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Exercise 5 – Unbinned Maximum Likelihood fit  

• This a mostly a demonstration exercise only  that shows some of 
the functionality and the syntax of the RooFit toolkit for data 
modeling that we’ll be using in the next exercises 

• Copy file ex5.C, look at it and run it. This macro does the 
following 

– It creates a Gaussian probability density function 

– It generates an unbinned dataset with 10k events from that function 

– It performs and unbinned ML fit of the Gaussian model to the toy dataset 

– It makes a plot of the data and overlays it with the Gaussian model 

• Now comment out the part of the code labeled as ‘block 1’ and 
run the macro again 

– This code will print out the covariance matrix and correlation matrix of the 
fit parameters. Verify that cov(m,s)=corr(m,s)*σ(m)*σ(s) using the printed 
errors for mean. 

• Now comment out the code labeled ‘block 2’ and run again. 

– This code will visualize the uncertainty of the model on the canvas using the 
error propagation technique of Ex 2. At 10K the event the uncertainty is 
very small (you can see it if you zoom in on the peak region of the pdf) 
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Exercise 5 – Unbinned Maximum Likelihood fit  

– Change the number of generated events from 10K to 100 and 
change the binning of the data in the plot from 100 bins to 10 
bins (this is the argument in the w.var(“x”)->frame() call. Run 
again. 

– Lower the number of generated events from 100 to 10 and run 
again. The error on the shape will now be significant, but you see 
that an unbinned ML can reliably fit very small event samples  

• Now comment out code block 3 

– This will visualize the error on the pdf shape due to the 
uncertainty on the mean parameter only 
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Exercise 6 – Analytical vs numeric MLE 

• For certain simple cases it is possible to calculate the ML 
estimate of a parameter analytically rather than relying 
on a numeric estimate. A well known case is that of the 
fit of a lifetime of an exponential distribution 

• Copy ex6.C and run it. This example performs an 
unbinned MLE fit to an exponential distribution of 100 
events to estimate the lifetime. 

• Now we aim construct the analytical estimator of the 
lifetime (do this part on paper, not by computer) 

– Write down the probability density function for the lifetime 
distribution.  

– It is essential that you formulate a normalized expression, i.e. Int 
F(t) dt == 1 when integrated from 0 to ∞. The easiest way to 
accomplish that is to divide whatever you expression you have by 
the integral of that expression over dt and then calculate that 
integral by hand 
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Exercise 6 – Analytical vs numeric MLE 

– Next write down the analytical form of the negative log-likelihood 
–log(L) for that probability density function given a dataset with 
values of x (label these xi in your expression). Be sure to also 
include the pdf normalization term in the expression 

– The analytical ML estimate of tau then follows the requirement 
that  d(-logL)/dtau = 0. Calculate the derivative of the –log(L) 
w.r.t. tau and solve the equation for the value of tau with results 
in the condition d(-logL)/dtau = 0 

• Finally, implement the analytical calculation of MLE 
estimator for tau in the code of ex6. 

– Uncomment block one, which implements a look over the dataset, 
retrieving the values of the decay time one by one and build your 
calculation of the analytical estimate of tau with that of the 
numeric calculation from fitTo() 

– Explain why you might have minor discrepancies between the 
analytical and numeric calculations. 

– Increase the event count from 100 to 10000 and run again 
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Exercise 7 – Likelihood and correlations 

• In this exercise we examine a model that intentionally 
introduces strong correlations and observe its effects 

– Copy ex7.C look at it and run it. The model that is being fit is the 
sum of two Gaussians with different (but similar) widths, a 
common mean and floating fraction between them. 

– Does the fit look OK to you (think about how you judge that) 

– Now uncomment BLOCK 1 and run again. This will visualize the 
error from the covariance matrix of the fit on the total pdf. Do the 
magnitude and shape of the uncertainty band look OK to you? 

– Now uncomment BLOCK 2 and run again. Examine the correlation 
matrix that is printed and look at the uncertainty of the 
background component. Do you understand the magnitude of the 
uncertainty of the background component vs that of the total 
distributions? 

– Now uncomment BLOCK 3 and run again. The correlation matrix 
shown in the previous exercise suggests that the chosen model 
has one almost redundant floating parameter. To mitigate this 
parameter sigma2 is fixed, is fitted again to data and the errors of 
the pdf and its background component are visualized again.  
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Exercise 7 – Likelihood and correlations 

• Now we move to an examination of the –log(L) calculated 
from the model and the data 

– Uncomment BLOCK 4 and run again. You will now see a plot of –log(L) 
versus the fsig parameter. Does the –log(L) look parabolic to you? 

– Now zoom in on the area around the minimum (the range of fsig in 
which –logL rises by ~10 units w.r.t. 0. Does the likelihood look 
parabolic in this region. 

