Relation among Supersymmetric Lattice Gauge Theories

So Matsuura Jagiellonian University, Krakow, Poland

based on the works arXiv:0704.2696 arXiv:0706.3007 arXiv:0708.4129 arXiv:0801.2936 arXiv:0805:4491 with P.H.Damgaard

Introduction

Supersymmetric Gauge Theory

- Supersymmetry seems a fundamental symmetry of space-time. (an extension of the translational symmetry $x \to (x, \theta)$)
- Supersymmetry seems to be necessary to unify the interactions.
- Exact results in quantum field theory.
 (Seiberg-Witten theory, Nekrasov's formula, Dijkgraaf-Vafa etc...)
- Gauge/Gravity duality (AdS/CFT Correspondence)
- Connection to superstring theory

We want a way to analyze SUSY gauge theory non-perturbatively.

Difficulty

It seems impossible to construct a SUSY invariant theory on a lattice.

SUSY invariant action in continuum space-time

Suppose an action is written as

$$S = \int dx d\theta F(\Phi(x, \theta)) \qquad \Phi(x, \theta)$$
; superfield

Essentially, a SUSY generator can be represented as

$$\delta \Phi = \epsilon Q \Phi \qquad Q = \partial_{\theta} + \theta \Gamma \partial_x$$

Variation of the action

$$\delta_{\epsilon}S = \int dxd\theta F(\Phi + \epsilon Q\Phi) - F(\Phi)$$

$$= \int dxd\theta \epsilon QF(\Phi)$$
Leibniz rule
$$= \int dxd\theta \epsilon (\partial_{\theta} + \theta \Gamma \partial_{x}) F(\Phi) = 0$$

It seems impossible to keep all SUSY on a lattice.

Can we keep a part of SUSY on a lattice?

Yes!

Contents

- 1. Introduction
- 2. Review of Orbifold Lattice Theory
- 3. Equivalence between Geometrical Discretization and Orbifolding
- 4. SUSY in Link Approach from Orbifolding Point of View
- 5. A Comment and Future Works
- A. Orbifold Lattice Gauge Theories with Matter

§ 2 Review of Orbifold Lattice Theory

Basic Idea ~ matrix as a collection of lattice fields ~

MATRIX

<u>Strategy</u>

— with keeping SUSY

- 1. Starting with a matrix theory (mother/theory)
- 2. Project out "non-local" elements properly
- 3. We interpret the projected matrix theory as a lattice theory.

27/11/2008

Construction of 2D N=(2,2) SYM on lattice

Mother theory

dimensional reduction of 4D N=1 SYM theory with a gauge group

$$S_{\rm m} = \frac{1}{g^2} \operatorname{Tr} \left(-\frac{1}{4} [v_{\alpha}, v_{\beta}]^2 + i \bar{\psi} \bar{\sigma}_{\alpha} [v_{\alpha}, \psi] \right) \qquad \alpha, \beta = 0, \cdots, 3$$
$$\begin{pmatrix} v_{\alpha} : \text{four hermitian matrices (gauge boson)} \\ \psi, \, \bar{\psi} : 2 \text{ component spinors (gaugino)} \end{pmatrix}$$

Symmetries

maximal U(1) subgroup

1) global symmetry $SO(4) \times U(1)_{\mathsf{R}} \supset U(1)_1 \times U(1)_2 \times U(1)_R$

2) gauge symmetry
$$v_{\alpha} \rightarrow g v_{\alpha} g^{-1}, \quad g \in U(N_c N^2)$$

Equivalent expression in which the U(1) symmetries are manifest:

$$S_{\rm m} = \frac{1}{g^2} \operatorname{Tr} \left(\frac{1}{4} |[z_m, z_n]|^2 + \frac{1}{8} [z_m, \bar{z}_m]^2 + \psi_m [\bar{z}_m, \eta] - \chi_{mn} [z_m, \psi_n] \right)$$

$$\begin{bmatrix} z_1 \equiv v_1 + iv_2, \\ z_2 \equiv v_0 + iv_3, \end{bmatrix} \psi = \begin{pmatrix} \chi_{12} \\ \eta \end{pmatrix} \quad \bar{\psi} = (\psi_1, \psi_2)$$

$$U(1) \text{ charges}$$

$$\begin{bmatrix} U(1) \text{ charges} \\ \frac{q_1}{q_2} & \frac{1}{1} & \frac{0}{1/2} & \frac{1/2}{-1/2} & \frac{1/2}{-1/2} & \frac{1}{2} \\ \eta_2 & 0 & \frac{1}{1/2} & \frac{-1/2}{-1/2} & \frac{1}{2} \\ \eta_3 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ \psi_1 & \frac{1}{2} & 0 & 0 & \frac{-1}{2} & \frac{1}{2} \\ \psi_1 & \frac{1}{2} & 0 & 0 & -1 \\ \psi_1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \psi_1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \psi_1 & \frac{1}{2} \\ \psi_1 & \frac{1}{2} & -\frac{1}{2} \\ \psi_1 & \frac{1}{2} \\ \psi_1 & \frac{1}{2$$

Orbifold projection

We keep only components that are invariant under this transformation.

