2 events at 
95% C.L. (from excluding Nsig=0 at >95%C.L.) 
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Exclusion statements – CLs 

• If you are in a region where there Nobs > Nexp(bkg) 
difference between CLs and ps+b is small 

 

 

 

 

 

 

 

 

 

 

 

 

• CLs tends to overcover a bit when Nobs ~<= Nexp(bkg) 
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Poisson case: Bayes with flat prior vs CLs 

• Note that for the case of the simple Poisson counting 
experiment, the CLS limit is identical the Bayesian limit 
assuming a flat prior for s>0 and zero prior for s<0 
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CLs on realistic analysis 

• On more complex analysis, distribution of p values for B 
and S+B cannot be calculated easily as was done here 
for Poisson number counting case 

• Solution: Obtain distributions from pseudo-experiments 
and then follow procedure as usual 

– But can take a lot of computing time... 
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Putting it all together – The Higgs search as example 

• The LHC search for the Higgs boson uses almost all of 
the techniques that we have discussed 

– The search for the Higgs is complicated: It’s mass is unknown, it 
can decay in many possible ways, and preferred decay modes 
depend on the mass 

• Strategy:  

– Search for Higgs boson in many decay channels. 

– Set exclusion limit as function of (unknown) Higgs mass, i.e. 
assume mH=X, determine Higgs production cross-section that can 
be excluded assuming that mass, and then reiterate procedure for 
mH=X+ΔX. 

– Goal for now: try to rule out range of Higgs mass. (If Higgs boson 
exist, exclusion will remain impossible in some region of Higgs 
mass.) Goal for later: switch from exclusion to discovery mode 

– Increase sensitivity by combining results from all channels in limit 
calculation 

– Increase sensitivity by combining results from ATLAS and CMS 
(should be public for the first time this week) Wouter Verkerke, NIKHEF 



Putting it all together – The Higgs search as example 

• Step 1 – Event selection 

– Defined separately for each Higgs decay channel (gg,WW,ZZ,ττ) 

– Quantify SM and Higgs expected distributions for each channel 
(the latter for a large range of mHiggs hypotheses) 

– NB: This is a substantial effort for each channel 

 



Putting it all together – The Higgs search as example 

• Step 2 – Statistical analysis of each channel 

• Use ‘profile likelihood ratio’ as test statistic, as input to 
CLs construction. For each channel and m(Higgs):  

– Generate distribution of expected values for test statistic in 
background only hypothesis and signal+background hypothesis  
 

 

 

 

 

 

 

– Calculated observed value of p(s+b), p(b)  observed 
CLs limit on HiggsXX at m(Higgs)=YY GeV 

– Calculate expected CLs limit for each point too (central value of 
expectation and 1-sigma and 2-sigma intervals) 
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Putting it all together – The Higgs search as example 

Exampe: this point means: 
Hgg analysis can exclude Higss production at 

~5x the SM predicted rate at mH=130 GeV 



Putting it all together – The Higgs search as example 

• Step 3 – Combination effort 

• Construct joint likelihood of all channels (and/or 
experiments) 

– Take Lcomb = Lgg(mH,....)·LWW(mH,...)·LZZ(mH,..) 

– Profile over all nuisance parameters (can be >100 parameters),  
( amounts to minimizing the likihood with >100 parameters!) 

– Perform CLs construction (generate pseudo-data, minimize 
likelihood, iterate a few 100K times) 

• Need to this carefully about correlations between 
nuisance parameters from various channels  

– i.e. Jet Energy Scale uncertainty will be common in all channels, 
backgrounds rates are usually not etc etc 

• Repeat exercise for many values of m(Higgs) 
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Putting it all together – The Higgs search as example 
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Coming (very) soon – LHC combination 
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Software for combinations and limit setting 

• A lot of software has been developed in the past years 
to simplify the technical implementation of likelihoods, 
combining of likelihoods and to perform limit 
calculations 

• Tools for modeling of pdfs already existed in some form 
(RooFit)  has been extended to make this models 
persistable  Can write actual likelihood to file 

• Combination effort consists then of picking up these 
files, constructing the joint likelihood and minimizing 
this 

– Technically easy (but still a lot of effort and thinking required) 

• Write a new series of ‘standard’ tools that perform 
Bayesian, Frequentist and Likelihood-based limit 
calculations on such models  

– Goal: each calculator can handle any model (very ambitious!) 
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ATLAS/CMS/ROOT Project: RooStats built on RooFit 

• Core developers: 

• K. Cranmer (ATLAS) 

• Gregory Schott (CMS) 

• Wouter Verkerke (RooFit) 

• Lorenzo Moneta (ROOT) 

• Open project, all welcome 
to contribute. 

• Included in ROOT 
production releases since 
v5.22, more soon to come 

• Example macros in 
$ROOTSYS/tutorials/roostats 

• RooFit extensively 
documented, RooStats 
manual catching up, code 
doc in ROOT. 
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B. Cousins: Goal for the LHC a Few Years Ago 

• Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate 
complexity: 

– Bayesian with analysis of sensitivity to prior 

– Frequentist construction with approximate treatment of nuisance 
parameters 

– Profile likelihood ratio (Minuit MINOS) 

– Other “favorites” such as LEP’s CLS(which is an HEP invention) 

• The community can then demand that a result shown with 
one’s preferred method also be shown with the other 
methods, and sampling properties studied. 

• When the methods all agree, we are in asymptotic regime. 

• When the methods disagree, we learn something!  

