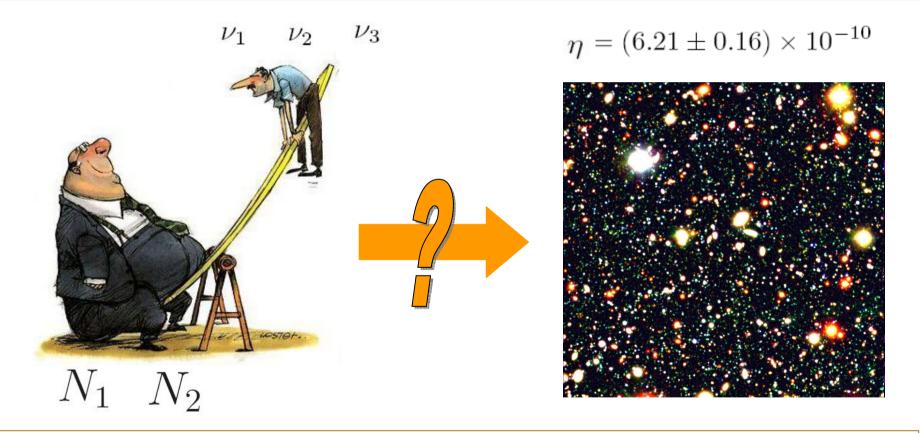
Leptogenesis in the Two Right-Handed Neutrino Model

David Jones, University of Southampton, May 4th 2011



The talk is based on our paper, out soon!

See S. Antusch, P. Di Bari, D.A. Jones, S.F. King, should be on arXiv soon!

Ground I'll cover...

Introduction to Leptogenesis.

Flavoured Leptogenesis in Two Right-Handed Neutrino Models. (Light and Heavy Flavour effects.)

Sequential Dominance.

The importance of N₂ decays in Light Sequential Dominance.

Leptogenesis – a quick reminder

To make a Baryon number asymmetry we need to satisfy three conditions:

- 1) B number violation
- 2) C and CP violation
- 3) Departure from Thermal Equilibrium (DTE)

Sakharov's conditions for Baryogenesis

Leptogenesis uses the Seesaw Mechanism to produce the Baryon Asymmetry of the Universe (BAU): $\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \Big|_0 = (6.21 \pm 0.16) \times 10^{-10}$

In the **Type I Seesaw**, this happens because the **decays of heavy** N_R **violate L** (hence B, more later...) and **may violate CP**. The expansion and cooling of the universe gives **DTE when N go non-relativistic** at $T \approx M_1$

Type I Seesaw Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N}_{Ri}\gamma_{\mu}\partial^{\mu}N_{Ri} - h_{\alpha i}\overline{\ell}_{L\alpha}N_{Ri}\widetilde{\Phi} - \frac{1}{2}M_{i}\overline{N}_{Ri}^{c}N_{Ri} + h.c.$$

Example: "Vanilla" Leptogenesis:

The Boltzmann e

For an FRW metri Liouville operato

1 7 7

The Boltzmann equation is:

$$\hat{L}[f] = C[f]$$
For an FRW metric the
Liouville operator is:

$$\hat{L}[f(E,t)] = \frac{\partial f}{\partial t} - H(t) E^2 \frac{\partial f}{\partial E}$$
The Collision operator
for $N_i \rightleftharpoons l_i + \phi^{\dagger}$ is:

$$C[f] = \int d\Pi_l \int d\Pi_{\phi} (2\pi)^4 \delta^{(4)}(p_N - p_l - p_{\phi})$$

$$\times \left\{ |M|^2_{N_i \to l_i + \phi^{\dagger}} f_N(1 - f_l)(1 + f_{\phi}) - |M|^2_{l_i + \phi^{\dagger} \to N_i} f_l f_{\phi}(1 - f_N) \right\}$$

