T2K Status

Francesca Di Lodovico

4th May 2011 NExT Meeting, Southampton

erc

Neutrino Oscillations

Evidence of solar and atmospheric neutrino oscillations in the 1960-'90.
 Similar mechanism as in the quark oscillation (CKM matrix) postulated.
 Free parameters: 3 angles, 1 phase
 CKM matrix

$$\begin{bmatrix} q_i & V_{us} & V_{ub} \\ gV_{ij} & q_j \end{bmatrix} \rightarrow \begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

PMNS (Pontecorvo, Maki, Nagakawa, Sakata) matrix for neutrinos is:

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

Fields that interact via the weak interaction

Fields which propagate with definitive mass

2

Neutrino Oscillations

Evidence of solar and atmosperic neutrino oscillations in the 1960-'90.
 Similar mechanism as in the quark oscillation (CKM matrix) postulated.
 Free parameters: 3 angles, 1 phase

$$\begin{array}{c|c} & & & & \\ q_i & & & \\ \hline & & & \\ gV_{ij} & & q_j \end{array} \end{array} \longrightarrow \begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

 \Rightarrow PMNS with "standard" parametrization (with $c_{i,j} = \cos\theta_{i,j}$, $s_{i,j} = \sin\theta_{i,j}$):

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \overset{\text{suppressed because}}{\Delta m_{ij}^2 = m_j^2 - m_{ij}^2}$$

Dominant oscillations are well described by effective two flavour oscillations

Three flavour effects are

Neutrino Oscillations

Evidence of solar and atmosperic neutrino oscillations in the 1960-1990.
 Similar mechanism as in the quark oscillation (CKM matrix) postulated.
 Free parameters: 3 angles, 1 phase

 \Rightarrow PMNS with "standard" parametrization (with $c_{ij} = \cos\theta_{ij}$, $s_{ij} = \sin\theta_{ij}$):

 $U = \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 0 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{13} & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \end{pmatrix} \begin{pmatrix} c_{13} & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \end{pmatrix} \begin{pmatrix} c_{13} & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta} \end{pmatrix} \begin{pmatrix} c_{13} & c_{13}e^{-i\delta} \\ 0 & c_{13}e^{-i\delta$

Dominant oscillations are well described by effective two flavour oscillations

v_{μ} disappearance:

T2K Goals

v_{a} appearance:

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2(2\theta_{_{23}}) \sin^2(1.27\Delta m_{_{32}}^2 L/E)$

 $P (\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \sin^{2}(1.27\Delta m_{33}^{2}L/E)$

oscillation ch

How close to 45° is θ_{23} ? (measure to ~1%) Measure Δm_{32}^2 to higher precision (< 1×10-4)

Improve upper limit on θ_{13} by > order of magnitude Determine if θ_{13} is large enough to measure δ_{CP}

v_{μ} disappearance:

T2K Goals

ν_{a} appearance:

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^{2}(2\theta_{23}) \sin^{2}(1.27\Delta m_{32}^{2}L/E)$

P (ν_{μ} → ν_{e}) ≈ sin²(θ_{23}) sin²($2\theta_{13}$)sin²($1.27\Delta m_{23}^{2}$ (L/E)

oscillation phy

How close to 45° is θ_{23} ? (measure to ~1%) Measure Δm_{32}^2 to higher precision (< 1×10-4)

Improve upper limit on θ_{13} by > order of magnitude Determine if θ_{13} is large enough to measure δ_{CP}

T2K Goals – Neutrino interactions

T2K is a multi purpose experiment.

around T2K beam peak energy

Many measurements can be made with the near detector Region around T2K beam energy not well measured

CCQE Charge Current Quasi-Elastic •Dominates T2K energy region •Well understood - characterize Ebeam

NC $\pi \pm$ and CC $\pi \pm$ (NC=Neutral Current, CC = Charged Current •Background for disappearance measurement

NC π₀

•Largest physics background to appearance measurement at SuperK

Interesting results elsewhere, for instance possible discrepancy between MiniBoone and Nomad.

