Leptogenesis: the initial conditions problem

Based on: E. Bertuzzo, P. Di Bari, L. M. - arXiv: 1007.1641+ N.P.B

L. Marzola

NExT meeting, Southampton 04/05/2011

22

Two problems:

> CMBR: $\eta_0 := \frac{n_B - \bar{n}_B}{n_\gamma} \Big|_0 = (6.21 \pm 0.16) \ 10^{-10}$ > Neutrino oscillation: $m_{\text{atm}}, m_{\text{sol}} \neq 0$

Two problems: > CMBR: $\eta_0 := \frac{n_B - \bar{n}_B}{n_\gamma} \Big|_0 = (6.21 \pm 0.16) \ 10^{-10}$

> Neutrino oscillation: $m_{\text{atm}}, m_{\text{sol}} \neq 0$

One solution:

 $\mathscr{L} = \mathscr{L}_{SM} + i\overline{N_{Ri}}\gamma_{\mu}\partial^{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\phi} - \frac{1}{2}\overline{N_{Ri}^{c}}M_{ij}^{R}N_{Rj} + H.c$

 $(i, j = 1, 2, 3 \ \alpha = e, \mu, \tau)$

eptosenesis

Prosenesis

Two problems:> CMBR: $\eta_0 := \frac{n_B - \bar{n}_B}{n_\gamma} \Big|_0 = (6.21 \pm 0.16) \ 10^{-10}$ > Neutrino oscillation: $m_{\text{atm}}, m_{\text{sol}} \neq 0$

One solution:

 $M_{\rm heavy} \simeq M^R$

 $\mathscr{L} = \mathscr{L}_{SM} + i\overline{N_{Ri}}\gamma_{\mu}\partial^{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\phi} - \frac{1}{2}\overline{N_{Ri}^{c}}M_{ij}^{R}N_{Rj} + H.c$ $(i, j = 1, 2, 3 \ \alpha = e, \mu, \tau)$ S.B. + Heavy R.H.N. $-m_{\alpha i}^D \overline{\nu_{L\alpha}} N_{Ri} \qquad [M^R] \gg [m^D]$ Type I Seesaw: $M_{\text{light}} \simeq -m^D (M_R)^{-1} (m^D)^T$

Prosenesis

 $\neq 0 \rightarrow \Delta B \neq 0$

Two problems: > CMBR: $\eta_0 := \frac{n_B - \bar{n}_B}{n_\gamma} \Big|_0 = (6.21 \pm 0.16) \ 10^{-10}$ > Neutrino oscillation: $m_{\text{atm}}, m_{\text{sol}} \neq 0$ One solution:

 $\mathscr{L} = \mathscr{L}_{SM} + i\overline{N_{Ri}}\gamma_{\mu}\partial^{\mu}N_{Ri} - h_{\alpha i}\overline{\ell_{L\alpha}}N_{Ri}\tilde{\phi} - \frac{1}{2}\overline{N_{Ri}^{c}}M_{ij}^{R}N_{Rj} + H.c$ $(i, j = 1, 2, 3 \ \alpha = e, \mu, \tau)$

CP decays

Type I Seesaw: $M_{\text{light}} \simeq -m^D (M_R)^{-1} (m^D)^T$ $M_{\text{heavy}} \simeq M^R$

No flavour effects, strong washout regime: N1 dominates

> ℓ decays: $\#\ell \neq \#\ell$

> Inverse decays: $\#\ell \rightarrow \#\ell$

No flavour effects, strong washout regime: N1 dominates

> CP decays: $\#\ell \neq \#\bar{\ell}$ > asymmetry produced > Inverse decays: $\#\ell \rightarrow \#\bar{\ell}$ > asymmetry washed out

No flavour effects, strong washout regime: N1 dominates

> CP decays: $\#\ell \neq \#\bar{\ell}$ > asymmetry produced > Inverse decays: $\#\ell \rightarrow \#\bar{\ell}$ > asymmetry washed out

