Supersymmetric lattices: theory and applications

Simon Catterall

Syracuse University

Supersymmetric lattices: theory and applications - p. 1

Exact lattice SUSY: approaches

- Topological twisting:
 - Link constructions
 - Sugino formulation
 - Geometrical discretization
- Orbifolding

Talk about connections between last 2. Simulations

General ideas

- Decompose fields under diagonal subgroup $SO_{rot}(D) \times SO_R(D)$
- Exposes scalar nilpotent supercharge
- Action (often) Q-exact.
- Fermions represented as Kähler-Dirac field
- Lattice:
 - Subalgebra $Q^2 = 0$ intact on lattice
 - Doubling evaded
 - Link/orbifold/geometrical schemes: link fields. Novel gauge transformation properties.

Q = 4 SYM in 2D

In twisted form (adjoint fields AH generators)

$$S = \frac{1}{g^2} \mathcal{Q} \int \text{Tr} \left(\chi_{\mu\nu} \mathcal{F}_{\mu\nu} + \eta [\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}] - \frac{1}{2} \eta d \right)$$

$$\begin{array}{rcl} \mathcal{Q} \ \mathcal{A}_{\mu} &=& \psi_{\mu} \\ \mathcal{Q} \ \psi_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{A}}_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{A}}_{\mu\nu} &=& -\overline{\mathcal{F}}_{\mu\nu} \\ \mathcal{Q} \ \eta &=& d \\ \mathcal{Q} \ d &=& 0 \end{array}$$

Note: complexified gauge field $A_{\mu} = A_{\mu} + iB_{\mu}$

Action

Q-variation, integrate d:

$$S = \frac{1}{g^2} \int \operatorname{Tr} \left(-\overline{\mathcal{F}}_{\mu\nu} \mathcal{F}_{\mu\nu} + \frac{1}{2} [\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}]^2 - \chi_{\mu\nu} \mathcal{D}_{[\mu} \psi_{\nu]} - \eta \overline{\mathcal{D}}_{\mu} \psi_{\mu} \right)$$

Rewrite as

$$S = \frac{1}{g^2} \int \text{Tr} \left(-F_{\mu\nu}^2 + 2B_{\mu}D_{\nu}D_{\nu}B_{\mu} - [B_{\mu}, B_{\nu}]^2 + L_F \right)$$

where

$$L_F = \begin{pmatrix} \chi_{12} & \frac{\eta}{2} \end{pmatrix} \begin{pmatrix} -D_2 - iB_2 & D_1 + iB_1 \\ D_1 - iB_1 & D_2 - iB_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Lattice ?

- $\mathcal{A}_{\mu}(x) \rightarrow \mathcal{U}_{\mu}(n)$. Complexified Wilson links.
- Natural fermion assignment η on sites, ψ_{μ} links, χ_{12} diagonal links of cubic lattice.
- U(N) gauge transformations:

$$\eta(\mathbf{x}) \rightarrow G(\mathbf{x})\eta(\mathbf{x})G^{\dagger}(\mathbf{x})$$

$$\psi_{\mu}(\mathbf{x}) \rightarrow G(\mathbf{x})\psi_{\mu}(\mathbf{x})G^{\dagger}(\mathbf{x}+\mu)$$

$$\chi_{\mu\nu}(\mathbf{x}) \rightarrow G(\mathbf{x}+\mu+\nu)\chi_{\mu\nu}(\mathbf{x})G^{\dagger}(\mathbf{x})$$

$$\mathcal{U}_{\mu}(\mathbf{x}) \rightarrow G(\mathbf{x})\mathcal{U}_{\mu}(\mathbf{x})G^{\dagger}(\mathbf{x}+\mu)$$

$$\overline{\mathcal{U}}_{\mu}(\mathbf{x}) \rightarrow G(\mathbf{x}+\mu)\overline{\mathcal{U}}_{\mu}(\mathbf{x})G^{\dagger}(\mathbf{x})$$