T2K Beamline

Goal: Characterize the ν_{μ} beam before propagation to far detector

Near detectors

Goal: Characterize the ν_{μ} beam before propagation to far detector

Near detectors

Side Muon Range Detector Scintillator interleaved into magnet yoke 192 hor. and 248 vert. modules

PiZero Detector Optimized for π0 rate measurement Measure beam ve 40 layers of x-y scint. Bars w/ WS fibers Water target + US/DS ECALs

<u>TPCs</u>

FDetection of charged particles Excellent PID (dE/dx) Readout: MicroMegas (7mm x 10mm pads)

<u>Fine Grained Detectors</u> Target mass for tracker Fine grain scintillator bars (1cm x 1cm) Capable of detecting recoil protons

A. Rubbia

XIV International Workshop on Neutrino Telescopes (2011)

Wednesday, March 16, 2011

Super-Kamiokande

50 kton water Cherenkov detector

Located in a drive-in Zinc mine near Kamioka 1000 m rock overburden.

Water filled cavern divided into a cylindrical inner detector (ID) and outer detector (OD)

ID & OD optically separated

Electronics updated in 2006 (SK-IV). Continuous data taking now possible.

Super-Kamiokande

50 kton water Cherenkov detector

Located in a drive-in Zinc mine near Kamioka 1000 m rock overburden

Good e-like(shower ring)/u-like separation: mis-PID probability ~ 1%

Delivered Protons on Target

T2K run 1 (Jan. to Jun. 2010)

- 6 bunches/spill, 3.5 s spill period
- 3.23 x 10¹⁹ POT for T2K analysis
- ~50 kW operation

T2K run 2 (Nov. 2010 March)

- 8 bunches (new extraction kicker)
- 3.2 s spill period
- ~135 kW operation

Protons on Target for run1

•3.23 x 10¹⁹ POT for T2K analysis.

•The efficiency of all the detectors was close to 100%.

Observed T2K beam-induced events at Sk

Identify beam-induced events at SK with GPS

- Transfer beam spill information in real time
- Compare GPS time stamps of beam/SK trigger

SK event reduction (run1)

From ±500µs around beam spills					BG	
			Data	No oscillation	Oscillation $\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$ $\sin^2 2\theta_{23} = 1.0$	(12µs window)
Fully-Contained			33	54.5	24.6	0.0094
Fi		ducial Volume, Evis > 30MeV	23	36.8	16.7	0.0011
		$\begin{tabular}{ c c c c } Single-ring μ-like & 8 \\ (Pμ>200MeV/c) & (8) \end{tabular} \\ \hline Single-ring e-like & 2 \\ (Pe>100MeV/c) & (2) \end{tabular} \end{tabular}$		24.6 (24.5 ±3.9)	7.2 (7.1 ±1.3)	-
				1.9 (1.5 ±0.7)	1.5 (1.3 ±0.6)	-
		Multi-ring	13	10.2	8.0	-

Single Ring Samples (similar to samples used in the analyses):

- Event is fully contained inner detector
- In fiducial volume and visible energy is >30 MeV
- Event contains only 1 ring
- PID identifies ring as muon or electron

SK event reduction (run1)

From ±500µs around beam spills				MC	BG	
		Data	No oscillation	Oscillation $\Delta m^2 = 2.4 \times 10^{-3} (eV^2)$ $\sin^2 2\theta_{23} = 1.0$	(12µs window)	
Fully-Contained		33	54.5	24.6	0.0094	
	Fiducial Volume, Evis > 30MeV		23	36.8	16.7	0.0011
	Single-ring μ-like (Pμ>200MeV/c)		8 (8)	24.6 7.2 (24.5 ±3.9) (7.1 ±1.3)		-
	Single-ring e-like (Pe>100MeV/c)		2 (2)	1.9 (1.5 ±0.7)	1.5 (1.3 ±0.6)	-
		Multi-ring	13	10.2	8.0	-

Single Ring Samples (similar to samples used in the analyses):

- Event is fully contained inner detector
- In fiducial volume and visible energy is >30 MeV
- Event contains only 1 ring
- PID identifies ring as muon or electron

Clear indication of oscillation in 1-ring μ sample

Analysis Flow for run1-Data

Neutrino flux prediction

- Proton beam data
- Hadron production data

ND280 (near) Detector Measurements

 $\bullet \nu_{\mu} \ \text{CC} \ \text{inclusive selection}$

•Measure: $R_{Data/MC} = \frac{N_{\mu CC,ND280}^{Data}}{N_{\mu CC,ND280}^{MC}}$

Neutrino cross-sections

Tuning to external data
Interaction models and parameters variation

<u>SK (far) Detector</u> <u>Measurements</u>

Data reduction and classification
Compute signal and background expectations (counting)

$$N_{signal}^{MC} = \int dE_{\nu} \underbrace{\Phi_{\mu}(E_{\nu})}_{\text{flux}} \times \sigma(E_{\nu}) \times \underbrace{\varepsilon(E_{\nu}) \times P(\nu_{\mu} \rightarrow \nu_{e}; E_{\nu}; \theta_{13}, \Delta m_{13}^{2})}_{\text{oscillation}}$$
•Correct normalization using ND280 measurement

$$N_{SK}^{\exp} = R_{Data/MC} \times \left(N_{signal}^{MC} + N_{bkg}^{MC} \right)$$