 $\frac{dN_{\rm B-L}}{dz} = \epsilon D_1 \left(N_{N_{\rm R1}} - N_{N_{\rm R1}}^{\rm eq} \right) - N_{\rm B-L} W_1(z)$ Competition in the Boltzmann's equation regulated by one parameter: K₁

No flavour effects, strong washout regime: N1 dominates

 $K_j = \frac{\Gamma_{D_j}}{H(z_j = 1)} \equiv \frac{\tilde{m}_j}{m_*} \qquad \tilde{m}_j := \frac{\left((m^D)^{\dagger} m^D\right)_{jj}}{M_j}$

> CP decays: $\#\ell \neq \#\bar{\ell}$ > asymmetry produced > Inverse decays: $\#\ell \rightarrow \#\bar{\ell}$ > asymmetry washed out

$$\frac{dN_{\rm B-L}}{dz} = \epsilon D_1 \left(N_{N_{\rm R1}} - N_{N_{\rm R1}}^{\rm eq} \right) - N_{\rm B-L} W_1(z)$$

 $L_{m_*} := \frac{16\pi^{5/2}\sqrt{g^*}}{3\sqrt{5}} \frac{v^2}{M_{Pl}} \simeq 1.08 \times 10^{-3}$

Test Seesaw

mechanism through

Leptogenesis!

dependence on light neutrinos parameters

j=1,2,3

Testing the seesaw mechanism:

 $\eta_0 \propto N_{\rm B-L}^{\rm f} = \eta_{\rm lept} + \nu$ oscillation data

predictions on the seesaw mechanism!

Testing the seesaw mechanism: $\eta_0 \propto N_{B-L}^f = \eta_{lept} + v$ oscillation data \checkmark But: what if $N_{B-L}^f = N_{B-L}^{p,f} + N_{B-L}^{lept,f}$?? preexistent leptogenesis Need strong thermal Leptogenesis:

$$N_{\rm B-L}^{\rm p,f} \ll N_{\rm B-L}^{\rm lept,f}$$

Independence of the initial conditions!

predictions on the

seesaw mechanism!

Testing the seesaw mechanism: predictions on the $\eta_0 \propto N_{\rm B-L}^{\rm f} = \eta_{\rm lept} - v$ oscillation data seesaw mechanism! But: what if $N_{B-L}^{f} = N_{B-L}^{p,f} + N_{B-L}^{lept,f}$?? leptogenesis preexistent Need strong thermal Leptogenesis: $N_{\rm B-L}^{\rm p,f} \ll N_{\rm B-L}^{\rm lept,f}$ $\langle \cdots \rangle$ Independence of the initial conditions! Easy achievement in unflavoured models: $\frac{dN_{B-L}^p}{dz_j} = -N_{B-L}^p W_j(z_j) \longrightarrow N_{B-L}^{p,f} = N_{B-L}^{p,i} e^{-\frac{3\pi}{8}(K_1 + K_2 + K_3)}$ strong washout regime - $K_j >> 1$ - guarantees strong thermal Leptogenesis. Not so easy considering flavour effects!

Heavy flavour states: $N_{\text{Ri}} \rightarrow |\ell_i\rangle + \phi$ $|\ell_i\rangle = \sum_{\alpha} C_{i\alpha} |\ell_{\alpha}\rangle \quad C_{i\alpha} = \langle \ell_{\alpha} |\ell_i\rangle$ $\alpha = e, \mu, \tau$ i = 1, 2, 3 each $|\ell_i\rangle$ is a specific coherent superpositions of light (e,µ,T) flavour states: heavy flavour (leptonic) state

Heavy flavour states: $N_{\text{Ri}} \rightarrow |\ell_i\rangle + \phi$ $|\ell_i\rangle = \sum_{\alpha} C_{i\alpha} |\ell_{\alpha}\rangle \quad C_{i\alpha} = \langle \ell_{\alpha} |\ell_i\rangle$ $\alpha = e, \mu, \tau$ i = 1, 2, 3 each $|\ell_i\rangle$ is a specific coherent superpositions of light (e,µ,T) flavour states: heavy flavour (leptonic) state

