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Exact lattice SUSY: approaches

- N

# Topological twisting:
» Link constructions
s Sugino formulation
» Geometrical discretization

# Orbifolding

Talk about connections between last 2.
Simulations
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General Ideas

-

Decompose fields under diagonal subgroup
SOrot (D) X SOR(D)

Exposes scalar nilpotent supercharge
Action (often) Q-exact.
Fermions represented as Kahler-Dirac field

Lattice:
s Subalgebra ()* = 0 intact on lattice
s Doubling evaded

» Link/orbifold/geometrical schemes: link fields. Novel
gauge transformation properties.

|

Supersymmetric lattices: theory and applications — p. 3



Q=4SYMIn 2D
-

In twisted form (adjoint fields AH generators)

1 — 1
S = ?Q/TI’ (X,tw]:,uu T n[D,UnD,u] — 577d>

QA, = Yy
Qiy, = 0
QA, = 0
QX/W = _?,uy
Qn = d
Qd = 0

LNote: complexified gauge field A, = A, +:B, J
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Action

-

(-variation, integrate d.

-

1 _ 1 — _
S — ? /TI’ <_fluy Q[D’“’D ] XWDWM — ﬁplﬂpu)
Rewrite as
1 2 2
S = o Tr (—F;, +2B,D,D,B, — [B,,B))° + Lp)

where

NS

—Dy —1By Dy +1By ¢1
LF—(X12 )( Dy —iB; D2i32><¢2>
B -
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Lattice ?

-

o A, (x)— U,(n). Complexified Wilson links.

# Natural fermion assignment — » on sites, v, links, x12
diagonal links of cubic lattice.

® U(N

nx

(
Yul
Xy
(
(

X

<

U, (x

=

\./\./\%/\./\_/

Ll bl

e

) gauge transformations:

G
G

x)1(x)G
u(x)GT(x + 1)

( f(x)

(

(x + g+ 1) X (%) G (x)
(

(

Xy

P

G
G

u(x)GT(x + p)
u(%)GT(x)

x)U

X + U

L’ Note: choose orientation of x so that Tr£),, x . G.I

Supersymmetric latt
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Derivatives

- N

DI (%) = U(x)folx + 1) = fo()Un(x +v)
Do fux) = Fu()Uu(x) = Uu(x — 1) fulx — 1)
_|_

In naive continuum limit U, (x) =1+ A,(x) + ... reduce to
adjoint covariant derlvatlves

Note: act like d, d' — eg D) takes lattice p-form to
(p+1)-form as evidenced by gauge transformation
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Lattice supersymmetry

QU = Py
Qvy, = 0
QU, = 0
QX = Fiy)
On = d
Qd = 0

Lattice field strength as

Fl = DU (x) = U (x)Uy (x + 1) — Uy (x)Uy, (x + v)

= R



| attice Action
B -
S =K Z Tr (fﬂflfy + % (52_)2/{“)2 — XWD[(:)Q%] — nﬁ(_)wu>

with kK = —V

gphySAPhyS
Formally similar to continuum expression.

Contains (complexified) Wilson plaquette term+...
ldentical to @ = 4 orbifold action

Fermion EOM discrete Kahler-Dirac equation — no doubles
(staggered quarks)

o |
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Summary

-

Twisted picture gives a nice reinterpretation of orbifold
lattices.

New content: coupling constant indep, continuum limit,
why no doubling

Quick way to derive orbifold theories (Matsuura,
Damgaard)

Metric independence — possiblility of lattice theories ...

|
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Q=16 SYMIn 4D
-

Twist: diagonal subgroup of SOrgrenz(4) X SOR(4)
Again after twisting regard fermions as 4 x 4 matrix.

Expand on basis of products of gamma matrices — 16
twisted fermions as expected for N/ = 4 SYM.

But notice: to represent 10 bosons of A/ = 4 theory with
complex connections is most natural in five dimensions.

Fermion counting requires multiplet (n, 14, xq») Where
a,b=1...5

Action contains same 9-exact term as for Q = 4 plus
new Q-closed piece.

|
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Detalls

Naturally formulated as 5D theory. T

After dimensional reduction to 4D — A5 plus imag parts
of A,,u=1...4vyield 6 scalars of N' =4

® Fermions: x.» — Xuw ® V¥, Yo — Uy ®T
o S=0A- %feabcdeXdeﬁchb

Twisted action reduces to Marcus topological twist of
N = 4 (GL-twist). Equivalent to usual theory in flat

space.
ldentical to O = 16 orbifold action

|
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S

Reduces to:

Marcus twist

-

/ Tr (—]_-'W]-"W + % D, D] + % 6,0 + (D) (Dyo)

XMVD[va] — @up,uﬁ _ @,u [¢7 ¢u]
1Duu — 1 (0,71 — X5 Duthy — X |0 X))



Transition to lattice

-

Introduce cubic lattice with unit vectors
pl =46l a=1...4. Additional vector

ps = (—1,—1,—1,—1).
Notice: ) u, = 0. Needed for G.I.