Evaluate systematic errorsExtract oscillation parameters

Analysis Flow for run1-Data

Neutrino flux prediction

- Proton beam data
- Hadron production data

ND280 (near) Detector Measurements

• v_{μ} CC inclusive selection

•Measure: $R_{Data/MC} = \frac{N_{\mu CC,ND280}^{Data}}{N_{\mu CC,ND280}^{MC}}$

Neutrino cross-sections

Tuning to external data
Interaction models and parameters variation

<u>SK (far) Detector</u> <u>Measurements</u>

Data reduction and classification
Compute signal and background expectations (counting)

$$\begin{split} N^{MC}_{signal} = \int dE_{\nu} \; \underbrace{\Phi_{\mu}(E_{\nu})}_{\text{flux}} \times \sigma(E_{\nu}) \times \\ \underset{efficiency}{\varepsilon(E_{\nu})} \times \underbrace{P(\nu_{\mu} \rightarrow \nu_{e}; E_{\nu}; \theta_{13}, \Delta m_{13}^{2})}_{\text{oscillation}} \end{split}$$

$$\bullet \text{Correct normalization using} \\ \text{ND280 measurement} \end{split}$$

$$N_{SK}^{\mathrm{exp}} = R_{Data/MC} \times \left(N_{signal}^{MC} + N_{bkg}^{MC} \right)$$

Evaluate systematic errorsExtract oscillation parameters

I will concentrate only on the measurements at the near and far detectors. Spare slides contain the other information. 26

ND280 off-axis CC measurement w/ FGD and TPC

TPC1

TPC2

FGD2

FGD1

TPC3

CC event selection

(1) TPC1 has no track

- (2) TPC2 (or 3) has \geq 1 track with negative charge (to select μ)
- (3) Track in TPC2 (or 3) starts from FV of FGD1 (or 2)

Disappearance Analysis

Aimed at precise measurement of the 23 sector.

Disappearance Analysis

Event selection for muon disappearance measurement after SK reduction.

MC T2K-SK Acc.BG Data W/ No (12µs events window) oscillation oscillation POT Events/50MeV/3.23E19 **Fully-Contained** 33 54.5 24.6 0.0094 Fiducial Volume, 23 36.8 16.7 0.0011 $E_{vic} > 30 MeV$ Single-ring µ-like 8 24.5 ± 3.9 7.1±1.3 P_u>200MeV/c + number decay-e 8 22.8±3.2 6.3 ± 1.0 <=1 & Erec<10 GeV

 Δm^2 =2.4×10-3 eV² Sin²2 θ_{23} = 1.0

Reconstructed energy assuming QE systematics

Disappearance Results

8 candidate events observed at SK. Expectations:

Osc. Hypothesis	Expected Events	Syst. Error
No oscillation	22.81	3.19
$\Delta m_{23}^{2} = 2.4 \times 10^{-3} \text{ eV}^{2}$	6.34	1.04
sin²(20 ₂₃)=1.0		

Parameter fitting underway – T2K plans to release the results in the near future.

Event selection for electron appearance measurement.

E						
/	T2K-SK events	Data	No oscil	lation	With oscillation and $\theta_{13}=0$	Acc. BG (12µs window)
1	Fully-Contained	33	54.	5	24.6	0.0094
	Fiducial Volume, E _{vis} > 30MeV	23	36.	8	16.7	0.0011
	Single-ring e-like P _e >100MeV/c	2	1.5±0.7		1.3±0.6	-
Cut		Events $\Delta m^2 = 2.4$		$\Delta m^2 = 2.4 \times 10-3 \text{ eV}^2$		
Fully con	tained, fiducial cut (FCFV)		23 $\sin^2 2\theta_{23} = 1.0$			
Single rir	ng e-like, E>100 MeV		2			
# of deca	ay electron =0	1		Eurther oute explicit on events		
Reconstr rings exis	ructed invariant mass assuming 2γ st <105MeV	1		from T2K reduction.		Snevenis
Reconstructed v energy < 1250 MeV		1		Fina	al signal efficiency	/ 65.9%
Event	ts in 2010a sample		1			31

ppearance Analysis

Event selection for electron appearance measurement.