– Measure the interval of fsig in which –log(L) rises by 0.5 units. 
Compare this interval to the error reported on fsig by the fit and 
explain the difference. 

– Now uncomment BLOCK 5 and run again. The added code will draw 
contours in the likelihood function at –logL=+0.5 in (mean,fsig) and 
(sigma1,fsig). Do the shapes of the contours match your expectation 
from the correlation matrix obtained by the fit? 

– Now change the arguments “0.5,0,0” of both contour calls into 
“0.5,2,0” which will also draw the ‘2-sigma’ contours. How do you 
interpret the shape of these contours? 

– Finally change the arguments to “0.5,2,4.5” to also draw the ‘3-sigma 
contour and run again. 
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Exercise 8 – The effect of outliers on fits 

• Outliers in distributions that are strongly peaked can create 
serious converges problems in fits that model such peaked 
distributions and do not take outliers into account. 

– Copy ex8.C, look at it and run it. This example generates a Gaussian 
distribution with a width that is relatively narrow compared to the defined 
range on x, and fits it to a Gaussian model. 

– Now uncomment BLOCK1. The added code ‘manually’ adds an event at x=3 
and refits the distribution. Look at both fits carefully (just by eye, no need 
to make a chi2 check). Zoom in on the x axis if necessary. Does the outlier 
impact the result of the fit? (Also check the impact of the fitted value of 
mean,sigma) 

– Now move the position of the outlier event to x=4, run again and evaluate 
the situation again. Calculate what is the probability to obtain an event at 
x=4 or larger for this model? (You can use the ‘TMath::Erfc’ formula of Ex 1 
to calculate this, but keep in mind that that formula evaluate the probability 
for |x|>Z, rather than x>Z) 

– Repeat the above exercise (including evaluation) at x=9. 

– Now uncomment BLOCK2. This fits the data to an improved model that 
foresees in a (small) flat background component that absorbs the outlier 
events and make the fit of the Gaussian component of the model function 
well in the presence of outliers. What value of fsig do you expect a priori to 
get out from the fit? 

– Now change the code fragment ‘fsig[0,1]’ by fsig[0.999] modifies to model 
to have a one permille fixed background component instead of a floating 
component. Rerun the fit. Does it still work well? Explain why (not)? 
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Exercise 9 – An MLE fit for an efficiency function 

• This exercise demonstrates the procedure of an unbinned 
ML fit for an efficiency curve. 

– Copy ex9.C, look at it and run it. This macro create a data sample 
(x,c) in which c is a discrete observable that tells us if the event with 
value x has passed a selection (or not). The goal is to determine the 
efficiency eff(x) of the selection encoded in observable c. 

– The initial exercise creates an efficiency histogram from the dataset 
D(x,c) where each bin in x contains the fraction of events that have 
passed the cut. The efficiency histogram is constructed to have 
symmetric binomial errors on the data. Look at the slides of Module 1 
to remind yourself how symmetric binomial errors are defined. An 
efficiency function ‘fitfunc’ is then fit to the data using c2 fit. Explain 
what approximation we are making by doing this?  

– Now uncomment BLOCK 1 of the the exercise and run again. This will 
make a plot ‘all data’ and ‘accepted data’, as well as perform an 
unbinned ML fit to measure the efficiency function. This fit is done 
using a probability density function F(c|x) that returns ‘effFunc(x)’ if 
the event is accepted and ‘1-effFunc(x)’ if the event is rejected and is 
fit to the full dataset D(x,c) 

– Lower the number of events generated from 1000 to 200 (change 
variable N) and see what happens. Do the c2 and likelihood fits return 
correct results? Then lower N to 50 and run again.  
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Exercise 10 – Toy event generation 

• This exercise demonstrates the principle of toy event 
generation through sampling. 

– Copy input file ex4.C and look at it. The input file defines a nearly 
empty main function and a function ‘double func(double x)’ is 
defined to return a Gaussian distribution in x.  

– The first step of this exercise is to sample func() to make a toy 
dataset. To do toy MC sampling we first need to know the 
maximum of the function. For now, we assume that we know that 
func(x) is a Gaussian and can determine the maximum by 
evaluating the function at x=0. Store the function value at x=0 
into a double named fmax. 

– Now write a loop that runs 1000 times. In the loop, you generate 
two random numbers: a double x in the range [-10,10] and a 
double y in the range [0,fmax]. The value of x is a potential 
element of the toy dataset you are generating. If you accept it, 
depends on the value of y. Think about what the acceptance 
criterium should be (consult the slides of module 3 if necessary) 
and if it passes, store the value of x in the histogram. 
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Exercise 10 – Toy event generation 

– Allocate an integer counter to keep track of the number of 
accepted events. At the end of the macro draw the histogram and 
print the efficiency of the generation cycle, as calculated from the 
number of accepted events divided by the number of trial events  

– Now change the code such that instead of doing 10000 trials, the 
loop will only stop after 10000 accepted events. Modify the code 
such that you can still calculate the efficiency after this change. 