To find the number density of a species from f(E, t) we integrate over its 3-momenum:

$$n(t) = \int \frac{d^3p}{2\pi^3} f(E,t)$$

With some simplifying assumptions, we can get equations for **B** – **L** evolution:

$$\frac{dN_{N_i}}{dz_i} = -D_i \left(N_{N_i} - N_{N_i}^{\text{eq}} \right)$$

$$\frac{dN_{B-L}}{dz_i} = \varepsilon_i D_i \left(N_{N_i} - N_{N_i}^{\text{eq}} \right) - W_i N_{B-L}$$

$$z_i = \frac{M_i}{T}$$

Production term: decays of N_R produce B – L asymmetry. Inverse decays erase existing B – L asymmetry via the Washout term

Washout

Washout of a coin asymmetry:

A heads / tails asymmetry.

many flips

A random equal mixture:

Will any Lepton asymmetry survive washout by inverse decays?

When the reaction $N_i \rightleftharpoons l_i + \phi^{\dagger}$ is in equilibrium, # decays (D) and # inverse decays (ID) balance, so: $\Gamma_D n_{N_i}^{eq} = \Gamma_{ID} n_{l_i}^{eq}$ Then $n_{N_i}^{eq} \propto e^{-z_i}$ implies $\Gamma_{ID} \ll \Gamma_D$ for $z_i > 1$ $W_i(z_i) \equiv \frac{\Gamma_{ID}}{z_i H(z_i)}$ $D_i(z_i) \equiv \frac{\Gamma_D}{z_i H(z_i)}$

The washout term $\propto \Gamma_{ID}$ cuts off faster than the production term $\propto \Gamma_D$ – we expect some final lepton asymmetry to survive \odot

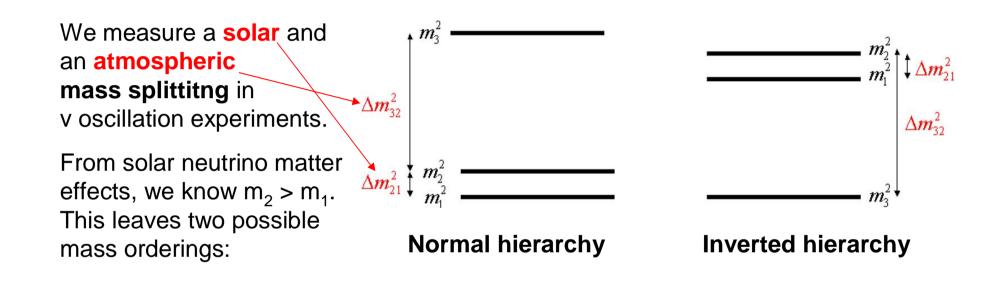
Ground I'll cover...

Flavoured Leptogenesis in Two Right-Handed Neutrino Models. (Light and Heavy Flavour effects.)

Sequential Dominance.

The importance of N₂ decays in Light Sequential Dominance.

Two Right Handed Neutrino Model (2RHNM)



3RHNM: 3 non-zero M_R @ high energy \rightarrow 3 non-zero m_L in low-energy EFT **2RHNM:** 2 non-zero M_R @ high energy \rightarrow 2 non-zero $m_L + m_{lightest} = 0$

Pros: more predictive: has a seesaw with less unknown "high energy" parameters Cons: 2RHNM is killed if $m_v \ll m_{sol}$ is not found in future v experiments.

Light Flavour effects

In the **2RHNM** the N_2 s decay first, producing some B – L asymmetry

$$\ket{l_2}\equiv\sum_lpha \ket{l_lpha}ig\langle l_lpha |l_2
angle$$

If $\Gamma_{ID} < \Gamma_{l_{\alpha}+\phi\to\alpha}$ the universe can "measure" the flavour α of a lepton doublet Our M_R mass spectrum is: $10^9 GeV < M_1 \lesssim M_2 / 3 < 10^{12} GeV$ Hence the N_{1,2} decay at temperature: $10^9 GeV < T < 10^{12} GeV$ hierarchical limit $\Gamma_{l_{\alpha}+\phi\to\alpha} \approx 5 \times 10^{-3} y_{\alpha}^2 T \longrightarrow \alpha = \tau$ is "measured", but { e, µ } stays coherent. The lepton doublet state is projected into a **two flavour basis** { l₂ } \mapsto { $2\gamma, \tau$ }.

