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Exact lattice SUSY: approaches

Topological twisting:
Link constructions
Sugino formulation
Geometrical discretization

Orbifolding

Talk about connections between last 2.
Simulations

Supersymmetric lattices: theory and applications – p. 2



General ideas

Decompose fields under diagonal subgroup
SOrot(D) × SOR(D)

Exposes scalar nilpotent supercharge

Action (often) Q-exact.

Fermions represented as Kähler-Dirac field

Lattice:
Subalgebra Q2 = 0 intact on lattice
Doubling evaded
Link/orbifold/geometrical schemes: link fields. Novel
gauge transformation properties.
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Q = 4 SYM in 2D

In twisted form (adjoint fields AH generators)

S =
1

g2
Q

∫

Tr

(

χµνFµν + η[Dµ,Dµ] −
1

2
ηd

)

Q Aµ = ψµ

Q ψµ = 0

Q Aµ = 0

Q χµν = −Fµν

Q η = d

Q d = 0

Note: complexified gauge field Aµ = Aµ + iBµ
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Action

Q-variation, integrate d:

S =
1

g2

∫

Tr

(

−FµνFµν +
1

2
[Dµ,Dµ]2 − χµνD[µψν] − ηDµψµ

)

Rewrite as

S =
1

g2

∫

Tr
(

−F 2
µν + 2BµDνDνBµ − [Bµ, Bν ]2 + LF

)

where

LF =
(

χ12
η
2

)

(

−D2 − iB2 D1 + iB1

D1 − iB1 D2 − iB2

)(

ψ1

ψ2

)
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Lattice ?

Aµ(x) → Uµ(n). Complexified Wilson links.

Natural fermion assignment – η on sites, ψµ links, χ12

diagonal links of cubic lattice.

U(N) gauge transformations:

η(x) → G(x)η(x)G†(x)

ψµ(x) → G(x)ψµ(x)G†(x + µ)

χµν(x) → G(x + µ+ ν)χµν(x)G†(x)

Uµ(x) → G(x)Uµ(x)G†(x + µ)

Uµ(x) → G(x + µ)Uµ(x)G†(x)

Note: choose orientation of χ so that TrFµνχµν G.I
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Derivatives

D
(+)
µ fν(x) = Uµ(x)fν(x + µ) − fν(x)Uµ(x + ν)

D
(−)
µ fµ(x) = fµ(x)Uµ(x) − Uµ(x − µ)fµ(x − µ)

In naive continuum limit Uµ(x) = 1 + Aµ(x) + . . . reduce to
adjoint covariant derivatives.
Note: act like d, d† – eg D(+) takes lattice p-form to
(p+1)-form as evidenced by gauge transformation
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Lattice supersymmetry

Q Uµ = ψµ

Q ψµ = 0

Q Uµ = 0

Q χµν = FL†
µν

Q η = d

Q d = 0

Lattice field strength as

FL
µν = D

(+)
µ Uν(x) = Uµ(x)Uν(x + µ) − Uν(x)Uµ(x + ν)
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Lattice Action

S = κ
∑

x

Tr

(

FL†
µνF

L
µν +

1

2

(

D
(−)
µ Uµ

)2
− χµνD

(+)
[µ
ψν] − ηD

(−)
µ ψµ

)

with κ = V
g2
physAphys

Formally similar to continuum expression.
Contains (complexified) Wilson plaquette term+...
Identical to Q = 4 orbifold action
Fermion EOM discrete Kähler-Dirac equation – no doubles
(staggered quarks)
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Summary

Twisted picture gives a nice reinterpretation of orbifold
lattices.

New content: coupling constant indep, continuum limit,
why no doubling

Quick way to derive orbifold theories (Matsuura,
Damgaard)

Metric independence – possibility of lattice theories ...
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Q = 16 SYM in 4D

Twist: diagonal subgroup of SOLorenz(4) × SOR(4)

Again after twisting regard fermions as 4 × 4 matrix.

Expand on basis of products of gamma matrices – 16
twisted fermions as expected for N = 4 SYM.

But notice: to represent 10 bosons of N = 4 theory with
complex connections is most natural in five dimensions.

Fermion counting requires multiplet (η, ψa, χab) where
a, b = 1 . . . 5

Action contains same Q-exact term as for Q = 4 plus
new Q-closed piece.
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Details

Naturally formulated as 5D theory.

After dimensional reduction to 4D – A5 plus imag parts
of Aµ, µ = 1 . . . 4 yield 6 scalars of N = 4

Fermions: χab → χµν ⊕ ψµ, ψa → ψµ ⊕ η

S = QΛ − 1
8

∫

ǫabcdeχdeDcχab

Twisted action reduces to Marcus topological twist of
N = 4 (GL-twist). Equivalent to usual theory in flat
space.