> associated to a direction in the ordinary flavour space

Heavy flavour states: $N_{\text{Ri}} \rightarrow |\ell_i\rangle + \phi$ $|\ell_i\rangle = \sum_{\alpha} C_{i\alpha} |\ell_{\alpha}\rangle \quad C_{i\alpha} = \langle \ell_{\alpha} |\ell_i\rangle$ $\alpha = e, \mu, \tau$ i = 1, 2, 3 each $|\ell_i\rangle$ is a specific coherent superpositions of light (e,µ,T) flavour states: heavy flavour (leptonic) state

Associated to a direction in the ordinary flavour space
 Washout processes from RH neutrinos' inverse decay involve
 Ieptons lying on these specific directions, breaking down the heavy flavour coherence!

Heavy flavour states: $N_{\text{Ri}} \rightarrow |\ell_i\rangle + \phi$ $|\ell_i\rangle = \sum_{\alpha} C_{i\alpha} |\ell_{\alpha}\rangle \quad C_{i\alpha} = \langle \ell_{\alpha} |\ell_i\rangle$ $\alpha = e, \mu, \tau$ i = 1, 2, 3 each $|\ell_i\rangle$ is a specific coherent superpositions of light (e,µ,T) flavour states: heavy flavour (leptonic) state

-> associated to a direction in the ordinary flavour space

Washout processes from RH neutrinos' inverse decay involve leptons lying on these specific directions, breaking down the heavy flavour coherence!

Charged leptons' Yukawa interaction: depending on the temperature regime can be fast enough to break $|\ell_i\rangle$'s coherence

If so, a washout process involves all components in the incoherent mixture obtained!

Strong thermal Leptogenesis??

> Hierarchic N_{Ri} s' mass spectrum

> Hierarchic N_{Ri} s' mass spectrum \longrightarrow decoupled N_{Ri} dynamics

> Hierarchic N_{Ri} s' mass spectrum \longrightarrow decoupled N_{Ri} dynamics

> Consider three decoherence regimes:

- $T \approx 10^{12}$ GeV: Heavy flavour regime $|\ell_i\rangle_{i=1,2,3}$
- $10^{12} \approx T \approx 10^9 \text{ GeV}$: Two-flavours regime $|\ell_i\rangle \rightarrow |\ell_\tau\rangle, |\ell_{\tilde{\tau}_i}\rangle \perp$

L

• 10° GeV \approx T: Light flavours regime $|\ell_i\rangle \rightarrow |\ell_\tau\rangle, |\ell_\mu\rangle, |\ell_e\rangle \perp$

> Hierarchic N_{Ri} s' mass spectrum \longrightarrow decoupled N_{Ri} dynamics > Consider three decoherence regimes: • T\$\$10^{12} GeV: Heavy flavour regime $|\ell_i\rangle$ i=1,2,3 \measuredangle • 10^{12} \$T\$10⁹ GeV: Two-flavours regime $|\ell_i\rangle \rightarrow |\ell_{\tau}\rangle, |\ell_{\tilde{\tau}_i}\rangle \perp$ • 10^9 GeV \$\$T: Light flavours regime $|\ell_i\rangle \rightarrow |\ell_{\tau}\rangle, |\ell_{\mu}\rangle, |\ell_e\rangle \perp$ > Initial condition is specified by:

$$N_{B-L}^{p} \longleftrightarrow |\ell_{p}\rangle = \sum_{\alpha} \mathcal{C}_{p\alpha} |\ell_{\alpha}\rangle \qquad \mathcal{C}_{p\alpha} = \langle \ell_{\alpha} |\ell_{p}\rangle$$