$$\frac{dN_{N_2}}{dz} = -D_2 \left(N_{N_2} - N_{N_2}^{\text{eq}} \right),$$

$$\frac{dN_{\Delta_{2\gamma}}}{dz} = \varepsilon_{2\gamma} D_2 \left(N_{N_2} - N_{N_2}^{\text{eq}} \right) - P_{2\gamma}^0 W_2 N_{\Delta_{\gamma}},$$

$$\frac{dN_{\Delta_{\tau}}}{dz} = \varepsilon_{2\tau} D_2 \left(N_{N_2} - N_{N_2}^{\text{eq}} \right) - P_{2\tau}^0 W_2 N_{\Delta_{\alpha}}.$$

Heavy flavour effects

- **Q:** Will all the asymmetry made by N_2 decays be washed out by N_1 decays?
- A: We expect an orthogonal component in { e, μ } plane to survive N₁ inverse decays can only wash out the parallel component.

* * *

(we would also expect the τ asymmetry from N₂ to be washed out by N₁)

$$\begin{array}{c} |l_{2\gamma}\rangle \\ |l_{2\gamma}\rangle \\ \langle |\ell_{1\gamma}^{\perp}\rangle \\ \langle |\ell_{1\gamma}\rangle \\ \langle |l_{1\gamma}\rangle \\ \langle |l_{1\gamma}\rangle$$

$$\frac{dN_{N_{1}}}{dz} = -D_{1} \left(N_{N_{1}} - N_{N_{1}}^{\text{eq}} \right),$$

$$\frac{dN_{\Delta_{1\gamma}}}{dz} = \varepsilon_{1\gamma} D_{1} \left(N_{N_{1}} - N_{N_{1}}^{\text{eq}} \right) - P_{1\gamma}^{0} W_{1} N_{\Delta_{1\gamma}},$$

$$\frac{dN_{\Delta_{1\gamma}^{\perp}}}{dz} = 0,$$

$$\frac{dN_{\Delta_{\tau}}}{dz} = \varepsilon_{1\tau} D_{1} \left(N_{N_{1}} - N_{N_{1}}^{\text{eq}} \right) - P_{1\tau}^{0} W_{1} N_{\Delta_{\tau}},$$

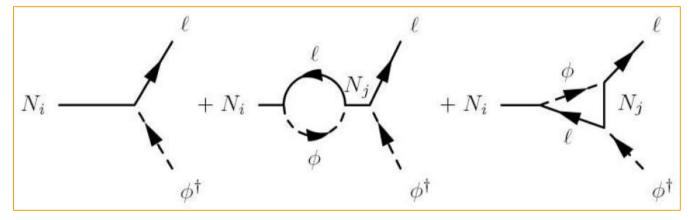
• Boltzmann equations for $\Delta_{\tau} = B/3 - L_{\tau} \quad \Delta_{1\gamma} = 2B/3 - L_{1\gamma}$ produced by N₁ decays. The orthogonal component is unchanged by N₁

CP in the 2RHNM

Previous studies of the 2RHNM have neglected N₂ decays.

From **heavy flavour effects**, if some asymmetry is made by N_2 decays an orthogonal part will survive N_1 washout. How much is made? This depends on their CP asymmetry:

CP violation comes from interferences between diagrams 1 and 2, 3



 $\begin{array}{ll} \text{The 1 + 3 interference gives:} & \varepsilon_2^{(1+3)} \lesssim 10^{-6} \left(\frac{M_1}{10^{10} GeV} \right) \left(\frac{M_1}{M_2} \right) \\ \text{while the 1 + 2 interference gives:} & \varepsilon_2^{(1+2)} \lesssim 10^{-6} \left(\frac{M_1}{10^{10} GeV} \right) \end{array}$

Part of ϵ_2 is un-suppressed by a mass ratio $\longrightarrow \epsilon_2$ same order of mag. as ϵ_1 Conclusion: N₂ decays should be included.

Ground I'll cover...

Introduction to Leptogenesis.

Flavoured Leptogenesis in Two Right-Handed Neutrino Models. (Light and Heavy Flavour effects.)

