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1 Introduction

<> Supersymmetric gauge theories (O matrix models) are promising
approaches to the physics beyond the standard model (D string theories).
= Their nonperturbative formulations (e.g. lattice fomulation) are desired.

¢ Notorious difficulty for realization of SUSY on lattice

[D’Adda-Kawamoto et al, Bergner-Bruckmann-Pawlowski]

{ A part of supercharges can be preserved on the lattice: (We focus on it.)

e 2D Wess-Zumino model [Sakai-Sakamoto, Kikukawa-Nakayama, Catterall]

e pure SYM models [Kaplan et al, Ishii et all] «— orbifolding,
[F.S., Catterall] <« TFT approach

e SYM 4 matter fields [Endre-Kaplan, Matsuura] «— orbifolding,
[1,2] This Talk « TFT approach
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Here, we construct lattice models for

2D N = (2,2) SQCD

(SYM + n, fundamental and n_ anti-fundamental matter multiplets)
with G = U(IN) or SU(N)

2D regular lattice (with the spacing a)

compact gauge fields U,

general matter superpotentials and general twisted mass terms,
keeping one of the supercharges Q.
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with G = U(IN) or SU(N)
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compact gauge fields U,

general matter superpotentials and general twisted mass terms,

\keeping one of the supercharges Q. /

[1]: The Wilson terms are introduced in order to supress bosonic and
fermionic doublers in the matter sector («— consistent with Q SUSY).

= The lattice action is defined only when n, = n_ and m; = m_j.
Nevertheless, since the anti-holomorphic twisted masses m’ ; can be chosen
freely, we can analyze the case n, # n_ by making some multiplets

decoupled.
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Here, we construct lattice models for

2D N = (2,2) SQCD

(SYM + n, fundamental and n_ anti-fundamental matter multiplets)
with G = U(IN) or SU(N)

2D regular lattice (with the spacing a)

compact gauge fields U,

general matter superpotentials and general twisted mass terms,

\keeping one of the supercharges Q. /

[1]: The Wilson terms are introduced in order to supress bosonic and
fermionic doublers in the matter sector («— consistent with Q SUSY).

= The lattice action is defined only when n, = n_ and m; = m_j.
Nevertheless, since the anti-holomorphic twisted masses m’ ; can be chosen
freely, we can analyze the case n, # n_ by making some multiplets

decoupled.

[2]: The overlap Dirac operators, which satisfy the Ginsparg-Wilson relation,
are introduced to realize the chiral flavor symmetry on the lattice.

= The lattice action can be defined for general n. and general m_ .y, m_j.
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Superpotentials are exactly holomorphic or anti-holomorphic on the lattice.

= Nonrenormalization theorem is expected to hold.

The first example of lattice gauge models introduced the overlap operators
with exactly preserving some of supersymmetry
(C.f. [Kikukawa-Nakayama] for 2D WZ models)
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2 Continuum 2D N = (2,2) SQCD

The continuum lagrangian is obtained by dimensional reduction from 4D

N =1 SQCD:

L = Lsym + Lmat + Lpot + LF1,9,
1 o
Lsym = ngtr (W Walgg + WaW éé)’

n+ — n_ ,x,

> ol eV e+ Y ®_e VTVl I}
I=1 I=1

‘Cpot — W((I)-H (I)—)|09 + W((I)Tp (I)T_)’gg

£mat —

06006

0
Lrry = tr (—KDD —+ F01) )
27
where Vi, = 20z0; M + 20L§Rm*ﬂ: twisted masses.

V = (A,, ¢, d;A; D) : Dim. Red. 4D N = 1 vector superfield

b7 = (drr;%41R, Y1103 Frr) : Dim. Red. of 4D N = 1 chiral superfield
(fundamental repre., Flavors: I =1,:--,n4)

®_; = (dp_1;Y_1r,¥_11; F_1) : Dim. Red. of 4D N = 1 chiral superfield
(anti-fundamental repre., Flavors: I = 1,---,n_)



Note

Two kinds of fermion mass terms can be introduced.

e Complex mass terms (C W, W):
mr (Y_1041r — Y_1rY+11) + M (Yr1rY—1L — Yo1rh_IR)
e Twisted mass terms (¢ W, W):
My rpPyrr + M5 PR i + MY pY L + M Y _gg

¢ Flavor symmetry of L4

U(ny) X U(n-) for myy =+ = mMyp,,my,; =---=ml,

!

U(1)" x U(1)"- for general mir,ml,



3 Latticization of SYM Part

4D N =1SYM = (dim. red.) = 2D N = (2,2) SYM
A, (p=0,1) A, = U,(x) (link variables on the lattice)
As, Aj o (x), p(x) (site variables[]

Fermions : 4-component Majorana spinor
T . .
U(x) = ('zpo(w),'(bl(:c),x(:v), ;n(m)> 00 (site variables[]
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3 Latticization of SYM Part

4D N =1SYM = (dim. red.) = 2D N = (2,2) SYM
A, (p=0,1) A, = U,(x) (link variables on the lattice)
As, Aj o (x), p(x) (site variables[]

Fermions : 4-component Majorana spinor
T . .
U(x) = ('(pg(:n),'(pl(:c),x(:v), ;n(m)> O (site variables[]

Q-SUSY on the lattice (Q = —jE(QL + Qr))
For admissible gauge fields (||1 — Upi(@)]| < €)

QU,(z) = i (x)Uyu(x)

Qvu(x) = 1pu(z)Yu(x) + iaV , p(x)

Qo(xz) =0

Qé(x) =n(z), Qn(z) = [¢(z),d(z)] )

Qx(@) = iD(2) + . ®(2), QD(2) = — Q¥ () — i[¢(2), x(2)]

where aV ,¢(x) = U, (x)p(x + 2)U,(x) "t — ¢(x)
(covariant difference for adjoint fields(J ,

B (1) — —iUoi(@)-Uo(@))
®(@) = T tnmp ~ 2o

11



= @Q? = (infinitesimal gauge tr. with the parameter ¢(x))

Lattice Action: Q-exact form = Exact Q-SUSY
For admissible gauge fields (||1 — Up:(x)|| < € for Vz),

X(@) |~ 28(@) +iD(@)| + 11(2)[$(). B(@)] — i56,(@)aV,b(z)

a 1
SélYtl\)d - QQZ%:U‘
0

i@(w)z + a2 V,.0(@) V(@) + ix(z)QP(2) + X du(x)aV,n(z)

1
= ?Ztr
gy *
1 _ 1
+4[¢($), é(x)]* — x(x)[o(x), x(x)] — 477(50)[¢($)a n(x)]
— %¢u(w)'¢u(w) (95(33) + Uu(a3)q_5(a3 + .a)Uu(w)_1> — D(a:)2] ’

For the other cases, Sél{a(tl\)/[ = +o0o. (i.e. The Boltzmann weight is zero.)

