

# 0vββ experiments and SNO+

Jeanne Wilson NExT meeting 4/5/11 Southampton

### Contents

- $0\nu\beta\beta$  and what it can tell us
- Uncertainties
- Experimental Approaches
- Current Experimental status
- SNO+  $0\nu\beta\beta$

### Neutrino-less Double Beta Decay

- Is the neutrino a Majorana particle?
- What is the absolute neutrino mass scale?
- Neutrino mass hierarchy

#### Key inputs to Grand Unified Theories



- Can only occur for 35 known isotopes
- ΔL = 2 units

#### **Uncertainties 1: Mechanism**





Light neutrino exchange

#### Schechter-Valle theorem:

Any mechanism inducing the 0vββ decay produces an effective Majorana mass for the neutrino, which must therefore contribute to this decay.



Faessler (2011) J. Phys: Conf Ser. 267 012059

#### Neutrino Mass

• Oscillations  $\Delta m_{23} \approx 2.32 \cdot 10^{-3} \text{ eV}^2 \rightarrow \approx 50 \text{ meV}$ 



Tritium decay m<sub>ve</sub> < 2.3eV</li>

$$m_{\nu_{\rm e}}^2 = \sum_{\rm i} |U_{\rm ei}|^2 \cdot m_{\nu_{\rm i}}^2$$

•  $0\nu\beta\beta$  evidence  $\langle m_{\nu} \rangle = 0.2-0.6 \text{ eV}$ 

H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B586 (2004) 198-212

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 \cdot m_{\nu_i} \right|$$

#### Neutrino Masses

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{bmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{bmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} \Rightarrow \frac{\mathbf{m}_{i}^{2}}{2\mathbf{E}_{v}} \Rightarrow \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix}$$

$$U = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\beta_{1}} & 0 \\ 0 & 0 & e^{i\beta_{2}} \end{pmatrix}$$

$$Solar \qquad \qquad Atmospheric$$

Majorana : U=  $U_{PMNS}$  diag(1, e<sup>i $\beta$ 1</sup>, e<sup>i $\beta$ 2</sup>)

$$\langle m \rangle \equiv m_{ee} = \left| \begin{array}{c} U_{ek}^2 m_k \\ k \end{array} \right| = \left| \begin{array}{c} U_{ek} \\ \end{bmatrix}^2 e^{i} e^{i} m_k$$

 $m_{ee} = U_{e1}^{2}m_{1} \pm U_{e2}^{2}m_{2} \pm U_{e3}^{2}m_{3}$ 

#### Neutrino Mass

1) Test KK claim and degenerate heirarchy

- $m_{\beta\beta}$  < 200meV, ~10s kg isotope
- 2) Test 50meV range and start probing inverted heirarchy
  - $m_{\beta\beta} < 50 \text{meV}$ , 100s kg isotope
- 3) To probe into normal heirarchy region need tonnes of isotope



### Current 0v<sub>β</sub>β Limits

| Isotope           | T <sub>1/2</sub> (years) | <m<sub>v&gt; eV</m<sub> | Experiment   |
|-------------------|--------------------------|-------------------------|--------------|
| <sup>76</sup> Ge  | > 1.9 . 10 <sup>25</sup> | < 0.22 - 0.41           | HM           |
|                   | = 1.2 . 10 <sup>25</sup> | = 0.28 - 0.52           | KK (part HM) |
|                   | = 2.2 . 10 <sup>25</sup> | = 0.21 - 0.38           | KK (part HM) |
|                   | > 1.6 . 10 <sup>25</sup> | < 0.24 - 0.44           | IGEX         |
| <sup>130</sup> Te | > 2.8 . 10 <sup>24</sup> | < 0.35 - 0.59           | CUORICINO    |
| <sup>100</sup> Mo | > 1.1 . 10 <sup>24</sup> | < 0.45 - 0.93           | NEMO-3       |
| <sup>82</sup> Se  | > 3.6 . 10 <sup>23</sup> | < 1.89 - 1.61           | NEMO-3       |
| <sup>116</sup> Cd | > 1.7 . 10 <sup>23</sup> | < 1.45 - 2.76           | SOLOTVINO    |

Refs in arXiv: 1101.4502

### **Experimental Approaches**



- Large Mass, high isotopic abundance
- High Q value
- Good energy resolution
- Background rejection/Signal identification techniques
- Source = Detector

#### Common backgrounds: $2\nu\beta\beta$ Decays

• The ultimate, irreducible background



S. Elliott, P. Vogel, Ann. Rev. Nucl. Part. Sci. 2002

<sup>76</sup>Ge (Diode) 0.2%
<sup>130</sup>Te (Bolometer) 0.4%
<sup>136</sup>Xe (gaseous TPC) 3.3%
CdZnTe (Semiconductor) 3-4%
Liquid scintillator ~5%
Plastic scintillator ~14%

# Common Backgrounds ++

- Solar neutrinos
- Natural decay chains <sup>238</sup>U, <sup>228</sup>Th
  - Gammas up to 2.6MeV
  - $\alpha s$  up to 8.9MeV
  - $-\beta$ s up to 3.3MeV
- Cosmic ray muons
- Cosmogenic activation
- <sup>235</sup>U, <sup>85</sup>Kr

### Natural Decay chains: U and Th





### How can you be sure a signal is $0\nu\beta\beta$ ?

- Two techniques:
  - 1. Redundancy
  - 2. Redundancy
- Different isotopes with signals predicted at different energies, with different backgrounds, and different signal rates that scale correctly with the corresponding matrix elements.