The 2RHNM parameter space & Sequential Dominance.

The importance of N₂ decays in Light Sequential Dominance.

Exploring 2RMNM parameter space

# of N _R	Independent "Low energy" parameters (PMNS-Matrix and v masses)	Independent "High energy" parameters (R-Matrix and v masses)	Total
3	3 light v masses + 3 light v mixing angles + 1 Dirac phase + 2 Majorana phases = 6 + 3	3 heavy v masses + 3 heavy v lifetimes + 3 total CP asym. = 6 + 3	12 + 6 = 18
2	2 light v masses + 3 light v mixing angles + 1 Dirac phase + 1 Majorana phase = 5 + 2	2 heavy v masses + 1 heavy v lifetime + 1 total CP asym. }z = 3 + 1	8 + 3 = 11

Leptonic **CP** can come from the "low" and "high-energy" **phases**, coloured red. In the **2RHNM** we parameterise "high energy" **CP** using **complex angle** z = x + i y

Sequential Dominance

The seesaw was invented to "naturally" explain why $m_v < < m_e$.

It was **not** invented to explain large θ_{12} and θ_{23} measured much later in v oscillation expts.

Taking $\lambda_{\nu} = \begin{pmatrix} A & B & C \end{pmatrix}$ we can see how each N_R contributes to mixing:

$$\mathcal{L}_{eff}^{\nu} = \frac{(\nu_i^T A_i)(A_j^T \nu_j)}{M_A} + \frac{(\nu_i^T B_i)(B_j^T \nu_j)}{M_B} + \frac{(\nu_i^T C_i)(C_j^T \nu_j)}{M_C}$$

A hierarchy on how N_R contribute to mixing, \longrightarrow gives us two large mixing angles θ_{12} θ_{23} This ansatz is known as Sequential Dominance. $\frac{A_iA_j}{M_A} \gg \frac{B_iB_j}{M_B} \gg \frac{C_iC_j}{M_C}$

So-called Constrained Sequential Dominance (CSD) gives exact TBMM:

$$|A_1| = 0,$$

$$|A_2| = |A_3|,$$

$$|B_1| = |B_2| = |B_3|,$$

$$U_{PMNS} = \sqrt{\frac{1}{6}} \begin{pmatrix} \sqrt{2} & 0 & 2\\ \sqrt{2} & \sqrt{3} & -1\\ \sqrt{2} & -\sqrt{3} & -1 \end{pmatrix}$$

$$A^{\dagger}B = 0.$$

Ground I'll cover...

Introduction to Leptogenesis.

Flavoured Leptogenesis in Two Right-Handed Neutrino Models. (Light and Heavy Flavour effects.)

The 2RHNM parameter space & Sequential Dominance

The importance of N₂ decays in Light Sequential Dominance.

Light Sequential Dominance (LSD)

For **SD** there are 3! = 6 ways of associating $M_1 < M_2 < M_3$ with M_A , M_B , M_C For two of these ways $M_1 = M_A$ and the **lightest** N_R contributes dominantly to mixing.

$$\begin{array}{lll} \mbox{For these LSD models the light v} & m_3 &\approx & \frac{(|A_2|^2 + |A_3|^2)v^2}{M_A} \,, \\ \mbox{masses are hierarchical and are} \\ \mbox{given in terms of A, B, C by:} & \longrightarrow & m_2 &\approx & \frac{|B_1|^2v^2}{s_{12}^2M_B} \,, \\ \mbox{For the CP asymmetry we} & m_1 &\approx & \mathcal{O}(|C|^2v^2/M_C) \,. \\ \mbox{en use the formulae:} & m_1 &\approx & \mathcal{O}(|C|^2v^2/M_C) \,. \\ \mbox{e}_{1\alpha} &\approx -\frac{3}{16\pi} \frac{M_A}{M_B} \frac{1}{A^{\dagger}A} \mbox{Im} \left[A^*_{\alpha}(A^{\dagger}B)B_{\alpha} \right] & \varepsilon_{2\alpha} &\approx -\frac{2}{16\pi} \frac{1}{B^{\dagger}B} \mbox{Im} \left[B^*_{\alpha}(A^{\dagger}B)A_{\alpha} \right] \\ & \varepsilon_{1\mu,\tau} &\approx -\frac{3}{16\pi} \frac{m_2M_1}{v^2} \,, \quad \varepsilon_{1e} &\approx \frac{A_1}{A_2} \varepsilon_{1\mu,\tau} \,. \\ & \varepsilon_{2\mu,\tau} &\approx -\frac{1}{16\pi} \frac{m_3M_1}{v^2} \,, \quad \varepsilon_{2e} &\approx \frac{A_1}{A_2} \varepsilon_{2\mu,\tau} \end{array}$$