1							
	T2K-SK events	Data	No oscil	lation	With oscillation and $\theta_{13}=0$	Acc. BG (12µs window)	
1	Fully-Contained	33	54.	5	24.6	0.0094	
	Fiducial Volume <i>,</i> E _{vis} > 30MeV	23	36.	8	16.7	0.0011	
	Single-ring e-like P _e >100MeV/c	2	1.5±0).7	1.3±0.6	-	
Cut		Events			Δm^2 =2.4×10-3 eV ²		
Fully con	tained, fiducial cut (FCFV)	23		$\sin^2 2\theta_{23} = 1.0, \theta_{13} = 0$			
Single rin	ng e-like, E>100 MeV		2				
# of deca	y electron =0		1				
Reconstr rings exis	ucted invariant mass assuming 2γ st <105MeV	1		from T2K reduction.		on events	
Reconstr	ucted v energy < 1250 MeV	1		Fina	al signal efficiency	/ 65.9%	
Event	s in 2010a sample		1			32	

ppearance Analysis

v Appearance Systematics

Estimated combined total systematic error from each source group on electron events in SK, constrained by ND280 normalization.

Error source	N_{SK}^{sig}	N_{SK}^{bkg}	N_{SK}^{s+b}	N_{ND}	N_{SK}^{bkg}/N_{ND}	N_{SK}^{s+b}/N_{ND}
SK Efficiency	\pm 7.6	± 15.8	\pm 9.5		± 15.8	\pm 9.5
Cross section	\pm 9.7	\pm 13.9	\pm 9.9	\pm 8.4	\pm 14.3	± 10.6
Beam Flux	\pm 22.0	\pm 18.1	\pm 20.5	\pm 19.8	\pm 8.9	± 11.9
ND Efficiency				$^{+5.6}_{-5.2}$	$+5.6 \\ -5.2$	$+5.6 \\ -5.2$
Overall Norm.				0.2	± 2.7	\pm 2.7
Total	\pm 25.2%	± 27.8 %	± 24.7 %	$^{+22.2}_{-22.1}$ %	$^{+23.9}_{-23.8}$ %	+19.5 -19.4

33

Expected Number of SK Events

Source	Estimated number		
Beam ν_{μ} (CC+NC)	0.13		
Beam $\overline{\nu_{\mu}}$ (CC+NC)	0.01		
Beam $v_e(CC)$	0.16		
Total background	$\textbf{0.30} \pm \textbf{0.07} \text{ (syst.)}$		
Total sig.+background	1.20 ± 0.23 (syst.)		

#events normalized to p.o.t. and corrected for ND280 vµ CC measured normalization

• Assumed oscillation parameters for signal:

 $\Delta m^2 = 2.4 \times 10-3 \text{ eV}^2$ $\sin^2 2\theta_{23} = 1.0$ $\sin^2 2\theta_{13} = 0.1$

~29% probability to observe >=1 event when expected average = 0.3 event Sequential Selection Cuts

-12

run1 v CC Signal Candidate at S

appearance upper limit results

Two independent analyses give consistent results.
 Difference from confidence interval method:

Feldmann Cousins:

$$\Delta m_{23}^{2} = 2.4 \times 10^{-3} \text{ eV}^{2}$$

Sin²2 $\theta_{23}^{2} = 1.0$
Classical 1-sided limit:

Hierarchy	Upper Limit	Sensitivity
Normal $(\Delta m_{23}^2 > 0)$	0.50	0.35
Inverted $(\Delta m_{23}^2 < 0)$	0.59	0.42
Hierarchy	Upper Limit	Sensitivity
Hierarchy Normal $(\Delta m_{23}^2 > 0)$	Upper Limit 0.44	Sensitivity 0.32

Prospects for updated results

 1.45×10^{20} p.o.t. on tape = 73kW*1e⁷ s = 4.5x(2010a)

→ Aim at $3x10^{20}$ p.o.t. = 150kW*1e⁷ s by July 2011 (quake→??)

Analysis improvements underway

New NA61 results → systematic error uncertainty fror hadron production will be reduced.