$$\begin{aligned} \underline{Orbifolded \ action} \quad \mathbf{e}_{1} &= (1,0), \quad \mathbf{e}_{2} &= (0,1), \quad \mathbf{k} = (k_{1},k_{2}) \in \mathbb{Z}_{N}^{2} \\ S_{\text{orb}} &= \frac{1}{g^{2}} \operatorname{Tr} \sum_{\mathbf{k}} \left(\frac{1}{4} \Big| z_{m}(\mathbf{k}) z_{n}(\mathbf{k} + \mathbf{e}_{m}) - z_{n}(\mathbf{k}) z_{m}(\mathbf{k} + \mathbf{e}_{n}) \Big|^{2} \\ &+ \frac{1}{8} \Big(z_{m}(\mathbf{k}) \overline{z}_{m}(\mathbf{k}) - \overline{z}_{m}(\mathbf{k} - \mathbf{e}_{m}) z_{m}(\mathbf{k} - \mathbf{e}_{m}) \Big)^{2} \\ &+ \psi_{m}(\mathbf{k}) \Big(\overline{z}_{m}(\mathbf{k}) \eta(\mathbf{k}) - \eta(\mathbf{k} + \mathbf{e}_{m}) \overline{z}_{m}(\mathbf{k}) \Big) \\ &- \frac{1}{2} \chi_{mn}(\mathbf{k}) \Big(z_{m}(\mathbf{k}) \psi_{n}(\mathbf{k} + \mathbf{e}_{n}) - \psi_{n}(\mathbf{k}) z_{m}(\mathbf{k} + \mathbf{e}_{n}) - (m \leftrightarrow n) \Big) \Big) \end{aligned}$$

Kinetic terms

We introduce kinetic terms and a lattice spacing by shifting

$$z_m(\mathbf{k}) \to \frac{1}{a} + z_m(\mathbf{k}), \quad \overline{z}_m(\mathbf{k}) \to \frac{1}{a} + \overline{z}_m(\mathbf{k}), \quad a \in \mathbb{R}_+$$

easy to see kinetic terms

or equivalently, $z_m(\mathbf{k})$ are regarded as link variables:

$$z_m(\mathbf{k}) \to \frac{1}{a} e^{a z_m(\mathbf{k})} \equiv U_m(\mathbf{k}), \ \bar{z}_m(\mathbf{k}) \to \frac{1}{a} e^{a \bar{z}_m(\mathbf{k})} \equiv \bar{U}_m(\mathbf{k})$$

Finally, we get the action:

$$S_{lat}^{d=2} = \frac{1}{g^2} \operatorname{Tr} \sum_{\mathbf{k}} \left(\frac{1}{4} \Big| \nabla_m^+ z_n(\mathbf{k}) - \nabla_n^+ z_m(\mathbf{k}) + z_m(\mathbf{k}) z_n(\mathbf{k} + \mathbf{e}_m) - z_n(\mathbf{k}) z_m(\mathbf{k} + \mathbf{e}_n) \Big|^2 + \frac{1}{8} \Big(\nabla_m^+ \big(z_m(\mathbf{k}) + \bar{z}_m(\mathbf{k}) \big) + z_m(\mathbf{k} + \mathbf{e}_m) \bar{z}_m(\mathbf{k} + \mathbf{e}_m) - \bar{z}_m(\mathbf{k}) z_m(\mathbf{k}) \Big)^2 + \psi_m(\mathbf{k}) \Big(\nabla_m^+ \eta(\mathbf{k}) - \bar{z}_m(\mathbf{k}) \eta(\mathbf{k}) + \eta(\mathbf{k} + \mathbf{e}_m) \bar{z}_m(\mathbf{k}) \Big) + \frac{1}{2} \chi_{mn}(\mathbf{k}) \Big(\nabla_m^+ \psi_n(\mathbf{k}) + z_m(\mathbf{k}) \psi_n(\mathbf{k} + \mathbf{e}_m) - \psi_n(\mathbf{k}) z_m(\mathbf{k} + \mathbf{e}_n) - (m \leftrightarrow n) \Big) \Big)$$

where

$$\nabla_m^+ \phi(\mathbf{k}) = \frac{1}{a} \left(\phi(\mathbf{k} + \mathbf{e}_m) - \phi(\mathbf{k}) \right).$$
2D *N*=(2,2) SYM theory with the gauge group $U(N_c)$.

Preserved Supersymmetry

Original matrix theory

$$S_{\rm m} = \frac{1}{g^2} \operatorname{Tr} \left(-\frac{1}{4} [v_{\alpha}, v_{\beta}]^2 + i \bar{\psi} \bar{\sigma}_{\alpha} [v_{\alpha}, \psi] \right)$$

SUSY

$$\delta v_{\alpha} = -i\bar{\psi}\bar{\sigma}_{\alpha}\xi + i\bar{\xi}\bar{\sigma}_{\alpha}\psi,$$

$$\delta \psi = -iv_{\alpha\beta}\sigma_{\alpha\beta}\xi,$$

$$\delta\bar{\psi} = iv_{\alpha\beta}\bar{\xi}\bar{\sigma}_{\alpha\beta},$$

with

$$\xi = \begin{pmatrix} \hat{\kappa}_{12} \\ \hat{\kappa} \end{pmatrix}, \ \bar{\xi} = (\hat{\kappa}_1, \hat{\kappa}_2) \qquad \qquad \text{Recall} \qquad \psi = \begin{pmatrix} \chi_{12} \\ \eta \end{pmatrix}, \ \bar{\psi} = (\psi_1, \psi_2)$$