Comparing the two, we find that ϵ_2 is larger than ϵ_1 by a factor $\approx m_3 / 3m_2$

An R-Matrix dictionary

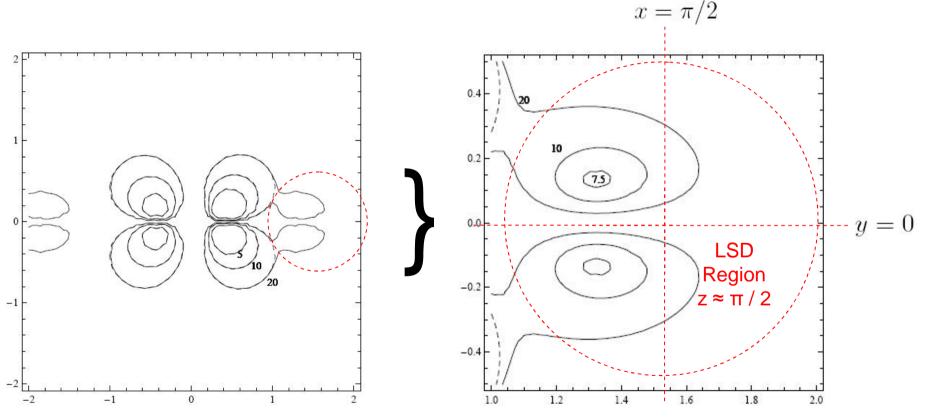
"High energy" physics is in the **R-matrix** with complex angle **z** to parameterise \mathcal{CP} LSD is done in terms of **Y**_v = (**A**, **B**, **C**). We want to compare the two parametrisations.

From the definition $R^N \approx \left(\begin{array}{ccc} 0 & -z_{23} & 1\\ 0 & -1 & -z_{23}\\ 1 & 0 & 0 \end{array}\right)$ of the R-matrix: $R = D_{\sqrt{M}}^{-1} U_M^{\dagger} m_D^T U^* D_{\sqrt{k}}^{-1}$ $z \approx \frac{\pi}{2} + z_{23}$ The main point is this: it is possible to translate z info into Y_v (+ mass) $Re(z_{23}) \approx \frac{Re(A^{\dagger}B)v^2}{(m_3 - m_2)M_1^{1/2}M_2^{1/2}}$ info. The LSD region is found in the $Im(z_{23}) \approx \frac{Im(A^{\dagger}B)v^2}{(m_3 + m_2)M_1^{1/2}M_2^{1/2}}$ small z_{23} region. $z_{23} \approx 0 \rightarrow z \approx \pi / 2$

 \rightarrow We expect a region close to (π / 2, 0) in the z-plane where N₂ decays dominate.

Our main result:

Recap: from analytic arguments we expect a region close to $(\pi / 2, 0)$ in the z-plane where N2 decays dominate. **Z-plane contour plots confirm this:**



With $\theta_{13} = 0.2$ $\delta = 0$, $\alpha_{21} = 0$, the circled "lobe" regions are thanks to N₂ decays

Conclusion: LSD regions of 2RHNM need N₂ decay for enough Baryon asymmetry

Summary

- Leptogenesis can explain the Baryon Asymmetry of the Universe (BAU) of $\eta = (6.21 \pm 0.16) \times 10^{-10}$
- Two Right-Handed Neutrino Models (2RHNM) can explain the v oscillation data thus far.
- For Leptogenesis in 2RHNM, light and heavy flavour effects can make N₂ decays become relevant.
- Sequential Dominance lets us focus on relevant regions of the seesaw parameter space.
- In the case of **Light Sequential Dominance** (LSD), N₂ decays significantly enhance the final asymmetry.
- We are currently investigating the sensitivity to U_{PMNS}.
 We find that the LSD region prefers phases α, δ to be off