 Spectrum measurement in ND and near/far ratio to reduce model dependence

11 March 2011, 14:46 JST

Risk Assessment Table in the T2K UK proposal:

Risk	Effect	R	isk Fac	tor	Level	Mitigation
		L	I	LxI		
General						
Natural disaster	End of Project	1	5	5	Medium	Design equipment to meet strict Japanese build-
					(ing specifications designed to cope with natural
						events.
Damage of major components	Delay of schedule and added FTEs	2	2	4	Medium	Packing, handling and contingency
in transport, shipping, instal-						
lation						
Loss of key staff	Delay of schedule and added FTEs	2	3	6	Medium	Shared responsibilities
Loss of workforce (eg. ill-	Delay of schedule and added FTEs	2	2	4	Medium	Flexibility and contingency
ness, inability to recruit or re-						
tain staff, delays in RA ap-						
pointments etc.)						
Loss of supplier	Delay to schedule and added FTEs	1	3	3	Medium	Identifying alternative suppliers
Major price fluctuations	Higher cost; de-scope project	2	2	4	Medium	Factor into working allowance; plan for de-
						scoping
External schedule delays	Schedule push-back; manpower reallo-	2	2	4	Medium	Possible storage plans; plan for minor schedule
(eg. delay in vendor de-	cation					slippage
livery schedule test_beam						

rrentiStatus

Much exterior damage, but inside equipment shows no major damage so far.

We have are in middle of the damage assessment and recovery plan drafting.

We will try to restart toward the end of the year.

2K upgrade: CP Violation

Oscillation probabilities for $v_{\mu} \rightarrow v_{e}$ for different values of the oscillation parameter.

CP violation can be studied either: •comparing P($v_{\alpha} \rightarrow v_{\beta}$) versus P($\overline{v}_{\alpha} \rightarrow \overline{v}_{\beta}$), where v_{α} and v_{β} are two neutrino flavours or

•comparing the first and second oscillation peaks. CP violation can't be observed in v_{α} $\rightarrow v_{\alpha}$ as it is related to $v_{\alpha} \rightarrow v_{\alpha}$ by

CP violation in the neutrino sector can be responsible for the current matter-antimatter asymmetry in the universe through leptogenesis.

Main goal of future T2K experiment at J-PARC

- Search for CP violation in v oscillation.
- Future T2K upgrade proposals for far detector
 - LAr TPC @ ~660km
 - On-axis, Measure the 2nd oscillation maximum
 - Hyper-K @ ~300km
 - Off-axis, Measure ν and anti- ν difference
- J-PARC: Accelerator & v beam-line
 - Current: 30GeV, ~120kW beam supplied to T2K
 → Aiming (before quake) ~400kW in 2012 in current power-up scenario
- J-PARC upgrade plan
 - ~1.7MW by improving the each components.
 - Strategy: Increasing the repetition rate & protons/pulse.

Kamioka L=295km OA=2.5deg

Okinoshima L=658km OA=0.78deg

P32 proposal (Lar TPC R&D) Recommended by J-PARC PAC (Jan 2010), arXiv:0804.2111

Kamioka L=295km OA=2.5deg

Okinoshima L=658km OA=0.78deg

P32 proposal (Lar TPC R&D) Recommended by J-PARC PAC (Jan 2010), arXiv:0804.2111

- Baseline
 - Long:
 - \circ 2nd Osc. Max. at Measurable Energy
 - × Less Statistics
 - ? Large Matter Effect
 - Short:
 - \circ High Statistics
 - × 2nd Osc.Max.Too Low Energy to Measure
 - ? Less Matter Effect

DISCLAMER: the current configurations and technologies of the upgrade are under discussion within the community.

CONTRACT OF STREET, ST. 1. J. M. J.

15.85.28

2000

•T2K searches for $\nu\mu \rightarrow \nu e \& \nu\mu \rightarrow \nu x$ oscillations and aims at determining the atmospheric sector parameters

nclusions

• T2K started physics running from Jan. 2010.

• We reported results from the first $\nu\mu \rightarrow \nu e$ oscillation analysis based on 3.23×10^{19} p.o.t. (2010 Jan.~ Jun):

- # of observed events surviving all cuts = 1
- # of expected background = 0.30 ± 0.07 (w/ $\theta_{13}=0$)

- The observed $\nu\mu$ CC candidates are consistent with the neutrino oscillation parameters measured by SK, K2K and MINOS.

• The total integrated proton intensity accumulated until the earthquake is 1.45×10^{20} p.o.t. and events are being analyzed. With this increased statistics, we expect a θ_{13} sensitivity better than that of CHOOZ. In addition, the analysis strategy will be improved.