The variation of the action is zero when the SUSY parameters are c-numbes;

 $\kappa, \kappa_{12}, \kappa_1, \kappa_2 \propto \mathbf{1}_{N_c N^2}$

Projection of the supersymmetry

The supersymmetry parameters have definite U(1) charges:

The only preserved supersymmetry is the one corresponding to K.

$$\delta z_{m} = 2i\hat{\kappa}\psi_{m} + 2i\hat{\kappa}_{m}\eta,$$

$$\delta \bar{z}_{m} = -2i\hat{\kappa}_{mn}\psi_{n} - 2i\hat{\kappa}_{n}\chi_{mn},$$

$$\delta \eta = \frac{i}{2}\hat{\kappa}[z_{m}, \bar{z}_{m}] + \frac{i}{2}\hat{\kappa}_{mn}[z_{m}, z_{n}],$$

$$\delta \chi_{12} = -i\hat{\kappa}[\bar{z}_{1}, \bar{z}_{2}] - \frac{i}{2}\hat{\kappa}_{12}[z_{m}, \bar{z}_{m}],$$

$$\delta \psi_{m} = i\hat{\kappa}_{n}\left([z_{m}, \bar{z}_{n}] - \frac{1}{2}\delta_{mn}[z_{l}, \bar{z}_{l}]\right),$$

$$NBIA$$

$$15$$

Q-invariant expression of the lattice action

$$S_{lat}^{d=2} = \frac{1}{g^2} \operatorname{Tr} \sum_{\mathbf{k}} \left(\frac{1}{4} \Big| \nabla_m^+ z_n(\mathbf{k}) - \nabla_n^+ z_m(\mathbf{k}) + z_m(\mathbf{k}) z_n(\mathbf{k} + \mathbf{e}_m) - z_n(\mathbf{k}) z_m(\mathbf{k} + \mathbf{e}_n) \Big|^2 \\ + \frac{1}{8} \Big(\nabla_m^+ \Big(z_m(\mathbf{k}) + \bar{z}_m(\mathbf{k}) \Big) + z_m(\mathbf{k} + \mathbf{e}_m) \bar{z}_m(\mathbf{k} + \mathbf{e}_m) - \bar{z}_m(\mathbf{k}) z_m(\mathbf{k}) \Big)^2 \\ + \psi_m(\mathbf{k}) \Big(\nabla_m^+ \eta(\mathbf{k}) - \bar{z}_m(\mathbf{k}) \eta(\mathbf{k}) + \eta(\mathbf{k} + \mathbf{e}_m) \bar{z}_m(\mathbf{k}) \Big) \\ + \frac{1}{2} \chi_{mn}(\mathbf{k}) \Big(\nabla_m^+ \psi_n(\mathbf{k}) + z_m(\mathbf{k}) \psi_n(\mathbf{k} + \mathbf{e}_m) - \psi_n(\mathbf{k}) z_m(\mathbf{k} + \mathbf{e}_n) - (m \leftrightarrow n) \Big) \Big) \\ = \frac{1}{g^2} \operatorname{Tr} \sum_{\mathbf{k}} Q \Big(\eta(\mathbf{k}) \Big(\nabla_m^- (z_m(\mathbf{k}) + \bar{z}_m(\mathbf{k})) \\ + z_m(\mathbf{k}) \bar{z}_m(\mathbf{k}) - \bar{z}_m(\mathbf{k} - \mathbf{e}_m) z_m(\mathbf{k} - \mathbf{e}_m) \Big) \\ + \chi_{mn}(\mathbf{k}) \Big(\nabla_n^+ \bar{z}_m(\mathbf{k}) - \nabla_m^+ \bar{z}_n(\mathbf{k}) \\ + \bar{z}_m(\mathbf{k} + \mathbf{e}_n) \bar{z}_n(\mathbf{k}) - \bar{z}_n(\mathbf{k} + \mathbf{e}_m) \bar{z}_m(\mathbf{k}) \Big) \Big)$$

Q-invariance is manifest since Q is nilpotent: Q^2=0.

List of constructed lattice theories by orbifolding

§ 3 Relation between Geometrical Discretization and Orbifolding

P.H.Damgaard and S.M. (2007) P.H.Damgaard and S.M. (2008)

<u>Catterall's discretization rules</u> (review) S.Catterall (2004)

Starting with a BRST invariant continuum theory with conditions:

1) kinetic terms are written by complex differential derivatives:

$$\mathcal{D}_{\mu} = \partial_{\mu} + i(A_{\mu} + iB_{\mu}) = \partial_{\mu} + \mathcal{A}_{\mu}$$
$$\bar{\mathcal{D}}_{\mu} = \partial_{\mu} - i(A_{\mu} - iB_{\mu}) = \partial_{\mu} + \bar{\mathcal{A}}_{\mu}$$

2) all the fields (including fermions) are in p-forms:

$$S = S[\mathcal{D}_{\mu}, \, \bar{\mathcal{D}}_{\mu}, \, f_{\mu_1 \cdots \mu_p}]$$

Prescription to construct lattice action by Catterall

1) Complex covariant derivatives are mapped to link variables:

2) p-form field is mapped to a variable on a p-cell:

$$f_{\mu_1\cdots\mu_p}(x) \to f_{\mu_1\cdots\mu_p}(\mathbf{k})$$

- 3) Curl-like differential is mapped to a forward covariant difference: $\mathcal{D}_{\mu}f_{\nu}(x) \rightarrow \mathcal{U}_{\mu}(\mathbf{k})f_{\nu}(\mathbf{k}+\hat{\mu}) - f_{\nu}(\mathbf{k})\mathcal{U}_{\mu}(\mathbf{k}+\hat{\nu})$
- 4) Divergent-like differential is mapped to a backward covariant difference:

$$\overline{\mathcal{D}}_{\mu}f_{\mu}(x) \to f_{\mu}(\mathbf{k})\overline{\mathcal{U}}_{\mu}(\mathbf{k}) - \overline{\mathcal{U}}_{\mu}(\mathbf{k} - \widehat{\mu})f_{\mu}(\mathbf{k} - \widehat{\mu})$$

27/11/2008

<u>Claim</u>

This prescription is automatically reproduced by orbifolding.

P.H.Damgaard and S.M. (2008)

Additional condition

1) all the fields (including fermions) are in p-forms

$$S = S[\mathcal{D}_{\mu}, \, \bar{\mathcal{D}}_{\mu}, \, f_{\mu_1 \cdots \mu_p}]$$

2) kinetic terms are written by complex differential derivatives

$$\mathcal{D}_{\mu} = \partial_{\mu} + i(A_{\mu} + iB_{\mu}) = \partial_{\mu} + \mathcal{A}_{\mu}$$
$$\bar{\mathcal{D}}_{\mu} = \partial_{\mu} - i(A_{\mu} - iB_{\mu}) = \partial_{\mu} + \bar{\mathcal{A}}_{\mu}$$

3) the theory has U(1)^d symmetries with charge assignment:

$$\mathcal{D}_{\mu}: \ \widehat{\mu} = (0, \cdots, 1, \cdots, 0)$$
$$\overline{\mathcal{D}}_{\mu}: \ -\widehat{\mu} = (0, \cdots, -1, \cdots, 0)$$
$$f_{\mu_{1}}^{\pm} \cdots \mu_{p}: \pm (\widehat{\mu}_{1} + \cdots + \widehat{\mu}_{p})$$

٠

1) dimensionally reduce the continuum theory to 0-dim

We get the action of a mother theory (matrix theory)

$$S = S[\mathcal{A}_{\mu}, \, \bar{\mathcal{A}}_{\mu}, \, f^{\pm}_{\mu_1 \cdots \mu_p}]$$

2) Using the U(1) charge, we carry out the orbifold projection:

$$\mathcal{A}_{\mu} = \sum \mathcal{A}_{\mu}(\mathbf{k}) \otimes E_{\mathbf{k},\mathbf{k}+\hat{\mu}}$$
$$\bar{\mathcal{A}}_{\mu} = \sum \bar{\mathcal{A}}_{\mu}(\mathbf{k}) \otimes E_{\mathbf{k}+\hat{\mu},\mathbf{k}}$$
$$f_{\mu_{1}\cdots\mu_{p}}^{+} = \sum f_{\mu_{1}\cdots\mu_{p}}^{+}(\mathbf{k}) \otimes E_{\mathbf{k},\mathbf{k}+\hat{\mu}_{1}+\cdots+\hat{\mu}_{p}}$$
$$f_{\mu_{1}\cdots\mu_{p}}^{-} = \sum f_{\mu_{1}\cdots\mu_{p}}^{-}(\mathbf{k}) \otimes E_{\mathbf{k}+\hat{\mu}_{1}+\cdots+\hat{\mu}_{p},\mathbf{k}}$$

We obtain 1) and 2) in the prescription

NOTE

This is more than the prescription since we can decide the direction of the cell-variables automatically from the assignment of the U(1) charge.

Since the continuum theory is supposed to be Lorentz and U(1) invariant, possible derivative terms are in the form:

curl-like differential

Covariant Forward Difference

divergent-like differential

$$\mathcal{D}_{\mu}f_{\mu\nu_{2}\cdots\nu_{p}}^{-} \sim [\mathcal{A}_{\mu}, f_{\mu\nu_{2}\cdots\nu_{p}}^{-}]$$

$$\overline{\mathcal{D}}_{\mu}f_{\mu\nu_{2}\cdots\nu_{p}}^{+} \sim [\overline{\mathcal{A}}_{\mu}, f_{\mu\nu_{2}\cdots\nu_{p}}^{+}]$$
orbifolding & deconstruction
$$\mathcal{D}_{\mu_{i}}f_{\mu_{1}\cdots\mu_{p}}^{-}(x) \rightarrow \mathcal{U}_{\mu_{i}}(\mathbf{k} + \mu - \hat{\mu}_{i})f_{\mu_{1}\cdots\mu_{p}}^{-}(\mathbf{k}) - f_{\mu_{1}\cdots\mu_{p}}^{-}(\mathbf{k} - \hat{\mu}_{i})\mathcal{U}_{\mu_{i}}(\mathbf{k} - \mathbf{e}_{\mu_{i}}),$$

$$\overline{\mathcal{D}}_{\mu_{i}}f_{\mu_{1}\cdots\mu_{p}}^{+}(x) \rightarrow f_{\mu_{1}\cdots\mu_{p}}^{+}(\mathbf{k})\overline{\mathcal{U}}_{\mu_{i}}(\mathbf{k} + \mu - \hat{\mu}_{i}) - \overline{\mathcal{U}}_{\mu_{i}}(\mathbf{k} - \hat{\mu}_{i})f_{\mu_{1}\cdots\mu_{p}}^{+}(\mathbf{k} - \hat{\mu}_{i}),$$

$$(\mu \equiv \hat{\mu}_{1} + \cdots + \hat{\mu}_{p})$$
We obtain 3) and 4) in the prescription

Catterall's scheme to construct a lattice theory is a short-cut rule of orbifolding.