Note
Without the admissibility and the denominator of ®, the configurations

+1
Uoi(x) = .. (up to gauge tr.) (3.1)
+1

for Vx give the vacua of the action.
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To get the target theory, we should consider excitations around the single
vacuum Up;(x) = 1.

The admissibility and the denominator of ® smoothly remove the
degenerated vacua Uy, (x)? = 1, Uy () # 1 with preserving the Q-SUSY.
(Take the traceless part of the numerator of ® for G = SU(NN) casel]

et t>0

0 £<0 with ¢ > 0 is smooth and infinitely differentiable

cf. f(t) = {
w.or.t. t € R

The Q-SUSY forbids the mass term ¢¢ appearing as radiative corrections in
the lattice perturbation.

= The continuum theory is expected to be constructed without any
fine-tuning.

(Computer simulations will give the nonperturbative check [kanamori-Suzuki].
= Care of the flat directions! )
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FI and ¥ terms:
For G = U(N), the FI and topological ¥J-terms can be introduced to the
action as

UV — 2K
27
where the second term is Q-invariant by its topological nature
(0 2z tr InUpy(x) = 0).
In order for the logarithm of the plaquette fields to be well-defined, it is

S%ﬁr‘g, = Qﬁ:%jtr (—ix(x)) — Zx:tr InUg (),

sufficient to choose € as

1
0<e< —— for G = U(NN) with J-term.

VN
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4 Lattice Formulation of [1]

¢ Forward (backward) covariant differences D, (D} )0

aD,®,1(2) = Uu(2)®yr(@t+i) — &1 1(x)

aD; @ 1(x) = @iq(z) — Uz — ) ' @11(z—f)
aD,®_(z) = ®_1(z+)Uu(z)”" — @_1()
aD,®_;(x) = ®_1(z) — P_(z—)Upu(z — A1)
and
D551<D -|—D*> DA51<D —D*) DA =y D4
I 2 H K Iz 2 H K T

15



Q-SUSY on the lattice [Consider the case n,. = n_ = n]

Qor1(x) = —vYirn(z), Qvirn(z) = —(d(x) — myr)dr1(x),
QY.irr(z) = a (Dg + sz) ¢r1(x) + Frr(x) — raD?¢_r(x)", <« Wilson term
QF (w) = (¢p(z) — my 1) y1r(z) + a(D§ +iD7) ¢ rn(w) — raD* e _rr(x)

—a (Q(Dy +iDY)) ¢4 1(x) + ra (QD?) d_r(x)T,

Qo_1(z) = —Y_1(z), QyY_1(z) = ¢_1(x)(d(x) — Mm_1),

Qy_ir(z) = a (Dy +iD}) ¢_1(z) + F_1(z) — raD ¢ (z)T,

QF_i(z) = —¢_1r(x)(d(x) —m_1) +a (D(‘)g + ZDf) Y_1r(x) — raD %, p(z)
—a (Q(Dy +iD7)) ¢_1(x) + ra (QD*) ¢ (x)T,

= The nilpotency of Q holds for variables besides F}.
However, we have, for example,

Q*Fi1(z) = (¢(x) — myr)Frp(z)+(myr — m_p)raD?¢_r(z)".

= When m; = m_j(= mj), Q is nilpotent for all variables, i.e.
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Q? = (infinitesimal gauge tr. with the parameter ¢(x))

+ (infinitesimal flavor rotation with the parameter mjy).

5(1):{:1 = q:qu)ij, (S(I);ftI = :I:?’ﬁI(I)L

17



Lattice Action: Q-exact form

S(lat)

mat

— S(lat) s S(lat)

mat,+ mat,—

s, = Q% 3 [Cdin@) o (D§ + D) 611(@) — Fua@)—raD 6 ()"}
+; {a(Dy —iD}) ¢i1(x)' — Fyp(z) —raD*¢_1(x)} irr(z)

o Bem(@)(G@) — )b ir(@) — (@) (B(2) — m )1 (@)
+idr1(2) x(@)pra ()

9

Sial_ = Q;é [; la (D +iD%) ¢_1(z) — F_i(z)—raD ¢, 1(x)!} P_11(z)
+;¢—1R(w) {a, (Df)g — sz) d_1(z)" — F—I(i’?)T_""aDACb“(w)}
b (@) (B(2) — m N 1(@)! — b 1(@)(B(z) — m* Vb rn(e)

— ip1(@x(@)P-1()1]
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Superpotential terms: (i: gauge group index)

st — gyy =W @) = Y ()
pot = Y EFF S| 0gen(x) Y T 0¢_pi(x ) —H
(@) ()W

HIEAE 8¢—|—I'L( ) e 8¢* Il(w)

Note
Due to the Wilson term,

e the flavor symmetry of SYAT is down to U(1)" (diagonal subgroup of
Uu)™ x u@m).

e the superpotential terms are not exactly holomorphic or
anti-holomorphic on the lattice.

= The lattice action is Q-SUSY invariant when m ; = m_j(= mj).

(We can still choose m* ; freely!O

+10 T

19



4.1 U(1)a Anomaly
< U(1) o-symmetry with the charges:

+2 : ¢
+1 : Yy, i, Yirr
—1:x, n Yirr, PiIr
—2 : @,

O : the others

is realized in the lattice action when all the twisted masses are zero.

In particular, the Wilson terms are consistent with the U(1) 4-symmetry.
Since U(1)4 transforms the left-handed fermions and the right-handed
fermions differently, it can be anomalous at the quantum level.