> Hierarchic N_{Ri} s' mass spectrum \longrightarrow decoupled N_{Ri} dynamics > Consider three decoherence regimes: • $T \approx 10^{12}$ GeV: Heavy flavour regime $|\ell_i\rangle_{i=1,2,3}$ L • $10^{12} \approx T \approx 10^9 \text{ GeV}$: Two-flavours regime $|\ell_i\rangle \rightarrow |\ell_\tau\rangle |\ell_{\tilde{\tau}_i}\rangle$ • $10^9 \text{ GeV} \approx \text{T: Light flavours regime } |\ell_i\rangle \rightarrow |\ell_\tau\rangle, |\ell_\mu\rangle, |\ell_e\rangle \perp$ > Initial condition is specified by: $N_{B-L}^{p} \longleftrightarrow |\ell_{p}\rangle = \sum \mathcal{C}_{p\alpha} |\ell_{\alpha}\rangle \qquad \mathcal{C}_{p\alpha} = \langle \ell_{\alpha} |\ell_{p}\rangle$ > Washout: flavoured Boltzmann equations $N_{\Delta x}^p := p_{px} N_{B-L}^p \quad \frac{dN_{\Delta x}^p}{dz} = -N_{\Delta x}^p \sum_i p_{ix} W_i(z) \quad p_{xy} := |\mathcal{C}_{xy}|^2$

> Hierarchic N_{Ri} s' mass spectrum \longrightarrow decoupled N_{Ri} dynamics > Consider three decoherence regimes: • $T \approx 10^{12}$ GeV: Heavy flavour regime $|\ell_i\rangle_{i=1,2,3}$ L • $|0|^2 \approx T \approx |0^9$ GeV: Two-flavours regime $|\ell_i\rangle \rightarrow |\ell_\tau\rangle |\ell_{\tilde{\tau}_i}\rangle$ • $10^9 \text{ GeV} \approx \text{T: Light flavours regime } |\ell_i\rangle \rightarrow |\ell_\tau\rangle, |\ell_\mu\rangle, |\ell_e\rangle$ > Initial condition is specified by: $N_{B-L}^{p} \longleftrightarrow |\ell_{p}\rangle = \sum \mathcal{C}_{p\alpha} |\ell_{\alpha}\rangle \qquad \mathcal{C}_{p\alpha} = \langle \ell_{\alpha} |\ell_{p}\rangle$ > Washout: flavoured Boltzmann equations $N_{\Delta x}^{p} := p_{px} N_{B-L}^{p} \quad \frac{dN_{\Delta x}^{p}}{dz} = -N_{\Delta x}^{p} \sum p_{ix} W_{i}(z) \quad p_{xy} := |\mathcal{C}_{xy}|^{2}$ > For every mass pattern check successful strong thermal leptogenesis: • $w(T < T_{lept}) \ll 10^{-8} \leftarrow N_{B-L}^{p,i} \sim \mathcal{O}(1)$ $w(T) := N_{B-L}^{p,f}(T) / N_{B-L}^{p,i}$ • $\eta_{\text{lept}} = \eta_0$

Tauon N₂-dominated scenario

Strong thermal Leptogenesis is achieved only with one mass pattern!

Tauon N₂-dominated scenario

Strong thermal Leptogenesis is achieved only with one mass pattern!

Tauon N₂-dominated scenario: M₃>10¹² GeV>M₂>10⁹ GeV>M₁

Before Leptogenesis' onset. Preexistent leptons in yellow

N_{R3}'s processes are active. Components in red are washed out

0)T>M3

T-Yukawa interactions break the heavy flavour state's coherence. The asymmetry along τ is now a pure Leptogenesis product

Washout by the other component. Residual preexistent leptons are confined on the e- μ plane

 N_{RI} processes: strong washout on the e- μ plane only. The remaining preexistent asymmetry is erased maintaining the produced one

Epilogue

Epilogue

- > Leptogenesis explains the observed BAU and, via the seesaw mechanism, the neutrino mass scale in a natural way
- > Considering flavour effects the problem of initial conditions in Leptogenesis has no trivial solution anymore
- > Heavy neutrinos' mass pattern plays a key role in the analyses, defining different scenarios
- Successful strong Leptogenesis is realised only via the tauon N₂dominated setup - natural within SO(10) GUTs
- Working hypotheses:

 three RH neutrinos
 hierarchical RH neutrino spectrum
 minimal type I seesaw, no SuSy