§ 4 SUSY in Link Approach from Orbifolding

P.H.Damgaard and S.M. (2007)

 $\begin{aligned} \{Q,Q_1,Q_2,Q_{12}\} & \text{are supposed to live on links,} \\ (k,k+a),(k,k+a_1),(k,k+a_2),(k,k+a_{12}) \end{aligned}$

respectively and \mathbf{a}_A satisfy

 $a + a_m = e_m$, $a_{12} + a_m = -|\epsilon_{mn}|e_n$, $a + a_1 + a_2 + a_{12} = 0$.

They showed that the algebra is satisfied by

 $\delta \Phi(\mathbf{k}) = 2i\kappa(Q\Phi)(\mathbf{k}) - 2i\kappa_{12}(Q_{12}\Phi)(\mathbf{k}) + 2i\kappa_m(Q_m\Phi)(\mathbf{k})$ with

$$\begin{split} \delta z_m(\mathbf{k}) &= 2i\kappa\psi_m(\mathbf{k}) + 2i\kappa_m\eta(\mathbf{k}),\\ \delta \bar{z}_m(\mathbf{k}) &= -2i\kappa_{mn}\psi_n(\mathbf{k} - \mathbf{e}_n) - 2i\kappa_n\chi_{mn}(\mathbf{k}),\\ \delta \eta(\mathbf{k}) &= \frac{i}{2}\kappa\Big(z_m(\mathbf{k})\bar{z}_m(\mathbf{k}) - \bar{z}_m(\mathbf{k} - \mathbf{e}_m)z_m(\mathbf{k} - \mathbf{e}_m)\Big)\\ &+ i\kappa_{12}\Big(z_1(\mathbf{k} - \mathbf{e}_1 - \mathbf{e}_2)z_2(\mathbf{k} - \mathbf{e}_2) - z_2(\mathbf{k} - \mathbf{e}_1 - \mathbf{e}_2)z_1(\mathbf{k} - \mathbf{e}_1)\Big),\\ \delta \chi_{12}(\mathbf{k}) &= -i\kappa\Big(\bar{z}_1(\mathbf{k} + \mathbf{e}_2)\bar{z}_2(\mathbf{k}) - \bar{z}_2(\mathbf{k} + \mathbf{e}_1)\bar{z}_1(\mathbf{k})\Big)\\ &- \frac{i}{2}\kappa_{12}\Big(z_m(\mathbf{k})\bar{z}_m(\mathbf{k}) - \bar{z}_m(\mathbf{k} - \mathbf{e}_m)z_m(\mathbf{k} - \mathbf{e}_m)\Big),\\ \delta \psi_m(\mathbf{k}) &= i\kappa_n\Big(z_m(\mathbf{k} + \mathbf{e}_n)\bar{z}_n(\mathbf{k} + \mathbf{e}_m) - \bar{z}_n(\mathbf{k})z_m(\mathbf{k})\\ &- \frac{1}{2}\delta_{mn}\Big(z_l(\mathbf{k})\bar{z}_l(\mathbf{k}) - \bar{z}_l(\mathbf{k} - \mathbf{e}_l)z_l(\mathbf{k} - \mathbf{e}_l)\Big)\Big). \end{split}$$

27/11/2008

NBIA

and the lattice action,

$$\begin{split} S = & \frac{1}{g^2} \mathrm{Tr} \sum_{\mathbf{k}} \left(\frac{1}{4} \Big| z_{\mu}(\mathbf{k}) z_{\nu}(\mathbf{k} + \mathbf{e}_{\mu}) - z_{\nu}(\mathbf{k}) z_{\mu}(\mathbf{k} + \mathbf{e}_{n}) \Big|^2 \\ & + \frac{1}{8} \Big(z_{\mu}(\mathbf{k}) \overline{z}_{\mu}(\mathbf{k}) - \overline{z}_{\mu}(\mathbf{k} - \mathbf{e}_{\mu}) z_{\mu}(\mathbf{k} - \mathbf{e}_{\mu}) \Big)^2 \\ & + \eta(\mathbf{k}) \Big(\overline{z}_{\mu}(\mathbf{k} + \mathbf{a} - \mathbf{e}_{\mu}) \psi_{\mu}(\mathbf{k} + \mathbf{a} - \mathbf{e}_{\mu}) - \psi_{\mu}(\mathbf{k} + \mathbf{a}) \overline{z}_{\mu}(\mathbf{k} + \mathbf{a}) \Big) \\ & - \frac{1}{2} \chi_{\mu\nu}(\mathbf{k}) \Big(z_{\mu}(\mathbf{k}) \psi_{n}(\mathbf{k} + \mathbf{e}_{\mu}) - \psi_{\nu}(\mathbf{k}) z_{\mu}(\mathbf{k} + \mathbf{a}_{\nu}) \\ & - z_{\nu}(\mathbf{k}) \psi_{\mu}(\mathbf{k} + \mathbf{e}_{\nu}) + \psi_{\mu}(\mathbf{k}) z_{\nu}(\mathbf{k} + \mathbf{a}_{\mu}) \Big), \end{split}$$
 satisfy
$$Q_{A}S = 0 \quad \text{almost the same with the orbifold action}$$

The continuum limit is 2D N=(2,2) SYM theory.