Note

e The gaugino fields (v, x,n) belong to the adjoint representation and do
not contribute to the anomaly.

e U(1),4 is not anomalous when n, = n_.
= consistent with the present lattice formulation

20



& U(1)4-WT identity:
8y, (3} M1 (@)) = { £ (Muyr(@) + M_i(x)))
with 8;: backward difference operators,

M (@) = 2m; (p11(2) d(@)pyr(z) + Pyrn(x)hirr(z))
—2m” ; (¢1(2) () psr() + Porr(x)pir(x))

M_i(x) = 2m; (p_1(x)p(@)d_1(x)" + ¢ _1r(2)P_11(z))
—2m* ; (¢_1(@)p(x)p_1(xz)' + ¢ _1p(x)p_rr(z)) .

21



& U(1)4-WT identity:
0y, (3} M4 (@)) = ( £ (Mar(e) + M_s(2))),
with 8;: backward difference operators,

Myr(x) = 2m; (¢41(2) d(x)pi1(2) + Prsn(@) P ir(z))
—2m’ (¢+I(5’3)T¢(w)¢+I(w) + 1Z+IR(33)¢+IL(33))

M_i(x) = 2m; (p-1(x)p(®)p_1(x)" + _1r(w)P_s1(x))
—2m” , (¢_1(z)p(x)p_1(x) + ¢ _1o(w)P_1r()).

We can investigate the general case of n, # n_, if the fields
., I=n +1,---,n)and ®_p, ®_p (I'=n_+1,---,n)
are decoupled by sending

mi, —oo(l=ny+1,---,n),m", o0 (I'=n_+1,---,n).

Regarding U(1)4-anomaly, we can check that such decoupling is achieved in
the lattice perturbation.

The anomalous WT-identity for n, fundamentals and n_ anti-fundamentals
is correctly obtained:

8; <-7;IJ,J(1)A(33)> = —i(n+ — n_)tr F()l(CU) —+ <In§—1 M+I(a3) -+ Ingl M_I(a:)> .

22



(The SYM fields are assumed to be smooth.)
The anomaly term comes from one-loop diagrams of M, (I > ny) and

M_I/ (I, > n_).

Note

e The decoupling is not completely trivial, because the holomorphic parts
my are kept finite.

e The Q-supersymmetry plays an important role to achieve the decoupling.
(tr ¢ terms, seeming to be left finite, cancel between the bosonic and

fermionic sectors.)
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5 Lattice Formulation of [2]

> Here, we introduce the overlap

Dirac operator to construct the lattice

action for general n4 and general twisted masses.

5.1 Doublet Notation

We start from the continuum theory with n, fundamentals and n_

anti-fundamentals. Adding some matter multiplets to prepare the same

number of the fundamentals and anti-fundamentals (nyg = max(n,,n_)), we

combine them as doublets:

), @}

\IluI = ( )9
—IR

Ul = (i, ¥-1r)

F
FIE( “), F}

F!
The upper and down components
transformation property.

= (Qb:_p ¢—I> ’

(b
ar = (";b-i—IR) ’

Ul = (Y15, Y41r)
E<F_|T_19F—I> (I=1,---,mn0).

of each doublet have the same gauge
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We define the v-matrices in terms of the Pauli matrices as

Yo = O1, Y1 = O2, Y3 = —1YoY1 = O3,

and use the notation

U, r = P!, U, = Ul .

The fundamental or anti-fundamental degrees of freedom are extracted by
acting the chiral projectors Py = %(1 + ~3) to the doublets.

25



Then, the Euclidean actions for the matters Sr(nil,i are rewritten as

s = [dx Inél —®iP,D,D,P, ®; + ;q)}m{qb —myr, ¢ —m’ 3 PL®;
—F}P,F; — ®/P,DP,®; + 9, ;P_PP,V,; — O P, D' P Uy
+ U P_ (¢ — mug) P_War + WarPy (¢ — m ;) Pppyg
—iW, P 7,4, P, ®r — i® Py, P W4
— W, P, (;n + ix) P .&;— ®lP, (;n — ix) P+\IluI] :

s _ = [d’z ;2;1 {—@},P_DMD“P_QI/ + ;@},P_{qs —m_p, —m* ,}P_®p

—F\P_Fy+®,P_DP_®p + U,y P, PP U,y + Uy PP P U,y
—|-\IJUI/P+ (¢ — m_p) P .V, + \ide/P_ <(E — ﬁlfip) P_ W,
— iU, Py, P ®p — i®Y, P_y,0p, Py W

_ 1 1
b, P (277 _ ix) P&, — &P (277 n ix) P_\Ilup] .
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Q SUSY

QP = —Vyur, QVur=—(¢p—m P, —m_;P_) ®p,
QVar = PPr + voFr,
Q(YoFr) = (¢ — myrP- — m_1Py)War + PVyur — 7,9, Pr1,
Q¥ = —Var,  Q¥ur = @} (¢ — M1 Py —m_1P-),
QY,; = ®IP' + Fir,
(FIT'YO) — _‘I’uI (Cb —myrP_ — m—IP—i—) + ‘Tldle + iq)}')’uww (5-1)

is nilpotent in the sense of

QQ? = (infinitesimal gauge transformation with the parameter ¢)

+ (infinitesimal flavor rotations (5.2))

with
6b; = — (my Py +m_;P)®;, 6®) =& (m, P, +m_;P),
OV, ;= — (m Py + m_P_)Wy,, 6V, =W, (mP.+m_iP,),
OW = — (MmyfP. +m_iP )Wy, 6y = Wy (myfPy +m_iP.),

(SFI = — (m+IP+ —+ m_IP_) FI, 5FT .F'Jr (m+IP+ + m_ IP_) (52)
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Note
(5.1) for each I splits into four irreducible parts consisting of

{P—|—(I)I7 P—|—\IJuI9 P—\IldIa P—|—FI}7 {(I)}P—l—a \ildIP—H \TquP—aFITP—F}’
{P—(I)Ia P—\Iqua P—|—\IldI7 P—FI}7 {(I)}P—a \ildIP—a \TquP—FaFITP—}'

= Chiral decomposition OK.
¢ The latticization in the previous section corresponds to
P — Dw =x,_,v,D; — rDA.

= Due to the Wilson terms, the chiral decomposition is not possible on the
lattice.