– The results are answers to different questions. 

– Bayesian methods can have poor frequentist properties 

– Frequentist methods can badly violate likelihood principle 

Wouter Verkerke, NIKHEF  



RooStats Project – Example  

• Create a model - Example 

Wouter Verkerke, NIKHEF  

RooWorkspace* w = new RooWorkspace(“w”);  

w->factory(“Poisson::P(obs[150,0,300],  

                      sum::n(s[50,0,120]*ratioSigEff[1.,0,2.], 

                             b[100,0,300]*ratioBkgEff[1.,0.,2.]))"); 

w->factory("PROD::PC(P, Gaussian::sigCon(ratioSigEff,1,0.05),  

                        Gaussian::bkgCon(ratioBkgEff,1,0.1))");  

)1.0,1,()05.0,1,()|( bsbs rGaussrGaussrbrsxPoisson 

RooWorkspace(w) w contents 

 

variables 

--------- 

(b,obs,ratioBkgEff,ratioSigEff,s) 

 

p.d.f.s 

------- 

RooProdPdf::PC[ P * sigCon * bkgCon ] = 0.0325554 

  RooPoisson::P[ x=obs mean=n ] = 0.0325554 

    RooAddition::n[ s * ratioSigEff + b * ratioBkgEff ] = 150 

  RooGaussian::sigCon[ x=ratioSigEff mean=1 sigma=0.05 ] = 1 

  RooGaussian::bkgCon[ x=ratioBkgEff mean=1 sigma=0.1 ] = 1 

Create workspace with above model (using factory) 

Contents of workspace from above operation 



RooStats Project – Example  

• Confidence intervals calculated with model 

– Profile  
likelihood  

 

 

– Feldman 
Cousins 
 
 
 

 

– Bayesian  
(MCMC) 

Wouter Verkerke, NIKHEF  

ProfileLikelihoodCalculator plc;  

plc.SetPdf(w::PC);  

plc.SetData(data); // contains [obs=160] 

plc.SetParameters(w::s);  

plc.SetTestSize(.1);  

ConfInterval* lrint = plc.GetInterval(); // that was easy.  

FeldmanCousins fc;  

fc.SetPdf(w::PC);  

fc.SetData(data); fc.SetParameters(w::s);  

fc.UseAdaptiveSampling(true);  

fc.FluctuateNumDataEntries(false);  

fc.SetNBins(100); // number of points to test per parameter  

fc.SetTestSize(.1);  

ConfInterval* fcint = fc.GetInterval(); // that was easy.  

UniformProposal up;  

MCMCCalculator mc;  

mc.SetPdf(w::PC);  

mc.SetData(data);  mc.SetParameters(s);  

mc.SetProposalFunction(up);  

mc.SetNumIters(100000); // steps in the chain  

mc.SetTestSize(.1); // 90% CL  

mc.SetNumBins(50); // used in posterior histogram  

mc.SetNumBurnInSteps(40);  

ConfInterval* mcmcint = mc.GetInterval(); 



RooStats Project – Example  

• Retrieving and visualizing output 
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‘Digital’ publishing of results 

• A likelihood may be considered the ultimate publication 
of a measurement 

• Interesting to be able to digitally publish actual 
likelihood rather than 

– Parabolic version (i.e. you publish your measurement and an 
error) 

– Some parameterized form. Cumbersome in >1 dimension. No 
standard protocol for exchanging this time of information 
 

• This is trivially possible 
with RooFit/RooStats  

– Many applications,  
e.g. now used in  
combining of Higgs channels,  
sharing of models between ATLAS 
and CMS for combination effort 
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• Using both model & p.d.f from file 
 

 

 

 

 

 

 

 

 

 

 

– Note that above code is independent of actual p.d.f in file  

e.g. full Higgs combination would work with identical code 

  TFile f(“myresults.root”) ; 

  RooWorkspace* w = f.Get(“w”) ; 

 

 

  RooPlot* xframe = w::x.frame() ; 

  w::d.plotOn(xframe) ; 

  w::g.plotOn(xframe) ; 

 

   

  RooAbsReal* nll = w::g.createNLL(w::d)  

  RooAbsReal* pll = nll->createProfile(w::mean) ; 

 

   

  RooPlot* mframe = w::m.frame(-1,1) ; 

  pll->plotOn(mframe) ; 

  mframe->Draw() 

Using persisted p.d.f.s. 

Make plot 
of data 

and p.d.f 

Construct 
likelihood 

& profile LH 

Draw 
profile LH 



The end – Recommended reading 

• Easy 

– R. Barlow, Statistics: A Guide to the Use of Statistical Methods 
in the Physical Sciences, Wiley, 1989 

– L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge 
University Press 

– Philip R. Bevington and D.Keith Robinson, Data Reduction and 
Error Analysis for the Physical Sciences  
 
 

• Intermediate 

– Glen Cowan, Statistical Data Analysis (Solid foundation for 
HEP) 

– Frederick James, Statistical Methods in Experimental Physics, 
World Scientific, 2006. (This is the second edition of the 
influential 1971 book by Eadie et al., has more advanced 
theory, many examples) 
 
 

• Advanced 

– A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of 
Statistics, Vol. 2A, 6th edition, 1999; and earlier editions of 
this “Kendall and Stuart” series. (Authoritative on classical 
frequentist statistics) 
 

• PhyStat conference series:  

– Beginning with Confidence Limits Workshops in 2000, links at 
http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/ 

Wouter Verkerke, NIKHEF  


