Reactor Neutrinos

Simon JM Peeters

NExT meeting, University of Southampton, 4th May 2011

Contents

- Introduction
- Current status of upcoming detectors
- Reactor anomaly

Part I/III

INTRODUCTION

Two approaches

LBL accelerator experiments:

- Look for appearance $(v_{\mu} \rightarrow v_{e})$ in pure v_{μ} beam vs. *L* and *E*
- Near detector to measure background $v_{p}s$ (beam + mis-id)
- $P(v_{\mu} \rightarrow v_{e}) = f(\delta, \operatorname{sign}(\Delta m_{31}^{2}))$

Reactor experiments:

- Look for disappearance $(\overline{v}_e \rightarrow \overline{v}_e)$ as a fnc of *L* and *E*
- Near detector to measure unoscillated flux
- $P(\overline{v}_e \rightarrow \overline{v}_e)$ independent of δ ; matter effects small

Combination of appearance and disappearance very powerful if comparable sensitivity

Double Chooz, Daya Bay, RENO

Reactor experiments

Reactor Neutrino Oscillation

Reactor experiments

Detector design

- Keep geometry simple (as simple as possible)
- Light collection (energy resolution)
- Size matters: counting vs shape measurement
- Active muon shielding
- Depth: reduce muon rate
- Detect passing muons
- Gamma catcher
 - Catch escaping gammas from neutron captures on Gd: reduce tail
- Backgrounds
 - materials (Gd complex)
 - (PMT, rock) shielding

braidwood.uchicago.edu

-

Part II/III **STATUS**

Existing (Chooz) pit at far detector

Detector design: Double Chooz

University of Sussex Mathematical & Physical Sciences

Double Chooz: status

Daya Bay

This year: 6 reactors/17.4 GW

Far site

L = 1615 m/1985 m 350 m overburden ~90 events/day/detector

DB near site

L = 363 m/1145 m 98 m overburden ~930 events/day/detector

LA near site

L = 481 m/526 m 112 m overburden ~760 events/day/detector

Target mass 8 × 20 ton

Daya Bay

- Tunnels completed
- All halls except no. 3 completed
- Hall 3 to be completed this summer (2011)

University of Sussex Mathematical & Physical Sciences

Daya Bay

- Two detectors completed and dry-run tested
- Remaining to be completed by next spring
- Electronics, trigger, DAQ ready for Hall 1; RPC and water vetos nearly ready
- Liquid scintillator filling of Hall 1 detectors to start this month

University of Sussex Mathematical & Physical Sciences

Reno

University of Sussex Mathematical & Physical Sciences

Reno

- Tunnels, detector halls completed
- Infrastructure in place: control room, liquid production system, offices

RENO

- Both detectors completed
- DAQ installed; dry runs under way
- LS production + filling: May – June 2011
- Data-taking: July 2011

University of Sussex Mathematical & Physical Sciences

A comparison

Part III/III

REACTOR ANOMALY

Flux calculation 101

Recalculation of reactor fluxes

arXiv:1101.2663

- Beta spectra measured @ ILL 1980s (²³⁵U)
- Included more decays in ab initio calculations
- •••
- Updated neutron lifetime (see next slide)
- Long lived betas taken better into account
- Improved error/correlation propagation

same for other isotopes (238U, 239/241Pu)

University of Sussex Mathematical & Physical Sciences

Neutron lifetime

Consequences for short baseline experiments

University of Sussex Mathematical & Physical Sciences

Consistent with Ga anamoly

Radiochemical neutrino experiments using Ga (SAGE/ GALLEX) used MCi radioactive sources (⁵¹Cr and ³⁷Ar) for calibration purposes: observed lower rate than expected!!

Guinti, Lavender PRD82 053005 (2010)

Our interpretation (different from Arxiv:1103:0734 for KamLAND-σ_f^{pred,new}, T. Schewtz's talk)

- No hint on θ_{13} >0 from reactor experiments : sin²(2 θ_{13})<0.11 (90%C.L., 1dof)
- CHOOZ 90 % CL limit stays identical to Eur. Phys. J. C27, 331-374 (2003)
- Multi-detector experiments are not affected

Possible checks

- NUCIFER
 - Non-proliferation experiment at Saclay
 - Compact core 57 x 57 x 60 cm
 - <L> = 7.0 m

• ICARUS @ CERN PS v beam...?

ing @ University of Southampton, 4th May 2011

Conclusion

Exiting times ahead!

DOCTOR FUN

8 Nov 2002

The discovery of the "biggie" neutrino