The previous lattice action is rewritten in the doublet notation as

n 17 _
St = @3 £ 5[ Fu(@ (@Du @) —30Fi(e)

+ (®r(z) aD];, — Fi(z)"0) Yar(x)
—®1(2) (@(x) — M Pr — m* [P_) Wyp(x)
+@ar(x) (p(z) — m’ Py —m*  P) ®r(x)

— ZiQJI(w)Tvgx(m)fI)I(zc)] . (5.3)
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In order to resolve the difficulty, we introduce the overlap Dirac operator.

5.2 The Overlap Dirac Operator

The overlap Dirac operator D satisfies the Ginsparg-Wilson relation
735 + ﬁ'yg = CLD\’73D\.

D has been explicitly given by [Neuberger]

—

1
DE(I—X
a

XZ].—O,Dw.

9

%)

(In order for D to express the propagation of physical modes with doublers
decoupled, we have to take r > % [Kikukawa-Yamada, Suzuki].
In what follows, r is fixed to r = 1.)

Note
From the requirement || XX || > 0, the admissibility condition with

0<e< % is imposed [Hernandez-Jansen-Liischer].
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—

> For the kinetic part of the action (5.3) with Dy replaced by D:
U.r(x)aD®(x) + ®7(x) 'aD'W 47 (x),
there are two possibilities of the chiral decomposition:

uI(iC)PiaD\(I)I(ZB) + @I(m)TaD\TPi\IJdI(:B) = Formulation I,

'
U,r1(x)aDP.®;(x) + ®;(x)  PLaD'W () = Formulation II.

Formulation 1

14+
P, =
+ 2

are projection operators (1/5:2|E = /ﬁi), which we use in Formulation I, because

’ 73573(1_0’5)

p,.D—=DP,, D'P,=P.D', P|=P..

Formulation 11

_ 1+ 73
P, =
+ 2

are projection operators (P2 = P.), which we use in Formulation II, because

; Y3 = (1 — aD)~s3
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5.3 Formulation I

We pick
P &, P W, P_W,p, P, F; as chiral fields, (5.4)
o P, U, P, U, P, F}P, as anti-chiral fields, (5.5)
for fundamental matters (I =1,---,ny), and
®hP_, U, P, U, P, Fl,P_  as chiral fields, (5.6)
P &, P, P, .Y, P_Fyp  as anti-chiral fields, (5.7)
for anti-fundamental matters (I’ =1,---,n_).

If we use a naive transformation in the previous section, it leads to
Q(P1®1(z)) = Pi(Q®1(x)) + (QP;)®r(x)
— —P.W,(2) + (QP.) P& (2) + (QP,) P&, (2).

Note that QP. generally do not vanish since P. involve the link variables.
Due to the last term in the r.h.s., the transformation does not close among
the chiral variables (5.4).
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Instead, we regard (5.4), (5.5), (5.6), (5.7) as fundamental contents of the
theory, and let us define their transformation by starting with

Q(P1®1(x)) = —P1%ur(x) + (QPy) P ®(x),
Q(®]Pi(x)) = —VuP(x)+ ®IP,(QP;)(x),
Q(P_®p(x)) = —P_V,p(x) + (QP-)P_&p(x),
Q(®L,P_(z)) = —VypP_(z) + L, P_(QP_) ().

It turns out that the (Q supersymmetry transformation can be consistently
determined as a closed form among the (anti-)chiral variables, satisfying the
nilpotency.
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Concretely, we have

= —P,Vu(2) + (QP,) P, 2;(x),

Q(P:®1(x))
Q(P+¥,1(x))
Q(P-¥4r(x))

QYo Py Fi(x))

Q(®]Py(x))
Q(ParP(x))
Q(¥yr(x)P-)

Q(F1(z)" Piyo)

Q(P_®p(x))
Q(P_¥,p(x))
QP ¥4 (x))

Q(voP-Fr(x))

Q(2} P_(z))

—(Py¢p — m i) Pi@1(x) + (QP; )P Wy (z) — (QP1)* P ®(x),
aDP;®(x) + Py Fi(x),
(¢(x) — my)P-War(z) + aDP. ¥, ;(z) — P-Q(aD)P.®;(x)

—Uy Py (x) + 1P (QP) (),
P (¢Py — i g)(x) — UarPL(QPy)(z) + @1PL(QP))* (),
5P, (@)D’ + Fi(x) P,

= —Uu(@)P_(¢(x) — m11) + YurPy(2)aD' — $}P,(2)Q(aD")P_,

= —P_U,p(z) + (QP)P_®y(x),

—(P_¢p —m_p)P_®p(xz) + (QP_)P_¥,p(x) — (QP_)>P_®p(x),
aﬁ/ﬁ_(bp(w) —+ 'yOP_FI,(a:),

= (¢(CE) — m_II)P_|_\IldII(CC) -+ CL/D\/P\_\I’UII(.’,B) — P+Q(G/D\)ﬁ_q)p($),

—@ 4y P_(z) + @, P_(QP_)(x),
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Q¥ P_(z)) = ®LP_(¢P_ — mi_p)(x) — UypP_(QP_)(x) + &1, P_(QP_)*(x),
Q¥ (x)Py) = ®,P_(x)aD" + Fp(x) P_~,,
Q(Fr(z)'P-v) = —¥up(x)P(dp(x) — m_r) + YapP_(x)aD' — &}, P_(2)Q(aD")P;.

The nilpotency holds as

Q? = (infinitesimal gauge transformation with the parameter ¢(x))
+ (infinitesimal flavor rotations (5.9) and (5.10)) (5.8)

with

§(Py®1) = —m Py ®1, §(®[P,) = m B[P,
(P W,) = —m P Wy, 6(WyP.)=m ¥, P,
S(P_W4) = —my Py, 6(WyP.)=m, V4P,
§(P.F;) = —m P, Fr, 6(F{P,)=m,[F/P,, (5.9)

§(®LP)=m_p®,, P, §(P.®y)=—m_pP_®p,
S(UurPy) =m_pU,pP,, §(P_V,p)=—m_pP_W,p,
S(UypP_) =m_pWapP_, 6(P V) =—m_pP Yy,
S(FLP.) =m_pFLP_, 6(P_Fy)=—m_pP_Fyp. (5.10)
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We used the identity

P:(QP:)Py =0, (5.11)
which is derived from the @) transformation of /P:zt = P,.
Differently from the situation in the previous section, we here have no
requirement to n4 nor to the twisted masses for the () supersymmetry being

closed and nilpotent.
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The matter-part action is given as the (Q-exact form:

SLAT

SLAT

CIII/

ny 1 -
mat,+m Q %:IZ——:Z 5 [\Iqu(CB)P_ (CLDP+(I)I($) - ’70P+FI($))

+ (@1 P, (z) aD' — Fy(x) Pivyo) P-Wgr(x)
—®1 P (z) (d(z) — m’,) Py Wy (w)

+®a Py (z) ($(m) — m’ ;) Pr ()

+2i®1 P, (x) x(z) Py @1 (x)|, (5.12)

mat,—m QZ Z { UI’(:B)P-F (CL/D\/P\_(I)I/(CC) - ’YOP—FI’(CC)>

‘|‘ <‘I’}'/ﬁ— (z) aD'" — Fp(z)'P_~o) P, Wp ()
—®LP_(z) (¢(x) —m_p) P_¥,p(x)
+¥rP_(z) ((x) —m* ) P-®p(x)

—2i®},P_(x) X(m)P_qn,(m)} : (5.13)
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After the Q operation,

n4 — g
St i = 22 a’®{P,(z) D'DP, ®/(z) — (Fi(x)'Py) (P Fi())
—|—\Tlu1(a§)P_ a/ﬁ/ﬁ+\11u1(a3) — \Ildjp\+(33) aﬁTP_\IJdI(a:)
1, — — _
‘|‘2‘I’}P+(33) {¢P+ — My, Py — mj-I} Py ®(x)
_ 1_ —
~|P,(2) (D(@) + ,B(2)) Pr:(e)

+ 0,1 (@) P (¢(z) — my ) P-War(x) + Uar Py (@) (¢p(x) — m’ ) Pr¥y ()
—W,1(z)P- Q(aD)P, ®1(z) + &I P, (z) Q(aD") P_ ¥ 41(x)

~BuPy (@) (@) + ix(@)) Pi(2)
~&}P.(2) jn(@) - ix(@)) Py Pur(@)
— BIP(2) {(@QP,), 6} P (@) — | WurPy(2) {(@P)), §) Py (a)

£ BIP (@) {(QPL)%, 3] Podi(2) +i® Py (z) [(QP)), x| Py (o)),
(5.14)
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SrI;;:tT m :ZB:IIX: [ 2@}/_?\_(33) ETD\F_@II(QZ) — (FII(QT)TP_) (P_FII(QZ))
4+, (x)PyaDP_¥, p(x) — VypP_(x) aD' P W 41 ()
1 — — . _
+2c1>},P_(a;) l¢P_ —m_p,¢P_ —m* | P_®p(x)
— 1_ —
+&1,P_(x) (D(:L') + 2<I>(:1:)) P ¥ (x)

+¥, 1 (x) Py (¢p(x) — m_1) Py ®ap(x) + U P_(x) ($(x) — m* ) P-W,p ()
— U, ()P Q(aD)P_®p(x) + &1, P_(x) Q(aD" P ¥ ()

~ TP (2) (@) - ix(@)) P-p ()
~8,P(@) ([n(@) + ix(2)) P Wur (@)
—;@},ﬁ_(m) (QP.), ¢} P_W,p(x) — *xpdpp (z) {(QP-), ¢} P_®y(x)

8P (2) {(QP)%, 3} P-&p(w) —i®},P(x) [(@P-),x| P-®r(a)].
(5.15)

The last four terms both in (5.14) and (5.15) are lattice artifacts having no
counterparts in the continuum theory.
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5.4 Formulation 11

We pick
P+(I)I7 P—l—\IluIa P—\deb P—’YOFI
®iP,, WPy, v, P, Fl~oP_
for fundamental matters (I =1,---,ny), and
@;/P_, \IldI/P_, \TIUIIP+, F;/70P+
P_®, P V,p, P—I—\IJdI’a p—l—'YOFI’
for anti-fundamental matters (I’ =1,---,n_).

Q SUSY transformation:
Q(P1®s(x)) = —P ¥y (x),

Q(P1¥ur(x)) = —(P(x) — my1)PrPi(x),
Q(P-_Yyi(x))

as chiral fields, (5.16)
as anti-chiral fields, (5.17)

as chiral fields, (5.18)
as anti-chiral fields, (5.19)

aDP,®;(x) + P_~oFi(x) + (QP_)P_V 4 (x),

Q(P-vFi(z)) = (P-¢p — m 1)P-Pyr(z) + aDP ¥, (x) — P-Q(aD)P,®(x)
+(QP_)P_voFi(x) + (QP-)*P_W 41 (x)
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Q(®r(x)'Py) =
Q(Var(x)Py) =
Q(¥. P (x)) =
Q(FlyoP-(x)) =

Q(P-®p(x)) =
Q(P-Y,p(x)) =
Q(P ¥ up(x)) =
Q(Py~oFp(x)) =

Q(®p(x)'P) =
Q(PYar(x)P-) =
Q(¥,rPy(x)) =
Q(F}moPy(z)) =

—Wy(x) Py,

®;(x) Py (Pp(x) — myy),

®;(x) P aD' + FlyP_(x) — V. P_(QP_) (),

— U, P_(¢pP_ —my)(x) + Var(x)PraD' — @1(x) P Q(aD")P_
+F{vP_(QP-)(z) — $urP_(QP-)*(),

—P_ W, (x),

—(¢(z) — m_p)P_®p(x),

aDP_®/(x) + P.voFr(x) + (QPL) PV p(x),

(P.p — m_p) Py Wyp(x) + aDP_W,p(x) — P.Q(aD)P_®p(x)
+(QP:)PyvoFy(z) + (QPy) P ¥qp (),

— W,y (x) P,

& (x) P_(¢(x) —m_p),

®;(z) P_aD' + FlyPy(z) — ¥,r P (QPy)(x),

— VU, P (pP, — m_p)(x) + Uyp(x)P_aD' — ®p(x) ' P_Q(aD") P,
+F} 7P (QPy)(x) — ¥, PL(QP) (x),
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is nilpotent in the sense of

(Q? = (infinitesimal gauge transformation with the parameter ¢(x))
+ (infinitesimal flavor rotations (5.21) and (5.22)) (5.20)

with

S(Py®1) = —m Py ®r, §(®[P,) = m PP,
(P, W) = —m P W, 6P P )=m, ¥, P,
S(P_W41) = —my P Wy, 6(PgPy) = m WPy,
§(P_vFr) = —m P ~vFy, &(FivP.)=m F]vP_, (5.21)