From Orbifolding to Link Apploach

Recall the U(1) charges of the fields in the mother theory with 4 SUSY

We can carry out the orbifold projection using these U(1) charges.

Coincide with the lattice action of Link Approach

Supersymmetry of this theory

The actions obtained by Orbifolding and Link Approach are identical.

Action of Orbifolded Matrix Theory

from the view point of matrix theory

• What is the "preserved" SUSY in the matrix theory sense?

• Are they really preserved?

Deformation of supersymmetry parameters

SUSY transformation of the mother theory (matrix theory):

$$\begin{split} \delta z_m &= 2i\hat{\kappa}\psi_m + 2i\hat{\kappa}_m\eta,\\ \delta \bar{z}_m &= -2i\hat{\kappa}_{mn}\psi_n - 2i\hat{\kappa}_n\chi_{mn},\\ \delta \eta &= \frac{i}{2}\hat{\kappa}[z_m, \bar{z}_m] + \frac{i}{2}\hat{\kappa}_{mn}[z_m, z_n],\\ \delta \chi_{12} &= -i\hat{\kappa}[\bar{z}_1, \bar{z}_2] - \frac{i}{2}\hat{\kappa}_{12}[z_m, \bar{z}_m],\\ \delta \psi_m &= i\hat{\kappa}_n\left([z_m, \bar{z}_n] - \frac{1}{2}\delta_{mn}[z_l, \bar{z}_l]\right), \end{split}$$

- RECALL

 $\hat{\kappa}_A$: anti-commuting c-numbers with U(1) charges (a = 0) $\frac{\hat{\kappa} \quad \hat{\kappa}_{12} \quad \hat{\kappa}_1 \quad \hat{\kappa}_2}{0 \quad -e_1 - e_2 \quad e_1 \quad e_2}$

only SUSY corresponding to $\widehat{\kappa}$ survives.

back

In order that all $\hat{\kappa}_A$ survive after orbifolding, we reinterpret them as matrices:

$$\widehat{\kappa}_A \equiv \kappa_A \otimes V_A$$

with

$$\hat{\kappa} = \kappa \otimes \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} \qquad \hat{\kappa}_{12} = \kappa_{12} \otimes \begin{pmatrix} 0 & & \\ 1 & & 0 & \\ & \ddots & \\ & & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 & & \\ & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

$$\hat{\kappa}_{1} = \kappa_{1} \otimes \begin{pmatrix} 0 & 1 & & \\ & \ddots & \\ & & 0 & 1 \\ & & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} \qquad \hat{\kappa}_{2} = \kappa_{2} \otimes \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 & & \\ & \ddots & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$
Substituting to
the SUSY transformation
of matrices
orbifolding

the same SUSY transformation given in Link Approach.

A Comment ~ supersymmetric Wilson loop ~

Supersymmetric Wilson loop of N=4 SYM

Drukker-Gross-Ooguri (1999)

$$W(C) = \frac{1}{N} \operatorname{Tr} \mathcal{P}\left(i \int \left(A_{\mu} \dot{x}^{\mu}(s) + i \Phi_{i} \dot{y}^{i}(s)\right) ds\right), \begin{array}{l} \mu, \nu = 0, \cdots, 3, \\ i, j = 1, \cdots, 6. \end{array}$$

This is half-BPS when

$$\dot{x}_{\mu}^2 - \dot{y}_i^2 = 0.$$

One specific choice

$$x^{0} = s, \quad y^{1} = \pm s, \quad \text{others} = 0.$$
$$= \frac{1}{N} \operatorname{Tr} \mathcal{P}\left(i \int \left(A_{0} \pm i \Phi_{1}\right) ds\right) = \frac{1}{N} \operatorname{Tr} \mathcal{P}\left(i \int Z_{1}(\bar{Z}_{1}) ds\right)$$

The combination of A_{μ} and Φ_i is not unnatural in this sense.

Is the supersymmetric Wilson loop essence of the SUSY lattice formulation?

27/11/2008

W

Future Problems

Numerical simulations

- \checkmark recovering of the supersymmetries in the continuum limit
- \checkmark comparison with exact results
- \checkmark non-perturbative estimation of non-BPS operators

• Connection to the superstring theory

- ✓ relation to IIB matrix theory?
- ✓ D-brane interpretation?
- ✓ AdS/CFT correspondence?

Matter theories in detail

- ✓ Why did the procedure work?
 ✓ other theories with matter
- ✓ higher-dimensional theory
- ✓ connection to string theory?