Spare Slides

Well measured parameters

•2 mass scales >atmospheric: Δm_{23}^2 >solar: Δm_{21}^2 •2 mixing angles > θ_{23} (from atmospheric) > θ_{12} (from solar/KamLAND) •Mass ordering >solar: Δm_{21}^2

Unknown parameters

Mixing angle

 θ₁₃ (limit only)

 CP phase

 purely interesting!

 Mass ordering

 Atmospheric Δm²₂₃

And:

$$P(\nu_{\mu} \rightarrow \nu_{\theta}) = \sin^{2} 2\theta_{13}T_{1} + \alpha \sin 2\theta_{13} \overline{(T_{2} - T_{3})} + \alpha^{2}T_{4}$$

$$T_{1} = \sin^{2} \theta_{23} \frac{\sin^{2}[(A - 1)\Delta]}{(A - 1)^{2}} \quad \leftarrow \text{Atmospheric}$$

$$T_{2} = \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(A\Delta)}{A} \frac{\sin[(A - 1)\Delta]}{A - 1}$$

$$T_{3} = \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(A\Delta)}{A} \frac{\sin[(A - 1)\Delta]}{A - 1}$$

$$T_{2} - T_{3} = \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta + \delta_{CP}) \frac{\sin(A\Delta)}{A} \frac{\sin[(A - 1)\Delta]}{A - 1}$$

$$T_{4} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(A\Delta)}{A^{2}} \quad \leftarrow \text{Solar}$$

$$A \equiv \frac{2EV}{\Delta m_{31}^{2}}, \quad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E}, \quad \alpha \equiv \frac{\Delta m_{31}^{2}}{\Delta m_{31}^{2}}$$

 $v_{\mu} \rightarrow v_{e}$

Near detectors

Beam Monitor Measurements

Primary proton beam monitoring

• Beam orbit: tuned within 2mm from design orbit. (Critical for controlling beam loss)

• Beam position on target: Succeeded to control < 1mm during long term operation

SSEM:

Segmented Secondary Emission Monitor

OTR:

Optical Transition Radiation detector

Proton beam hits

center of target

Beam Monitor Measurements

Secondary μ beam monitoring by MUMON

- Beam direction is controlled well within 1 mrad. (1 mrad corresponds to 2% change in the SK flux at the peak energy, $E_v = 0.5 0.7$ GeV)
- Secondary beam intensity (normalized by proton intensity) is stable within $1\% \rightarrow$ reflects stability of targeting, horn focussing, etc

Prediction

T2K neutrino beam simulation

Use information by beam monitor/horn measurements

Simulate Proton & Carbon interaction in target

Tune the pion production multiplicity and interaction rate based on the recent NA61/SHINE results

Track particles exiting from target

Simulate neutrino-producing decays

Predicted flux @ SK

9

E_v (GeV)

10

INGRID Measurements

Profile center

Beam center

Horizontal = $+0.2 \pm 1.4$ (stat.) ± 9.2 (syst.) cm

Vertical = $+6.6 \pm 1.5$ (stat.) ± 10.4 (syst.) cm (0.1 degree = 49cm @ INGRID)

→ Off-axis angle = 2.519 ± 0.021 degrees

- Event rate: expectation vs. observation
 - $\rightarrow R_{data/MC} = 1.073 \pm 0.001(stat.) \pm 0.040(syst.)$

 $(R_{data/MC} = N_{data} / N_{MC})$

SK-spill synchronization

53

23

spill synchronization

 Event time distribution clearly shows MR beam bunch structure : very good synchronization between T2K beam and Super-K Typical accuracy ~ 20 ns (worst case 150 ns)

13

Neutrino Interactions

Neutrino Interactions

- Uncertainties from:
 - Parameter variations in models, comparisons between models
 - Model comparisons to MiniBooNE, SciBooNE and SK atmospheric data

8

True E., [GeV]

10

'Available" technologies

Liq Ar TPC Aim O(100kton) Electronic "bubble chamber"

- Can track every charged particle
- Down to very low energy

Neutrino energy reconstruction by eg. total energy

No need to assume process type

- Capable upto high energy Good PID w/ dE/dx, π^0 rejection Good at Wideband beam Water Cherenkov Aim O(1000kton) Energy reconstruction assuming CCqe

hoto-Detectors

ccess Drift

Effective < 1GeV
 Good PID (μ/e) at low energy
 Cherenkov threshold

Good at low E (<1GeV) narrow band beam