§(®P)=m_pd, P, §(P-®p)=—m_pP_®p,
(O, P =m_pV,pPy, 6(P.W,p)=—m_pP_W,p,
S(Wyp P ) =m_pWypP_, 6§(P Wup)=—m_pP, Wy,
S(FivoPy) = m_pFivPy, 8(PivoFr) = —m_pPyyoFy. (5.22)

Similarly to (5.11), we have

P.(QPL)Py = 0. (5.23)
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The matter-part action :

Srl;l‘g;:rm — SII;étT—l-m + SII;::tT—m’
S = QTS | [BurP (@) (aDP,@1(2) — PyoFi(a))
+ (®7(z)' Py aD' — FIT%P (z)) P_Wqy(x)
—®(2) Py (p(@) — m'y;) PrW, ()
+Vr(z) Py ($(x) — m7 ;) Py®(a)
+2i®;(z) Py x(0) PL® ()], (5.24)
S;ﬁtT_ = Q ;Izl [ 'u,I'P—i—(w) (aDPJI)I/(a:) .P+’)’0FI/($))

+ (®p(x)'P_aD' — FlvPy () Py yp(x)
~@p(@) P ($() — " ) PLun(@)
+W,p ()P (p(x) —m* ;) P-®p(z)
—2i®p(x) P X(a;)P_cpp(a;)} : (5.25)
The last three terms both in (5.24) and (5.25) yield interactions without the
projectors depending on D.
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After the Q operation, we have

ST = £ Y [a*81(2) Py DIDP, ®1(x) — (FjnoP-(2)) (P-20Fi(®))
—|—\TIUIP_(Q3) aﬁP+\IluI(a:) — \dej(a})P_|_ aﬁTP_\IJdI(a:)
1 _
—|-2‘I)I($)TP+ {Cb(m) — myr, ¢(x) — miz} P, ®;(x)
_&,(2)'P, (D(az) + ;EIS(:B)) P & ()

+, P_(z) (p(z) — my 1) P-Wy(x) + Car(z) Py (¢p(x) — ;) Pr¥y()
— VU, ;P_(x) Q(aD)P.®;(x) + ®;(x)' P, Q(aD") P_W 41 (x)

~Bar(@)P; (n(z) + ix(2)) Py i)

~&1(2)' Py (@) — ix(@)) P Wur(@)
+9, P_(z) (QP_)*P_Wyy ()], (5.26)
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S = ) Igl a’®y(z)'P_D'DP_&p(z) — (F}voPi()) (PiyoFr(z))
+U,r P, (x) aDP_¥ ,p/(z) — Wap(x)P_ aD P,V ()
1 _
+2c1>1,(a;)fp_ {p(x) — m_p, p(x) —m* | P_®p(x)
+ & (z) P (D(:c) + ;ci(m)) P ()

+¥,1 Py (z) (p(x) — m_1) Py ®ap(x) + Uap(z) P- (¢(x) — m* ) P-W,p ()
— VU, P (2) Q(aD)P_®y(x) + @y (x) P_ Q(aD" P W p/(x)

~ B (@) P_ (@) — ix(z)) P-p ()

—&,(z) P (;n(w) + ix(a:)) P W, ()
+W,pr Py () (QP+)213+\IJdp(a:)] ) (5.27)

where the last terms both in (5.26) and (5.27) are lattice artifacts.

Since Formulation II seems to give a simpler expression than Formulation I,
we will mainly develop Formulation II in what follows.
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Superpotentials

We can latticize the superpotential terms as

N 7n4 oW _ - - ow
S = QX X =50, ay(a)), 0P V@), = (VurP-(@)h0), 5o sin
N 7n— oW _ - = ow
+Q El 1'2:21 {_B(P_cI)p(w))i (Y0P ®ar(z)), — (Tur Py (x)70), 8(<I>p(w)TP_)J
with
W = W (P, &, P.), W =W (@iP,P &p).

(- - +); represent independent color degrees of freedom of the projected
doublet by Py or Pi.

Note

LAT
Sp ot

lattice, i.e.

exactly realizes holomorphic or anti-holomorphic structure on the

e terms containing W depend only on the chiral variables (5.16) and (5.18),

e terms containing W depend only on the anti-chiral variables (5.17) and
(5.19),

besides the SYM variables which come in via Py or QPx.
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(Recall that the holomorphy is not exact in the previous section due to the

Wilson terms.
— @ transformation does not respect the chiral decomposition there.)

Similarly to the continuum case, the holomorphy tempts us to expect that
the superpotential terms receive no radiative correction on lattice

perturbative computations concerning the matter sector.
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5.5 Path-integral Measure

<> Path-integral measure for the SYM part

(dpzpsym) = 11 “liIOdUu(w)
x [1d¢ (2) depf(2) dx*(e) dn’(z) dp? (z) dé* () dD* (),

where dU () is the Haar measure of the gauge group G,
the index A labels the generators of G.

> Path-integral measure for the matter part

(d“mat) — (H d.“mat,—i—[) ( ﬁ d”’mat,—I’)

dpimar,t = 1] I d(Pr81(2)); d(@1(2) Py); d(P-20Fi(@)i d(Ffv0P-(@)):
Xd(PL®yr(x))i d(VurP-(x)); d(P-Par(x)); d(Par () Py )i,

dptmar,v = 1111 d(P-@p(@)); d(@r(@) P-); d(PryoFr(@)i d(FfroPr ()
X d(P-Wor (2)); d(Fur P (@)); d(Pr War (@)); d(Far (@) P

Let us see transformation properties of the matter-part measure.
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Gauge Invariance

For g(z) = @ ¢ G (w(x): infinitesimal) transforms the fundamental

matters as

P .®r(x) — g(x)Py®s(z) = (1 +iw(z) Py )Py ®r(x),
®r(x)'Py — ®1(2) Prg(x)™! = @1(z)"Py(1 — iPrw(x)),
P_~Fi(z) — g(x)P-voFi(z) = (1 + iw(z)P-) Py Fi(x),
FivP_(z) — FlvP-(z)g(x)™" = FiyP_(1 — iP_w)(x),
PoW,(z) — g(z)PrUu(z) = (1 + iw(z) P.) Py Wy (),
U, P_(x) — 9 P _(x)g(x) ' =¥, P_(1—iP_w)(z),
P U (x) — g(x)P_Pa(x) = (1 + iw(x)P_)P_W4(x),

Par(z) Py — Par(z)Prg(z)™ = Par(z) Py (1 — iPrw(x)).