Thank you for inviting me to talk ③

Leptogenesis – extra slides

To make a Baryon number asymmetry we need to satisfy three conditions:

- 1) B number violation
- 2) C and CP violation
- 3) Departure from Thermal Equilibrium (DTE)

Sakharov's conditions for Baryogenesis

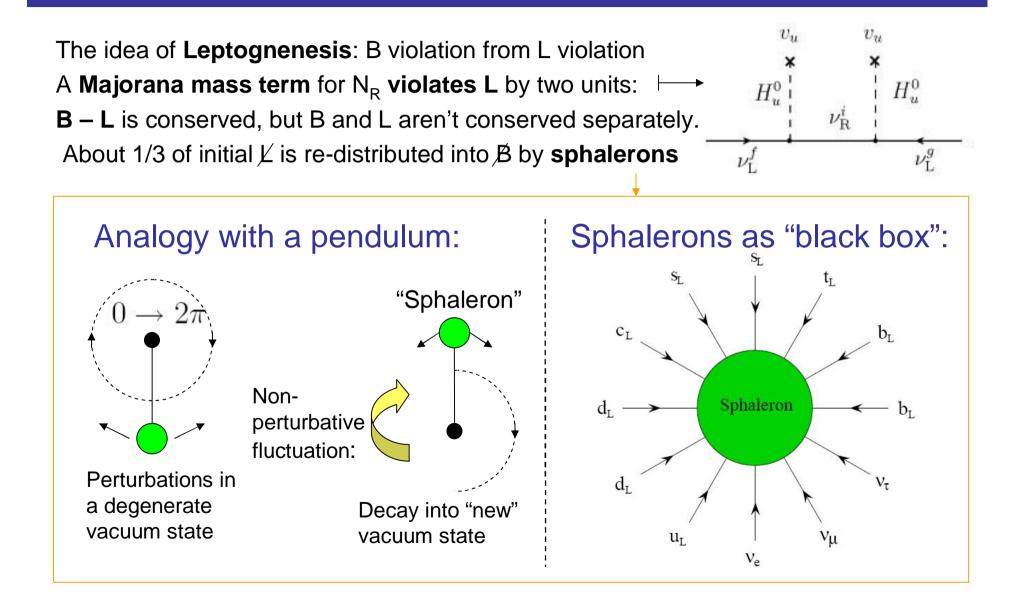
Leptogenesis uses the Seesaw Mechanism to produce the Baryon Asymmetry of the Universe (BAU): $\eta \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \Big|_0 = (6.21 \pm 0.16) \times 10^{-10}$

In the **Type I Seesaw**, this happens because the **decays of heavy** N_R **violate L** (hence B, more later...) and **may violate CP**. The expansion and cooling of the universe gives **DTE when N go non-relativistic** at $T \approx M_1$

Type I Seesaw Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N}_{Ri}\gamma_{\mu}\partial^{\mu}N_{Ri} - h_{\alpha i}\overline{\ell}_{L\alpha}N_{Ri}\widetilde{\Phi} - \frac{1}{2}M_{i}\overline{N}_{Ri}^{c}N_{Ri} + h.c.$$

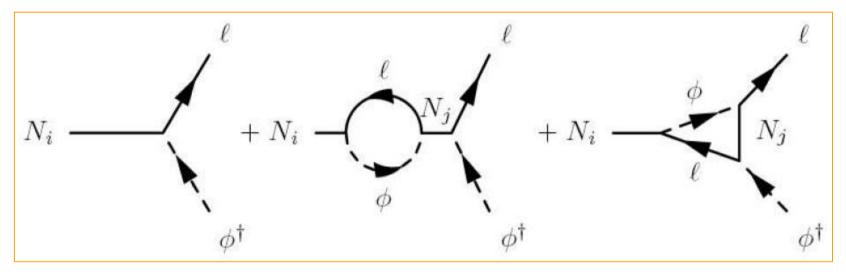
L violation -> Sakharov I



CP in leptons -> Sakharov II

We define the CP asymmetry as: Loops interfere with the tree:

$$arepsilon_i \equiv - rac{\Gamma_i - \overline{\Gamma}_i}{\Gamma_i + \overline{\Gamma}_i}$$