§ A Orbifold Lattice Gauge Theory with Matter

S.M. 0805.4491

We start with the dimensional reduced theory of 4D N=2 SYM:

$$\begin{split} S_{\rm m} &= \frac{1}{g^2} {\rm Tr} \left(-\frac{1}{4} [v_{\alpha}, v_{\beta}]^2 + \bar{\psi} \bar{\Sigma}_{\alpha} [v_{\alpha}, \psi] \right) \qquad (\alpha, \beta = 0, \cdots, 5) \\ & \Gamma_{\alpha} = \begin{pmatrix} 0 & \Sigma_{\alpha} \\ \bar{\Sigma}_{\alpha} & 0 \end{pmatrix} : \text{6D gamma matrices} \\ &= {\rm Tr} \left(\frac{1}{4} |[z_a, z_b]|^2 + \frac{1}{2} [z_a, z_a] D - \frac{1}{2} D^2 \qquad (a, b, c = 1, 2, 3) \\ &+ \psi_a [\bar{z}_a, \eta] + \xi_{ab} [z_a, \psi_b] + \frac{1}{2} \chi_{abc} [\bar{z}_a, \xi_{bc}] \right) \\ & \left\{ \begin{aligned} z_a \equiv v_{2a-2} + i v_{2a-1} \\ \psi^T \equiv (\eta, \xi_{23}, \xi_{31}, \xi_{12}), \\ \bar{\psi} \equiv (-\psi_1, \chi_{123}, \psi_3, -\psi_2). \end{aligned} \right. \end{split}$$

$$\begin{cases} \Phi \equiv z_3, \quad \bar{\Phi} \equiv \bar{z}_3, \\ \bar{\eta} \equiv \psi_3, \quad \bar{\psi}_m \equiv \xi_{m3}, \quad \bar{\xi}_{12} \equiv \chi_{123} \end{cases} \\ (m, n = 1, 2) \end{cases}$$

$$= \operatorname{Tr} \left(\frac{1}{4} |[z_m, z_n]|^2 + \frac{1}{2} ([z_m, z_m] + [\Phi, \bar{\Phi}]) D - \frac{1}{2} D^2 + \frac{1}{4} |[Z_m, \Phi]|^2 \\ + \eta [\bar{z}_m, \psi_m] + \frac{1}{2} \xi_{mn} ([z_m, \psi_n] - [z_n, \psi_m]) \\ + \bar{\eta} [z_m, \bar{\psi}_m] + \frac{1}{2} \bar{\xi}_{mn} ([\bar{z}_m, \bar{\psi}_n] - [\bar{z}_n, \bar{\psi}_m]) \\ + \bar{\eta} [\bar{\Phi}, \eta] - \bar{\psi}_m [\Phi, \psi_m] + \frac{1}{2} \bar{\xi}_{mn} [\bar{\Phi}, \xi_{mn}] \right)$$

$$usual orbifold lattice theory of 2D N=(4,4) SYM$$

$$\begin{array}{c} \text{continuum limit} \\ z_m(\mathbf{k}) \rightarrow \phi_m(x) + iA_m(x), \\ \Phi(\mathbf{k}) \rightarrow \phi_3(x) + i\phi_4(x) \end{array}$$

Idea

1) Let us assume the size of the matrices to be $(N_c + N_f)N^2$.

parity oddn

2) The orbifold projection is carried out by

$$\gamma_a: \Phi \to \omega^{r_a} \Omega_a \Phi \Omega_a^{-1}, \ (a = 1, 2)$$

with

$$\begin{cases} \Omega_1 & \equiv \left(\mathbf{1}_{N_c} \otimes U \otimes \mathbf{1}_N \right) \oplus \left(\mathbf{1}_{N_f} \otimes U \otimes \mathbf{1}_N \right), \\ \Omega_2 & \equiv \left(\mathbf{1}_{N_c} \otimes \mathbf{1}_N \otimes U \right) \oplus \left(\mathbf{1}_{N_f} \otimes \mathbf{1}_N \otimes U \right), \end{cases} \qquad U \equiv \begin{pmatrix} \omega^1 & & \\ & \ddots & \\ & & \omega^N \end{pmatrix}$$

3) We further project out blocks using Z_2 transformation,

$$s: \Phi \to \pm P \Phi P \quad P = \begin{pmatrix} \mathbf{1}_{N_c N^2} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1}_{N_f N^2} \end{pmatrix}$$

"parity" of the field
NBIA

$$\begin{cases} z_m = \left| \frac{z_m(\mathbf{k})}{\hat{z}_m(\mathbf{k})} \right| \, \bar{z}_m = \left| \frac{\bar{z}_m(\mathbf{k})}{\hat{z}_m(\mathbf{k})} \right| \quad D = \left| \frac{d(\mathbf{k})}{\hat{d}(\mathbf{k})} \right| \\ \psi_m = \left| \frac{\psi_m(\mathbf{k})}{\hat{\psi}_m(\mathbf{k})} \right| \quad \eta = \left| \frac{\lambda(\mathbf{k})}{\hat{\lambda}(\mathbf{k})} \right| \quad \xi_{12} = \left| \frac{\lambda_{12}(\mathbf{k})}{\hat{\lambda}_{12}(\mathbf{k})} \right| \\ \hat{\lambda}_{12}(\mathbf{k}) \end{cases}$$

$$\begin{cases} \Phi = \begin{pmatrix} \phi(\mathbf{k}) \\ \bar{\phi}(\mathbf{k}) \end{pmatrix} \bar{\Phi} = \begin{pmatrix} \bar{\phi}(\mathbf{k}) \\ \bar{\bar{\phi}}(\mathbf{k}) \end{pmatrix} \\ \bar{\eta} = \begin{pmatrix} \bar{\psi}(\mathbf{k}) \\ \bar{\psi}(\mathbf{k}) \end{pmatrix} \bar{\psi}_m = \begin{pmatrix} \psi_m(\mathbf{k}) \\ \bar{\psi}_m(\mathbf{k}) \end{pmatrix} \bar{\xi}_{12} = \begin{pmatrix} \bar{\psi}_{12}(\mathbf{k}) \\ \bar{\psi}_{12}(\mathbf{k}) \end{pmatrix} \end{cases}$$