– Change the width of the Gaussian from 3.0 to 1.0. Run again and 
look at the generation efficiency. Now change it to 0.1 and 
observe the generation efficiency. 

• Now we modify the toy generation macro so that it is 
usable on any function. 

– This means we can no longer rely on the assumption that the 
maximum of the function is at x=0. 

– The most common way to estimate the maximum of an unknown 
function is through random sampling. To that effect, add some 
code before the generation loop that samples the function at 100 
random positions in x and saves the highest value found as fmax. 
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Exercise 10 – Toy event generation 

– Change the width of the Gaussian back to 3.0 and run modified macro. 
Compare the fmax that was found through random sampling with the 
fmax obtained using the knowledge that the function was Gaussian (i.e 
fmax=func(0)). 

– Now change the func(x) from the Gaussian function to the following 
expression: 
 
    (1+0.9*sin(sqrt(x*x)))/(fabs(x)+0.1) 

 and verify that it works fine. 

• Finally we explore the limitations of sampling algorithms. 

– One runs generally into trouble if the empirical maximum finding 
algorithm does not find the true maximum. This is most likely to 
happen if you don’t take enough samples or if the function is strongly 
peaked. 

– Choose the following func(x) 
 
  TMath::Gaus(x,0,0.1,kTRUE)+0.1 ; 
 
i.e. a narrow Gaussian plus a flat background and rerun the exercise 

– Now lower the number of trial samples for maximum finding to 10 and 
see what happens 
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Exercise 11 – Chi-square on low statistics data 

• This exercise explores the behavior of c2 on low 
statistics data 

– Copy ex5.C and look at it. This input file contains code that 
calculates the ingredients of a chi-squared (x,y,σy) given function 
func(x)  and a ROOT histogram with data 

– The goal of this exercise is to generate a toy event sample from 
func(x) and then calculate the c2 of that dataset w.r.t. func(x). 

– The first step in this exercise is to add the ‘toy’ event generation 
code of the previous exercise to ex5.C which fills the histogram ‘h’ 
at the indicated location 

– Once the histogram is filled, complete the code that calculates the 
c2 from (data_x, data_y and data_ey). The macro is setup in such 
a way that exercise of generating toy data and calculating the c2 
is repeated 1000 times and the resulting c2 values are stored in a 
histogram. 

– Examine the c2 distribution histogram. What is the number of 
degrees of freedom for this c2? Does it follow the expected c2 
distribution. 
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– At very high nDOF the distribution of the c2 is asymptotically 
Gaussian. To determine to what extent this is the case, create an 
additional histogram with range [0,4] that you fill with c2/nDOF. 
Does it look approximately Gaussian? 

– The issue is now that you do not know if the reduced c2 
distribution is not Gaussian because one is not yet in the 
asymptotic regime, or of the input distribution is simply not 
consistent with the expected distribution. To make a better 
attempt at the latter we make an overlay of the c2 distribution 
with the expected distribution for the c2 for the number of degrees 
of freedom that have for this problem: The analytical form of the 
expected distribution of c2 for a given nDOF is present (but 
commented out) in the input file on the last line (the TF1 object).  
 
Uncomment the line, replace the tokens NEVT and NBIN and 
BINW (the width of each bin in units of x) with the appropriate 
values and add the line ‘chi2f.DrawClone(“same”)  ;’ 
to overlay the expected distribution on the already drawn 
histogram. Is the data consistent with the expected distribution? 
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Exercise 11 – Chi-square on low statistics data 

– To answer the above question more easily, it is customary to look 
at the distribution of the probability integral transform of the c2, 
rather than at the c2 itself (i.e. look at ∫x

∞P(c2)dc2 instead of c2) 
The distribution if c2 value is consistent with the expected 
distribution, then the distribution of the probability integral 
transform values is expected to be flat. Create a histogram to hold 
the values of the probability integral transform and fill its value. 

Here you can use the function TMath::Prob(chi2,ndof) to calculate 
the probability integral transform value of chi2 for a given ndof. Is 
the distribution of Prob(chi2) approximately flat? 

– What you see is that the examination of the prob(c2) distribution 
is a very sensitive test to test if a given distribution of c2 values 
follows the expected distribution.  

– Increase the size of the sample from 200 to 1000 events and see 
if and how the behavior improves. 

– Now switch from the flat distribution to a Gaussian distribution 
with mean 0 and width 5. Explain why switching from a uniform to 
a Gaussian distribution make the distribution look less like the 
expected distribution. Now lower the width of the Gaussian 2. 
What is the effect on this distribution? 
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