For bosons, O(w) parts of the jacobian cancel with their conjugates.

For fermions, they cancel between P, W¥,; and ¥4/ P,,

and between ¥, ;P_ and P_W,;.

= Gauge invariance of dftmat,+1 (and of dptyae,— 7 from the similar argument).
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Q-SUSY Invariance
Under the Q-SUSY transformation with the Grassmann number e, the

fundamental matter fields change as

P+(I)I(£B) — (]. + ’LEQ)P_|_(I)I(CB) = P+<I>I(:13) —+ -

®(x)'Pr — (14 icQ)®r(x)'Pp = ®(x)' Py +-

P_yFi(z) — (1+1ieQ)P_voFi(x) =1+ ze(QP_)P_}P_%FI(w) e,
FivP_(z) — (1+i€Q)FjroP_(z) = FinoP_[1 +icP_(QP.)| () + -+ -,
Py, (r) — (1+1i€Q)Pr¥Yyr(r) = Py¥yr(e) +---,

U P_(x) — (1+ieQ)VyP_(x) = ¥ P_ |1+ ieP_(QP.)| (z) +---,
P Wy(x) — (1+ieQ)P Wy (x) = |1+ ic(QP_)P_|P_Wyr(x) + - -,
V()P — (14 ieQ)Wyr(x)Py = Wyr(x)Py + -+ -,

where “...” correspond to off-diagonal elements of Jacobi matrices and are

irrelevant for the calculation.

For example, the measure II, 1Y , d(P_~oF(x)); contributes to the Jacobian
factor by

Det |1+ ie(QP_)P_| =1+ ieTr (QP_)P_| =1+ ie Tr [ P_(QP_)P_| =
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(P_ = P2 and (5.23) was used.)
Repeating the same kind of computation = dpmat,+1 and dpiyae,—p are

Q-invariant.
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U(1) 4 Transformation

The U(1) 4 transformation (the parameter « infinitesimal) changes the

fundamental fields as

P, W, i(z) = (1 + iaP, )P V1 (x),

PV, (x) —

U, P_(x) — VU, P _(x)e™™ =W,/ P_(1—iaP_)(x),
P W,(x) — e P Wy (x) = (1 —iaP_)P_Wa4(x),
Uy (x)Pr — Wyr(x)Pre’™ = Wyr(x) Py (1 + iaPy),
P V,p(x) — e*P_W,p(x) = (1 +iaP_)P_ V¥, p(x),
U, P(x) — OupPi(x)e™ = W,p Py (1 —iaP,)(z),
P W,n(x) — e P Wyp(x) = (1 —iaP )P Y (x),
V()P — Uup(x)P_e® = U p(x)P_(1 + iaP.).

= The measures change as

dftmat,+1 — {1 — 2iaTr(Py — P_)}dumatﬂq = [1 + iaTr('ygalA))}dumat,JrI,
dptmat,— 17 — {1 + 2iaTr (P, — P_)}d/,l,mat,_p = [1 - iaTr(’ygaﬁ)]dumat,_p.
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Thus,

(dptmat) — |1+ i (np — n_) Tr(vsaD)| (dpimat)
n+;n_/d2w tr Fo1| (dptmat) (a — 0)

~ {l—l—ia

for the gauge fields assumed to be smooth [Kikukawa-Yamada].

= It reproduces the U(1)4 anomaly in the previous section.
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5.6 Admissibility Conditions

Combining the addmissibility conditions from the SYM part [F.s.] and from
the matter part, we find
G = U(INV) without ¥-term :

1
O<e<5 for N =1,2,.---,100
2
0<e<— for N >101
VN -7
G = U(IN) with ¥-term :
1
O<e<5 for N =1,2,.-.,25
1
0<e<— for N > 26,

v N
G =SU(N) :
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6 Lattice Formulation of Gauged Linear Sigma Models

¢ Gauged linear sigma models we consider is
2D N = (2,2) SQCD (G = U(N)) with n, fundamental matters
and £_ matters in the det™ %-representation. (A’ =1,---,€_, qv € Z~y)

The det™ % -matters are charged only under the overall U(1) of G = U(NN)
and gauge-transform as

E_y(z) — (detg(z)) " WE_py(x) for  g(z) € G,

or
0Z_y(x) = —igy (trw(x)) E_y(x) for g(x) =1+ iw(x)

with w(x) infinitesimal.
= Covariant derivatives D,=_y = (9, — iqy(tr A,)) E_.
= Forward (Backward) covariant differences D,, (Dy})):

aD,E_,(x) = (detU,(x))" Ey(xz+n) — BE_a(x),

aD} E_y(z) = E_x(x)—(detUy(x — 1)) " E_a(xz—£4)-
Similarly to the (anti-)fundamental matters, 2D SQCD system with the

det™ %-matters can be latticized preserving the chiral flavor symmetry.
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= Combining the n, fundamental matters and £_ det™%”-matters, the
lattice formulation of gauged linear sigma models is possible.

(Thanks to the Ginsparg-Wilson formulation, it is possible that matters
belonging to different representations are put in different chiral sectors.)

<> When n, > N, baryonic chiral superfields
BIl"°IN = Eil---iN(I)—l—Ilil oo (I)+INiN
are not trivial, and they gauge-transform as
By, ..1y(x) — (det g(z))By,...1y ().

Let Gy (B) be a homogeneous polynomial of degree gy w.r.t. By,...15.
Then, the superpotential

is gauge invariant.
Its lattice formulation is possible under the admissibility condition

1 :
0<e< 8Nq with q= A'iﬁlﬁ.}fg_(q‘v)'
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Applications:

Gauged linear sigma models are discussed to flow in the infra-red limit
to nonlinear sigma models with target spaces determined by the D-term and

F-term conditions [Witten].