• Note: choose orientation of χ so that $\text{Tr}F_{\mu\nu}\chi_{\mu\nu}$ G.I

Derivatives

$$\mathcal{D}_{\mu}^{(+)} f_{\nu}(\mathbf{x}) = \mathcal{U}_{\mu}(\mathbf{x}) f_{\nu}(\mathbf{x}+\mu) - f_{\nu}(\mathbf{x}) \mathcal{U}_{\mu}(\mathbf{x}+\nu)$$

$$\overline{\mathcal{D}}_{\mu}^{(-)} f_{\mu}(\mathbf{x}) = f_{\mu}(\mathbf{x}) \overline{\mathcal{U}}_{\mu}(\mathbf{x}) - \overline{\mathcal{U}}_{\mu}(\mathbf{x}-\mu) f_{\mu}(\mathbf{x}-\mu)$$

In naive continuum limit $U_{\mu}(x) = 1 + A_{\mu}(x) + \dots$ reduce to adjoint covariant derivatives.

Note: act like $d, d^{\dagger} - \text{eg } \mathcal{D}^{(+)}$ takes lattice p-form to (p+1)-form as evidenced by gauge transformation

Lattice supersymmetry

$$\begin{array}{rcl} \mathcal{Q} \ \mathcal{U}_{\mu} &=& \psi_{\mu} \\ \mathcal{Q} \ \psi_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{U}}_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{U}}_{\mu\nu} &=& \mathcal{F}^{L\dagger}_{\mu\nu} \\ \mathcal{Q} \ \eta &=& d \\ \mathcal{Q} \ d &=& 0 \end{array}$$

Lattice field strength as

$$\mathcal{F}_{\mu\nu}^{L} = \mathcal{D}_{\mu}^{(+)} \mathcal{U}_{\nu}(\mathbf{x}) = \mathcal{U}_{\mu}(\mathbf{x}) \mathcal{U}_{\nu}(\mathbf{x}+\mu) - \mathcal{U}_{\nu}(\mathbf{x}) \mathcal{U}_{\mu}(\mathbf{x}+\nu)$$

Lattice Action

$$S = \kappa \sum_{\mathbf{x}} \operatorname{Tr} \left(\mathcal{F}_{\mu\nu}^{L\dagger} \mathcal{F}_{\mu\nu}^{L} + \frac{1}{2} \left(\overline{\mathcal{D}}_{\mu}^{(-)} \mathcal{U}_{\mu} \right)^2 - \chi_{\mu\nu} \mathcal{D}_{[\mu}^{(+)} \psi_{\nu]} - \eta \overline{\mathcal{D}}_{\mu}^{(-)} \psi_{\mu} \right)$$

with $\kappa = \frac{V}{g_{\text{phys}}^2 A_{\text{phys}}}$ Formally similar to continuum expression. Contains (complexified) Wilson plaquette term+... Identical to $\mathcal{Q} = 4$ orbifold action Fermion EOM discrete Kähler-Dirac equation – no doubles (staggered quarks)

Summary

- Twisted picture gives a nice reinterpretation of orbifold lattices.
- New content: coupling constant indep, continuum limit, why no doubling
- Quick way to derive orbifold theories (Matsuura, Damgaard)
- Metric independence possibility of lattice theories ...

Q = 16 SYM in 4D

- Twist: diagonal subgroup of $SO_{Lorenz}(4) \times SO_{R}(4)$
- Again after twisting regard fermions as 4×4 matrix.
- Expand on basis of products of gamma matrices -16 twisted fermions as expected for $\mathcal{N} = 4$ SYM.
- But notice: to represent 10 bosons of $\mathcal{N} = 4$ theory with complex connections is most natural in five dimensions.
- Fermion counting requires multiplet $(\eta, \psi_a, \chi_{ab})$ where $a, b = 1 \dots 5$
- Action contains same Q-exact term as for Q = 4 plus new Q-closed piece.