#### **Developing Experiments**



# <sup>76</sup>Ge semiconductors

- Old experiments: H-M, IGEX
- New: GERDA, Majorana
- Source = detector
- Q = 2.039MeV
- Cool to ~70K, ΔE≈0.2%





- Increased mass
- Liquid argon shielding
- Segmented detectors
- Improved production

# Cuoricino <sup>130</sup>Te Bolometers

- Sensitivity 0.1-0.5eV
- Tower of enriched TeO<sub>2</sub> bolometers
- Cool to 10mK
- 11kg <sup>130</sup>Te isotope
- 30% natural abundance
- Q = 2.528MeV ΔE = 8keV



• Pilot for large scale CUORE experiment

# EXO <sup>136</sup>Xe TPC

- Liquid Xe TPC in cryostat
  - Primary scintillation light
  - + Ionisation drift electrons in electric field
- Easily enriched to 80% (Russian Centrifuges)
- Q = 2.48MeV
- 200kg prototype
- Tagging through Ba daughter



# NEMO-3

- Thin films of candidate isotope in
- Wire tracking chamber
- Plastic scintillator calorimeters
- Event ID: 2 e<sup>-</sup> tracks
- Poor energy resolution ~14%
- Source ≠ Detector
  - Harder to scale up sensitivity
- Pilot for SuperNEMO experiment
- 100kg <sup>82</sup>Se (or <sup>150</sup>Nd)



# **SNO+** Double Beta Decay

- <sup>150</sup>Nd
  - -Q = 3.37 MeV



- -largest phase space, fast rate
- -5.6% natural abundance, enrichment possible
- Large, homogeneous liquid scintillator detector leads to well-defined background model
- Source in–source out capability
- ~5% energy resolution but high statistics

#### SNO+

2km underground, 6000 mwe Ultra-low CR μ background

780 tonnes linear alkyl benzene (LAB) liquid scintillator <10<sup>-17</sup> g/g U and Th

~50kg  $^{150}$ Nd loaded into the LAB 0vββ measurement



First solar pep flux measurement. Test of neutrino oscillation models and new physics

First solar CNO flux measurement. Understanding of solar models

Unique environment for other low energy physics: reactor neutrinos, geo-neutrinos, supernova detection

#### SNO+



Search for Neutrinoless double beta decay. Probe neutrino nature and mass.

Inputs to  $2\nu\beta\beta$  models and theory

Advancing detector technology: LAB scintillator Calibration techniques Purification methods

Not just a double beta experiment....



# Converting SNO to SNO+

- Hold-down ropes
- Wear and Tear repairs and surveys
- Upgraded electronics
- Upgraded calibration hardware
- New fluid processing systems









# SNO+ Liquid scintillator

- Cheap
- Safe: high flash point, low toxicity
- Compatible with SNO acrylic
- ~400 hits / MeV, ΔE ≈5%
- Nd-carboxylate solutions have been stable at 0.1% and 1% concentrations for over 3.5 years.



# **Purification Systems**

#### Several fluids to handle

- Light water
- Bulk scintillator
- Fluor (PPO) solution
- Neodymium-loaded compound

#### Scintillator plant

- Distillation
- Water extraction
- Gas removal
- Filtration and ultra-filtration
- R&d on metal scavenger columns

#### Goals

- Scintillator purity of  $1 \times 10^{-17}$  g/g U/Th
  - Reached by Borexino
  - C-14,Kr-85 not a problem because of low energy, C-11 not a problem because of depth
- Nd-compound purity of  $< 1x10^{-14}$  g/g U/Th
  - Need factor of 10<sup>6</sup> reduction



#### Status

- designed
- pit excavation underway



# Self Scavenging

- Lanthanide hydroxide 10 orders of magnitude more soluble in water than Th(OH)<sub>4</sub>
  - Nd salt dissolved in pure water, pH adjusted using ammonium hydroxide to 6.03 solution
  - stirred for 60 min, followed by gravitational filtration at 20-25 μm
  - Dry and count filtrate
- Th and Bi 100% removed and other lanthanide bgs (eg <sup>176</sup>Lu, <sup>138</sup>La, Gd, Sm) reduced
- Easily incorporate into Nd processing scheme
- Can buy cheap Nd and purify it ourselves





# SNO+ upgrade possibilities

- 1. Enriched isotope (not necessarily <sup>150</sup>Nd)
  - Atomic Vapour Laser Isotope Separation, AVLIS
  - Ion Cyclotron Resonance, ICR
  - Gaseous diffusion
  - Ultra-centrifugation
  - Distillation
  - Crown ethers
- 2. Nanoparticles
  - Significant less optical absorption while dissolving more isotope
  - Raleigh scattering negligible when particle size < 5 nm

LS technique itself can of course scaled up!

### Summary

- SNO+ should be able to test KK signal with ~1year natural <sup>150</sup>Nd data
- And sensitivity to ~100meV within 3-5years
- Upgrades possible
- Lots of experiments on the market but redundancy is necessary
- SNO+ is not just a ββ experiment



#### The Neutrino Mass

$$\left\langle m \right\rangle \equiv m_{ee} = \left| \begin{array}{c} U_{ek}^2 m_k \\ k \end{array} \right| = \left| \begin{array}{c} U_{ek} \\ u_{ek} \\ k \end{array} \right|^2 e^{i_{ek}} m_k \\ e^{i_{ek}} m_k \\ e^{i_{ek}} m_{i} \pm U_{e2}^2 m_2 \pm U_{e3}^2 m_3 \\ relative CP \text{ phases } = \pm 1 \end{array}$$

 $m_e = \Sigma |U_{ek}|^2 m_k$ 

m

#### Natural Nd in SNO+ - sensitivity