> Target spaces are in Grassmann manifolds (D Calabi-Yau manifolds):

_ U(ny)
G(N,ny) = U(N)xU(Tur—N)

= Duality G(N,ny) = G(ny — N,n,) suggests an analog of the Seiberg
duality between the following gauged linear sigma models (/- = 1):

e G = U(N), ny fundamental matters ®,, one det™ “-matter ZE_ with

W=E_G(B) (G: degree q)

e G = U(ny — N), n, fundamental matters ®’ ;, one det” “-matter E’ with
=='G'(B") (G': degree q)

where G(B) = G'(B’) with the replacement By,...1, = 611“‘In+B}N+1---In+'

[Hori-Tong]

Now, this duality can be confirmed from the first principle by the lattice

formulation!
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7 Summary and Discussion

{> We have presented a lattice formulation of 2D N = (2,2) SQCD
(including gauged linear sigma models) with exactly preserving Q-SUSY.

e Gauge Group G = U(IN) or SU(NN), Compact link variables U, (x)
e In order to resolve the matter doublers,

— Use of Dy, = the lattice action is constructed in the case n,. = n_

— Use of D = the lattice action is constructed for general n
(Exact chiral flavor symmetry on the lattice due to the

Ginsparg-Wilson formulation)

e The Ginsparg-Wilson formulation makes possible to construct exactly
holomorphic or anti-holomorphic superpotentials on the lattice.
= Nonrenormalization theorem on the lattice expected to hold.

e Use of D yields another possibility of the FI and ¥-term:
S%i&g(D) Qk Ty tr (—ix(x)) — 25" 4a% 5, tr Fo ()
with Fy;(z) = 2 tTspin (’)ng) (x, x) (trgpin: trace over the Dirac indices).

Note ¥, trFy;(z) is topological because § Tr (v3D) = 0.
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A Gauged Linear Sigma Models = Grassmannian

& Consider the case of all twisted masses zero and ¢_ = 1.
Superpotential: W = E_G(B). (E_: det %-repre., G: degree q)
Bosonic potential is
0G(b) 0by,..
= 19" + I&- | > -
1i= 1 I < <Ip 8b11 I 8¢—|—Iz
g°

2
4tr{[z Gi1dl; — (q€* 6 + k) ﬂN} }
_ + 1 -
oyt (0 8) + X ol (0.8} b +latr ol 6P

where by, ...1,, £&-: the lowest components of the chiral superfields By, ...1,, =_.
The first and second lines come from the F-term and D-term conditions,
respectively.

For the potential minimum U = 0,

The second term = £&_ = 0 (for generic G),

The third term = x7, ¢+I¢1I = kil

= N vectors vy,---,vny € C™ ((v;)r = ¢+1;) are orthogonal and have
(length)? = k. (k > 0 assumed.)
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= {v1,:-+,vn} span the space of N-dim. planes in C™+,

U(n4)
U(NM)xU(ns—N)*

= Together with the first term, the F-term and D-term conditions yield
a hypersurface defined by G(b) = 0 in G(IN,n).

i.e. Grassmann manifold G(IN,ny) =

A.1 Gauged Linear Sigma Models = Calabi-Yau

<> On top of the above situation, consider the case G = U(1).
by = ¢—|—I(I: 1,---,’)’1,_|_)

ny |9
U = 1660 + |62 5 (2900
=1| O¢yr

n4
+ 3 (6P [l + lagl” & 1%

For U = 0,
the second and third terms = £_ =0, ¥, P10t = K
= Under the action of G = U(1), the above eq. represents CP"+1,
= The F-term and D-term conditions yield
a hypersurface defined by G(¢,) = 0 (degree q) in CP"™+~ 1,
= When g = n,, this becomes a Calabi-Yau manifold.
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Also, then U(1)4 anomaly cancels and the coupling « does not run.
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B Summary of Workshop and Outlook (maybe my personal)

Summary

In this workshop “Lattice Supersymmetry and Beyond”, many interesting
ideas and results on lattice supersymmetry were presented.

e Kawamoto, D’Adda
Ambitious attempt to realize full supersymmetry on lattice = Finite
supersymmetry transformation (7))

e Bruckmann
Use blocking transformation to find lattice counterparts of continuum
symmetries
(Generalization of the derivation of GW relation)
Apply to SUSY

e Endre
Numerical study of 4D N =1 SYM using domain wall fermions

overlap fermions?
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e Catterall
Numerical study of pfaffian phases of 2D A = (2,2) and 4D N =4 SYM
= SUSY breaking in 2D N = (2,2)?

e Suzuki
Numerical study of restoration of SUSY and some physics in 2D
N = (2,2) lattice SYM with one exact supercharge
PCSC relation

e Nishimura
Nonlattice approach for SUSY matrix QM
= Confirmation and prediction for blackhole and string physics
Appendix: SYM on R x §?%, R x S3 from plane wave MM

e Matsuura
Connection among SUSY lattice approches
(Orbifolding, Geometrical, Link)
Appendix A: Fundamental matters in 2D N = (2, 2) orbifolding approach

o . S.
Ginsparg-Wilson formulation with exact SUSY on lattice for 2D
N = (2,2) SQCD
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Outlook
I felt really nice atmosphere in the workshop, NBIA and Denmark.

If this kind of next workshop is held, it will be pleasant.

In the workshop dinner last night, So Matsuura claimed that
Poland is a more beautiful place than Denmark by 100/70
“from his point of view”. (For details, please ask him.)
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Outlook
I felt really nice atmosphere in the workshop, NBIA and Denmark.

If this kind of next workshop is held, it will be pleasant.

In the workshop dinner last night, So Matsuura claimed that
Poland is a more beautiful place than Denmark by 100/70

“from his point of view”. (For details, please ask him.)
= He organizes lattice SUSY workshop in Poland

and we will meet again there and confirm his claim from the first principle!
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Outlook
I felt really nice atmosphere in the workshop, NBIA and Denmark.
If this kind of next workshop is held, it will be pleasant.

In the workshop dinner last night, So Matsuura claimed that
Poland is a more beautiful place than Denmark by 100/70

“from his point of view”. (For details, please ask him.)
= He organizes lattice SUSY workshop in Poland

and we will meet again there and confirm his claim from the first principle!

Thank you very much for the organizers
Poul H. Damgaard, Hidenori Fukaya, So Matsuura,

and thank you for all the speakers and all the participants!

See you again (hopfully in Poland)!
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