27/11/2008

Strategy

- 1) Substitute the matrices into the action of mother theory
- 2) Shift $\{z_m(\mathbf{k}), \overline{z}_m(\mathbf{k})\}$ as well as $\{\widehat{z}_m(\mathbf{k}), \overline{\widehat{z}}_m(\mathbf{k})\}$ by 1/a:

$$egin{aligned} &z_m(\mathbf{k})
ightarrow 1/a + z_m(\mathbf{k}) & \widehat{z}_m(\mathbf{k})
ightarrow 1/a + \widehat{z}_m(\mathbf{k}) \ &\overline{z}_m(\mathbf{k})
ightarrow 1/a + \overline{z}_m(\mathbf{k}) & \overline{\widehat{z}}_m(\mathbf{k})
ightarrow 1/a + \overline{\widehat{z}}_m(\mathbf{k}) \end{aligned}$$

3) Fix the fields with "hat" to be zero with keeping Q-symmetry:

$$\hat{z}_m(\mathbf{k}) = \hat{\overline{z}}_m(\mathbf{k}) = \hat{d}(\mathbf{k}) = 0,$$
$$\hat{\lambda}(\mathbf{k}) = \hat{\lambda}_m(\mathbf{k}) = \hat{\lambda}_{12}(\mathbf{k}) = 0$$

$$\begin{split} S_{\text{matter}} &= \\ &- \frac{1}{2} \bar{\phi}(\mathbf{k}) [(\nabla_m^- + z_m(\mathbf{k}))(\nabla_m^+ - \bar{z}_m(\mathbf{k})) + (\nabla_m^+ - \bar{z}_m(\mathbf{k} - \hat{m}))(\nabla_m^- + z_m(\mathbf{k} - \hat{m}))] \phi(\mathbf{k}) \\ &- \frac{1}{2} \bar{\phi}(\mathbf{k}) [(\nabla_m^- + z_m(\mathbf{k}))(\nabla_m^+ - \bar{z}_m(\mathbf{k})) + (\nabla_m^+ - \bar{z}_m(\mathbf{k} - \hat{m}))(\nabla_m^- + z_m(\mathbf{k} - \hat{m}))] \bar{\phi}(\mathbf{k}) \\ &+ \frac{1}{2} \text{Tr} \left(\phi(\mathbf{k}) \bar{\phi}(\mathbf{k}) - \bar{\phi}(\mathbf{k}) \tilde{\phi}(\mathbf{k}) \right)^2 \\ &+ \bar{\psi}(\mathbf{k}) (\nabla_m^- + z_m(\mathbf{k})) \psi_m(\mathbf{k} + \hat{m}) \\ &+ \bar{\psi}(\mathbf{k}) (\nabla_m^- + z_m(\mathbf{k})) \bar{\psi}_m(\mathbf{k} + \hat{m}) \\ &- \frac{1}{2} \bar{\psi}_{mn}(\mathbf{k} + \hat{m} + \hat{n}) \left[(\nabla_m^+ - \bar{z}_m(\mathbf{k} + \hat{n})) \psi_n(\mathbf{k} + \hat{n}) - (\nabla_n^+ - \bar{z}_n(\mathbf{k} + \hat{m})) \psi_m(\mathbf{k} + \hat{m}) \right] \\ &- \frac{1}{2} \left[\bar{\psi}_n(\mathbf{k} + \hat{m}) (\nabla_m^+ - \bar{z}_m(\mathbf{k})) \bar{\psi}_{mn}(\mathbf{k}) - \tilde{\psi}_m(\mathbf{k} + \hat{n}) (\nabla_n^+ - \bar{z}_n(\mathbf{k})) \bar{\psi}_{mn}(\mathbf{k})) \right] \\ &+ \sqrt{2} i \left(\bar{\psi}(\mathbf{k}) \lambda(\mathbf{k}) \phi(\mathbf{k}) - \tilde{\phi}(\mathbf{k}) \lambda(\mathbf{k}) \bar{\psi}(\mathbf{k}) - \tilde{\psi}_m(\mathbf{k}) \lambda_m(\mathbf{k}) \bar{\phi}(\mathbf{k} + \hat{m}) + \bar{\phi}(\mathbf{k}) \lambda_m(\mathbf{k}) \psi_m(\mathbf{k} + \hat{m}) \right) \\ &+ \frac{1}{2} \bar{\psi}_{mn}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) - \frac{1}{2} \tilde{\phi}(\mathbf{k} + \hat{m} + \hat{n}) \lambda_{mn}(\mathbf{k}) \phi(\mathbf{k}) \right]$$

• The continuum limit gives the matter action of two-dimensional N=(2,2) Theory:

dimensionally reduced theory of

$$\mathcal{L}_{4D} = \int d^2\theta d^2\bar{\theta}^2 \Big(\bar{\Phi}e^{2V}\Phi + \tilde{\Phi}e^{-2V}\bar{\tilde{\Phi}}\Big)$$

- Q-symmetry is preserved.
- There is no fermion/boson doubler.

(kinetic term: $\phi \nabla_+ \nabla_- \phi$)

• Chiral symmetry is explicitly broken.