Challenges and Perspectives in Quarkonium Polarization

Ilse Krätschmer (Hephy Vienna)

Spaatind 2012

Outline

- Introduction to Quarkonium Physics
- Quarkonium Polarization Models
- New Perspectives on Quarkonium Polarization
- Recent Results on Quarkonium Polarization
- Challenges Related to the Measurement of Quarkonium Polarization

Introduction

• Quarkonia are bound states of a heavy quark and its antiquark

- Quarkonium production rate at LHC is very high ($\approx 10^8 \text{ J/\psi's}$ for L_{int} = 1 fb⁻¹ at p_T(J/ ψ) > 6.5 GeV/c)
- Quarkonium production is studied in all four LHC experiments
- QCD can be probed through quarkonium production properties, in particular differential cross sections and spin alignments

Quarkonium Spectrum

Ilse Krätschmer (Hephy Vienna)

Quarkonium Polarization

where λ_{θ} , λ_{Φ} , $\lambda_{\theta\Phi}$ are polarization parameters

Quarkonium Polarization

• Two approaches: Color Singlet Model (CSM), Non Relativistic QCD (NRQCD)

- CDF results seem to exclude both models
- Note: CDF only measured polar angle distribution which allows ambiguous interpretations

Experimental Results for J/ ψ Polarization

Need to Measure Full Angular Distribution

- Measure angular decay distribution (three polarization parameters): Two very different physical cases are indistinguishable if only λ_{θ} is measured.
- Measure be able t

ation in at least two reference frames to experimental results

• Observed

Frame Independent Parameter

Define frame invariant parameters such as λ from the full angular distribution of a given frame $\lambda_{g,\overline{h}} \mathcal{S} \mathcal{A}_{\varphi,g} \mathcal{S}} = \tilde{\lambda}^{\tilde{\lambda}} = \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \tilde{\lambda}_{\varphi}} \frac{\lambda_{g} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$ $\tilde{\lambda} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$ $\lambda_{\vartheta} = -1$ $\lambda_{\omega} = 0$ λ_{ϑ} = +1 $\lambda_{\omega} = 0$ $\lambda_{\vartheta} = +1/5$ $\lambda_{\omega} = +1/5$ $\begin{array}{c} \begin{array}{c} +1\\ \lambda_{\vartheta} = -1/3\\ \lambda_{\varphi} = +1/3 \end{array} \end{array} \quad \tilde{\lambda} = +1\tilde{\lambda} = \cdot \tilde{\lambda} = -1 \quad +\frac{1}{\lambda_{\vartheta}} = +1\\ \lambda_{\varphi} = -1 \end{array}$

Recent Results on Quarkonium Polarization

- ALICE: slightly longitudinal polarization at low p_T in HX frame CS frame compatible with no polarization
- CDF: Y(1S) compatible with no polarization Y(2S) and Y(3S) large uncertainties

No evidence of polarization!

Some More Challenges

- Since LHC is a "quarkonium production factory", statistics is not a problem. Trigger rate is very high.
- Systematic uncertainties prove difficult: Dimuon efficiency is the most important input for the extraction of polarization parameters.
- Feed-down from χ -states will be difficult to identify because it requires a precise measurement and identification of low energy photons.

 $\Upsilon(4S)$

Dimuon Efficiencies

- A very precise description of the dimuon efficiencies in the low p_T region is needed.
- Efficiency corrections depend on the kinematical variable p_T, rapidity and also on the angular configuration of the two muons.
- Tag and Probe method is standard
 Tag and Probe method is standard
 a 4 5 67 10 20 30 muon p₁
 to extract single muon efficiencies:
 utilizes a known resonance to select particles. One muon (tag) satisfying all muon requirements is paired with another muon (probe) with looser selection criteria.

Dimuon Efficiencies

- "Special" trigger paths to study efficiency are needed
- How to get dimuon efficiencies? Using the single muon efficiency and a correction factor for correlations between muons Directly using events collected without using muon information in the trigger

Summary

THANK YOU!

Experimental Results for Y(1S)

New CDF Result Run II

- Measure all three parameters simultaneously
- Measure Collins-Soper and helicity frame