Explicitly:

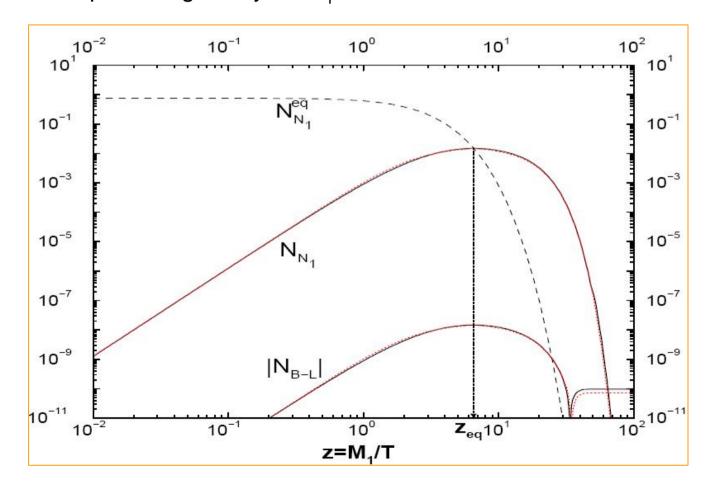
$$\varepsilon_{i} = \frac{3}{16\pi(\lambda^{\dagger}\lambda)_{ii}} \sum_{j\neq i} \operatorname{Im}\left[(\lambda^{\dagger}\lambda)_{ij}^{2}\right] \frac{\xi(x_{j})}{\sqrt{x_{j}}}$$
$$\xi(x) = \frac{2}{3}x \left[(1+x)\ln\left(\frac{1+x}{x}\right) - \frac{2-x}{1-x}\right] \qquad x_{j} \equiv (M_{j}/M_{i})^{2}$$

Heavy N_R decays -> Sakharov III

We can define N_R mass relative to temperature as:

For $z_i > 1$, N_i is suppressed like: $n_{N_i}^{eq} \propto e^{-z_i}$ The B – L producing decays of N_i look like this:

$$z_i = \frac{M_i}{T}$$



The final Baryon asymmetry

To work out the final **B** – **L** asymmetry we integrate the Boltzmann equations:

$$N_{B-L}^{\rm f} = N_{B-L}^{\rm in} \exp\left(-\sum_{i} \int dz' W_{i}(z')\right) + \sum_{i} \varepsilon_{i} \kappa_{i}^{\rm f}$$

Where the efficiency factor is given explicitly as:

$$\kappa_i^{\rm f} = -\int_{z_{\rm in}}^{\infty} \mathrm{d}z' \; \frac{\mathrm{d}N_{N_i}}{\mathrm{d}z'} \; \exp\left(-\sum_i \int_{z'}^z \; \mathrm{d}z'' \, W_i(z'')\right)$$

Basically we are **parameterise the solution** to separate the effects of **CP** (contained in ε) and washout (contained in κ) on any new asymmetry produced during the $N_i \rightleftharpoons l_i + \phi^{\dagger}$ reactions.

The integral can be done **numerically**, or there are some very accurate **analytic** approximations to it (see "Leptogenesis for Pedestrians" for examples).

The final **Baryon asymmetry** is given from the final B – L asymmetry as:

$$\eta_B = a_{\rm sph} \frac{N_{B-L}^{\rm f}}{N_{\gamma}^{\rm rec}} \simeq 0.96 \times 10^{-2} N_{B-L}^{\rm f} \quad a_{\rm sph} = n_B / n_{B-L} = 28/79$$

Sphalerons put about 1/3 of initial L violation into B violation, while conserving B - L. This happens continuously before the EWPT.