Identical to Q = 16 orbifold action

Supersymmetric lattices: theory and applications – p. 12



Marcus twist

Reduces to:

S =

∫

Tr

(

−FµνFµν +
1

2

[

Dµ,Dµ

]2
+

1

2

[

φ, φ
]2

+ (Dµφ)†(Dµφ)

− χµνD[µψν] − ψµDµη − ψµ [φ, ψµ]

− ηDµψµ − η
[

φ, η
]

− χ∗µνDµψν − χ∗µν

[

φ, χµν

])
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Transition to lattice

Introduce cubic lattice with unit vectors
µi

a = δia, a = 1 . . . 4. Additional vector
µ5 = (−1,−1,−1,−1).

Notice:
∑

a µa = 0. Needed for G.I.

Assign fields to links in cubic lattice (plus diagonals). Eg
χab(x) lives on link from (x + µa + µb) → x. (link vectors
correspond to r-charges of orbifold)

Derivatives similar to Q = 4. eg

D
(+)
a f(x) = Ua(x)f(x + a) − f(x)Ua(x)

Remarkably Q-closed term still supersymmetric since

ǫabcdeD
(+)
a FL

bc = 0 !
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Simulations

Bosonic action local, real, positive semidefinite.

Integrate out fermions – Pfaffian.

Monte Carlo simulation possible using lattice QCD
algorithms – RHMC to handle Pfaffian.

Periodic and antiperiodic (thermal) bcs.

Code allows for dimensional reduction – eg Q = 4, 16
SYMQM
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Vacuum stability - trace mode

Correspondance to continuum requires
Uµ = 1 + aAµ +O(a2).

For U(N) this is not true < 1
N Tr U†

µ(x)Uµ(x) >∼ 0.5

det(U†
µ(x)Uµ(x)) → 0!

Vacuum instability – det(U†
µUµ) ∼ eB

0
µ implies B0

µ → −∞
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Truncation

Cannot cure with mass m2
∑

Tr (U†
µUµ − I)2

m < U†
µUµ >

0.01 0.45(2)
0.1 0.57(6)
0.5 0.38(2)

SB(e−δB0
µU) ∼ e−4δB0

µS(Uµ) any {Uµ}

Exponential effective potential for B0
µ.

Fix ? - truncate to SU(N) – δS ∼ 1
N2O(a)

Also removes exact 0 mode in fermion op.

Supersymmetric lattices: theory and applications – p. 17



Vacuum stability - flat directions

What about moduli space [Bµ, Bν ] = 0 for SU(N) ?
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Q = 4 Q = 16

D = 0. SU(2). Periodic bcs. Eigenvalues of U†
µUµ − 1

Scalars localized close to origin. Power law tails.
p(Q = 4) ∼ 3, p(Q = 16) ∼ 15 (Staudacher et al.)
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Supersymmetric Ward identity

Q-exactness ensures that ∂ ln Zpbc

∂κ = 0

Ensures: < κSB >= 1
2V (N2 − 1)(nbosons − 1)

Example: D = 0 SU(2)

κ κSB exact
1.0 4.40(2) 4.5

10.0 4.47(2) 4.5
100.0 4.49(1) 4.5

κ κSB exact
1.0 13.67(4) 13.5

10.0 13.52(2) 13.5
100.0 13.48(2) 13.5
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Pfaffian phase

Simulation uses |Pf(U)|. Measure phase α(U).

< O >=
< Oeα >phase quenched

< eα >phase quenched

SU(2) D = 2: 42.

Q Sq
B SB Se

B cosα

4 70.61(4) 65(5) 72.0 -0.016(6)
16 214.7(4) 214.6(3) 216.0 0.999994(3)

< eiα(Uµ) >phase quenched pbc= W = 0 for Q = 4 ?
SUSY breaking (Tong et. al) ?
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Fermion eigenvalue distribution

SU(2) D = 2: 22

Q = 4 Q = 16

Non-zero density for Q = 4 close to origin – linked to log
divergence of < δλ2 > ?
Potential Goldstino ?
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N = 4 SYM in four dimensions

Initial results encouraging: 6000 trajs on SU(2) 24 lattice
(1000 hrs)
SB/S

exact
B = 0.98 < cos (α) >= 0.98(1)
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Parallel code under development.
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Renormalization

Gauge invariance strongly constrains counterterms;

no fermion bilinears allowed ! No scalar masses
allowed by Q.

Few additional constraints from broken
supersymmetries eg < δQµ

OG.I loop >= 0

Numerical evidence in D = 2 supports no fine tuning.
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Future

Nonperturbative exploration N = 4 YM. Tests of
AdSCFT.

But – what residual fine tuning needed to get full SUSY
as a→ 0 ?

Dimensional reductions – duality between strings with
Dp-branes and (p+ 1)-SYM ?

Add fermions in fundamental .. (Matsuura, Sugino in
D = 2 recently).
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