Assign fields to links in cubic lattice (plus diagonals). Eg
Xab(x) lives on link from (x + pq + pp) — x. (link vectors
correspond to r-charges of orbifold)

Derivatives similar to Q = 4. eg

D (%) = Ua(x) f(x + @) = F(x)Ua(x)

Remarkably O-closed term still supersymmetric since
GabcdeDc(z+)Fg,Lc =0

|
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Simulations

-

Bosonic action local, real, positive semidefinite.
Integrate out fermions — Pfaffian.

Monte Carlo simulation possible using lattice QCD
algorithms — RHMC to handle Pfaffian.

Periodic and antiperiodic (thermal) bcs.

Code allows for dimensional reduction —eg Q = 4, 16
SYMQM

|
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Vacuum stability - trace mode

L N

Correspondance to continuum requires

U,=1+ad, + O(a?).

For U(N) this is not true < +Tr M,ﬂ(x)uﬂ(x) >~ 0.5

det (U (2)Uy, () — O

Vacuum instability — det(uj:uu) ~ eBe implies Bg — —00

Q=4 D=0 U(2) m=0.1

o |
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Truncation

Cannot cure with mass m? " Tr (UiU, — 1)?

m | < UZE% >
0.01 | 0.45(2)
0.1 | 0.57(6)
0.5 | 0.38(2)

Sp(e0Bull) ~ e~ Bus(u,) any {U,}
Exponential effective potential for Bg.

Fix ? - truncate to SU(N) — 65 ~ z0(a)
Also removes exact 0 mode in fermion op.

o |
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Vacuum stabllity - flat directions

-

What about moduli space B, B,| = 0 for SU(N) ?

,,,,,,,,,,,,,

P(lambd
P(lambda)

lambda lambda

Q=1 Q=16

D = 0. SU(2). Periodic bcs. Eigenvalues of Z/IZMM —1
Scalars localized close to origin. Power law talils.
p(Q@=14) ~ 3, p(Q=16) ~ 15 (Staudacher et al.)

o |
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Supersymmetric Ward identity

Q-exactness ensures that

(9 In Zpbc
Ok

=0

Ensures: < kSp >= 3V (N? — 1)(Nbosons — 1)
Example: D =0 SU(2)

K kSpB exact K kSpB exact
1.0 [4.40(2) | 4.5 1.0 | 13.67(4) | 13.5
10.0 | 4.47(2) | 4.5 10.0 | 13.52(2) | 13.5
100.0 | 4.49(1) | 4.5 100.0 | 13.48(2) | 13.5

Supersymmetric

-
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S

Pfafflan phase

imulation uses |Pf(U)|. Measure phase «a(if).

<0 >=

< Oe” >phase quenched

SU(2) D = 2: 42,

< e® >phase quenched

Q S% Sp S5 COS (v
4 | 70.61(4) 65(5) 72.0 -0.016(6)
16 | 214.7(4) | 214.6(3) | 216.0 | 0.999994(3)

< 67,@(1/{“) >phase quenched pbc— W = 0 for Q=4 ?

o

SUSY breaking (Tong et. al) ?

Supersymmetric

attices: theory and applications —
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Fermion eigenvalue distribution

2 . . , : 2 . T . , .

. SU2)Q=4D=2| | |

Tm(lambda)
|
Im(lambda)
{=]

T

0 0
Re(lambda) Re(lambda)

Q=1 Q =16

Non-zero density for QO = 4 close to origin — linked to log

divergence of < §\% > ?
Potential Goldstino ?
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N =4 SYM in four dimensions

Initial results encouraging: 6000 trajs on SU(2) 2* lattice

(1000 hrs)

Sp/SEA =0.98 < cos (o) >= 0.98(1)

Re(lambda)

Parallel code under development.

o

P(lambda)

|
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-

>

Gauge invariance strongly constrains counterterms,;

Renormalization

-

no fermion bilinears allowed ! No scalar masses
allowed by Q.

Few additional constraints from broken
supersymmetries eg < 69, Og.1100p >= 0

Numerical evidence in D = 2 supports no fine tuning.

|
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Future

-

Nonperturbative exploration ' = 4 YM. Tests of
AdSCFT.

But — what residual fine tuning needed to get full SUSY
asa—07?

Dimensional reductions — duality between strings with
Dp-branes and (p + 1)-SYM ?

Add fermions in fundamental .. (Matsuura, Sugino Iin
D = 2 recently).

|
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