Details

- Naturally formulated as 5D theory.
- After dimensional reduction to $4D A_5$ plus imag parts of $A_{\mu}, \mu = 1 \dots 4$ yield 6 scalars of $\mathcal{N} = 4$
- Fermions: $\chi_{ab} \to \chi_{\mu\nu} \oplus \overline{\psi}_{\mu}$, $\psi_a \to \psi_{\mu} \oplus \overline{\eta}$

$$S = \mathcal{Q}\Lambda - \frac{1}{8}\int \epsilon_{abcde}\chi_{de}\overline{\mathcal{D}}_c\chi_{ab}$$

- Twisted action reduces to Marcus topological twist of $\mathcal{N} = 4$ (GL-twist). Equivalent to usual theory in flat space.
- Identical to Q = 16 orbifold action

Marcus twist

Reduces to:

$$S = \int \operatorname{Tr} \left(-\overline{\mathcal{F}}_{\mu\nu} \mathcal{F}_{\mu\nu} + \frac{1}{2} \left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu} \right]^{2} + \frac{1}{2} \left[\overline{\phi}, \phi \right]^{2} + (\mathcal{D}_{\mu}\phi)^{\dagger} (\mathcal{D}_{\mu}\phi)$$
$$- \chi_{\mu\nu} \mathcal{D}_{[\mu} \psi_{\nu]} - \overline{\psi}_{\mu} \mathcal{D}_{\mu} \overline{\eta} - \overline{\psi}_{\mu} \left[\phi, \psi_{\mu} \right]$$
$$- \eta \overline{\mathcal{D}}_{\mu} \psi_{\mu} - \eta \left[\overline{\phi}, \overline{\eta} \right] - \chi_{\mu\nu}^{*} \overline{\mathcal{D}}_{\mu} \overline{\psi}_{\nu} - \chi_{\mu\nu}^{*} \left[\overline{\phi}, \chi_{\mu\nu} \right] \right)$$

Transition to lattice

- Introduce cubic lattice with unit vectors $\mu_a^i = \delta_a^i, a = 1 \dots 4$. Additional vector $\mu_5 = (-1, -1, -1, -1)$.
- Notice: $\sum_{a} \mu_{a} = 0$. Needed for G.I.
- ▲ Assign fields to links in cubic lattice (plus diagonals). Eg $\chi_{ab}(\mathbf{x})$ lives on link from $(\mathbf{x} + \mu_a + \mu_b) \rightarrow \mathbf{x}$. (link vectors correspond to r-charges of orbifold)
- Derivatives similar to Q = 4. eg $D_a^{(+)} f(\mathbf{x}) = \mathcal{U}_a(\mathbf{x}) f(\mathbf{x} + \mathbf{a}) - f(\mathbf{x}) \mathcal{U}_a(\mathbf{x})$
- Remarkably Q-closed term still supersymmetric since $\epsilon_{abcde} D_a^{(+)} F_{bc}^L = 0 !$

Simulations

- Bosonic action local, real, positive semidefinite.
- Integrate out fermions Pfaffian.
- Monte Carlo simulation possible using lattice QCD algorithms RHMC to handle Pfaffian.
- Periodic and antiperiodic (thermal) bcs.
- Code allows for dimensional reduction eg Q = 4, 16 SYMQM

Vacuum stability - trace mode

Correspondance to continuum requires $U_{\mu} = 1 + aA_{\mu} + O(a^2).$

For U(N) this is not true $<\frac{1}{N} \operatorname{Tr} \mathcal{U}_{\mu}^{\dagger}(x) \mathcal{U}_{\mu}(x) > \sim 0.5$ $\det(\mathcal{U}_{\mu}^{\dagger}(x)\mathcal{U}_{\mu}(x)) \to 0!$

Vacuum instability – $\det(\mathcal{U}^{\dagger}_{\mu}\mathcal{U}_{\mu}) \sim e^{B^{0}_{\mu}}$ implies $B^{0}_{\mu} \to -\infty$

Truncation

Cannot cure with mass $m^2 \sum \text{Tr} (\mathcal{U}^{\dagger}_{\mu}\mathcal{U}_{\mu} - I)^2$

m	$ < {\cal U}_{\mu}^{\dagger} {\cal U}_{\mu} > $
0.01	0.45(2)
0.1	0.57(6)
0.5	0.38(2)

 $S_B(e^{-\delta B^0_{\mu}}\mathcal{U}) \sim e^{-4\delta B^0_{\mu}}S(\mathcal{U}_{\mu})$ any $\{\mathcal{U}_{\mu}\}$ Exponential effective potential for B^0_{μ} . Fix ? - truncate to $SU(N) - \delta S \sim \frac{1}{N^2}O(a)$ Also removes exact 0 mode in fermion op.

Vacuum stability - flat directions

What about moduli space $[B_{\mu}, B_{\nu}] = 0$ for SU(N) ?

D = 0. SU(2). Periodic bcs. Eigenvalues of $\mathcal{U}_{\mu}^{\dagger}\mathcal{U}_{\mu} - 1$ Scalars localized close to origin. Power law tails. $p(\mathcal{Q} = 4) \sim 3, p(\mathcal{Q} = 16) \sim 15$ (Staudacher et al.)

Supersymmetric Ward identity

$$Q$$
-exactness ensures that $\frac{\partial \ln Z_{\text{pbc}}}{\partial \kappa} = 0$
Ensures: $\langle \kappa S_B \rangle = \frac{1}{2}V(N^2 - 1)(n_{\text{bosons}} - 1)$
Example: $D = 0 SU(2)$

κ	κS_B	exact	κ	κS_B	exact
1.0	4.40(2)	4.5	1.0	13.67(4)	13.5
10.0	4.47(2)	4.5	10.0	13.52(2)	13.5
100.0	4.49(1)	4.5	100.0	13.48(2)	13.5

Pfaffian phase

Simulation uses $|Pf(\mathcal{U})|$. Measure phase $\alpha(\mathcal{U})$.

$$< O >= \frac{< Oe^{\alpha} >_{\text{phase quenched}}}{< e^{\alpha} >_{\text{phase quenched}}}$$

$$SU(2) D = 2: 4^2.$$

\mathcal{Q}	S^q_B	S_B	S^e_B	$\cos lpha$
4	70.61(4)	65(5)	72.0	-0.016(6)
16	214.7(4)	214.6(3)	216.0	0.999994(3)

 $< e^{i\alpha(\mathcal{U}_{\mu})} >_{\text{phase quenched pbc}} = W = 0 \text{ for } \mathcal{Q} = 4 ?$ SUSY breaking (Tong et. al) ?

Fermion eigenvalue distribution

 $SU(2) D = 2: 2^2$

Non-zero density for Q = 4 close to origin – linked to log divergence of $< \delta \lambda^2 > ?$ Potential Goldstino ?

$\mathcal{N} = 4$ SYM in four dimensions

Initial results encouraging: 6000 trajs on SU(2) 2⁴ lattice (1000 hrs) $S_B/S_B^{\text{exact}} = 0.98 < \cos{(\alpha)} >= 0.98(1)$

Parallel code under development.

Renormalization

Gauge invariance strongly constrains counterterms;

- no fermion bilinears allowed ! No scalar masses allowed by Q.
- Few additional constraints from broken supersymmetries eg $< \delta_{Q_{\mu}} O_{G.I \text{ loop}} >= 0$
- **•** Numerical evidence in D = 2 supports no fine tuning.

Future

- Nonperturbative exploration $\mathcal{N} = 4$ YM. Tests of AdSCFT.
- But what residual fine tuning needed to get full SUSY as $a \rightarrow 0$?
- Dimensional reductions duality between strings with Dp-branes and (p+1)-SYM ?
- Add fermions in fundamental .. (Matsuura, Sugino in D = 2 recently).