Diagnosis of Supersymmetry Breaking Mediation Schemes by Mass Reconstruction at the LHC

Bhaskar Dutta¹, Teruki Kamon^{1,2}, <u>Abram Krislock^{1,3}</u>, Kuver Sinha¹, Kechen Wang¹

¹Department of Physics & Astronomy, Mitchell Institute for Fundamental Physics, Texas A&M University

²Department of Physics, Kyungpook National University

³Department of Physics, AlbaNova, Stockholm University

Spaatind 2012 - Nordic Conference on Particle Physics

A D A A D A A D A A D A

Outline

SUSY and SUSY Breaking at LHC

- Motivation
- Kinematic Observables @ LHC

2 Results

- Diagnosis of SUSY Breaking Mediation
- Additional Result: Third Generation Squarks

Motivation Kinematic Observables @ LHC

Supersymmetry Flash Review

SUSY

	SM	ferm	ions	SUS	Y bo	sons	
Quarks	u d	C S	t b	ũ ď	С г	ĩ b	Squarks
Leptons	е v _e	$\mu u u \mu$	$ au u_ au$	$\widetilde{oldsymbol{e}}$ $\widetilde{ u_{oldsymbol{e}}}$	$rac{\widetilde{\mu}}{\widetilde{ u_{\mu}}}$	$\widetilde{ au} \ \widetilde{ u_{ au}}$	Sleptons
SM (gauge) bosons			รเ	JSY	gaugir	าดร	
g	W^{\pm} Z^{0}	$h_1^+ h_1^0$	h_{2}^{-} h_{2}^{0}	$\widetilde{m{g}} \ \widetilde{\chi}_1^0$	$\begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_2^0 \end{array}$	$ ilde{\chi}^{\pm}_{203}$	$\tilde{\chi}^0_4$

Abram Krislock

ヘロン ヘアン ヘビン ヘビン

ъ

SUSY Breaking

SUSY breaking schemes for gaugino masses

- M_a/g_a does not run at one loop in MSSM.
- Tree-level gauge-kinetic dominant + universal
 ⇒ mSUGRA → M₁ : M₂ : M₃ ≃ 1 : 2 : 6
- One-loop conformal anomaly dominant \Rightarrow Anomaly $\rightarrow M_1 : M_2 : M_3 \simeq 3.3 : 1 : 9$
- Mirage mediation: a mix of mSUGRA and anomaly

$$\frac{M_{a}(\mu)}{m_{a}^{2}(\mu)} = \left(1 + rac{\ln(M_{p}/m_{3/2})}{16\pi^{2}}g_{GUT}^{2}b_{a}lpha
ight)rac{M_{0}}{g_{GUT}^{2}}$$

 $\Rightarrow M_1: M_2: M_3 \simeq (1 + 0.66\alpha): (2 + 0.2\alpha): (6 - 1.8\alpha)$

All we must do is find the gaugino masses! We choose some benchmarks and demonstrate using ISASUGRA, PYTHIA, and PGS4.

 Abram Krislock
 January 4
 Spaatind 2012
 Diagnosis of SUSY Breaking Schemes at LHC

Motivation Kinematic Observables @ LHC

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

2 Jets + 2 τ + $\not\!\!\!E_{\Gamma}$ Signal

Dominant production at LHC is *g̃g*, *g̃q*, or *q̃q̃*

Abram Krislock	January 4	Spaatind 2012	Diagnosis of SUSY Breaking Schemes at LHC	5/16
----------------	-----------	---------------	---	------

Motivation Kinematic Observables @ LHC

Making use of Opposite Sign(OS)-Like Sign(LS) subtraction:

Abram Krislock

OS-LS

(日) (雪) (モ) (モ) (モ)

OS-LS

Making use of Opposite Sign(OS)–Like Sign(LS) subtraction:

Abram Krislock

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

OS-LS

Making use of Opposite Sign(OS)-Like Sign(LS) subtraction:

Abram Krislock

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Motivation Kinematic Observables @ LHC

Making use of Opposite Sign(OS)-Like Sign(LS) subtraction:

OS-LS

(日) (雪) (モ) (モ) (モ)

Motivation Kinematic Observables @ LHC

Ditau Invariant Mass

< ∃⇒

ъ

э

Motivation Kinematic Observables @ LHC

$\tau p_{\rm T}$ variables

< 🗇 🕨

Motivation Kinematic Observables @ LHC

Bi-Event Subtraction Technique (BEST)

Abram Krislock

ヘロン ヘアン ヘビン ヘビン

Motivation Kinematic Observables @ LHC

Bi-Event Subtraction Technique (BEST)

Motivation Kinematic Observables @ LHC

Bi-Event Subtraction Technique (BEST)

Abram Krislock

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Motivation Kinematic Observables @ LHC

Jet + Ditau Invariant Mass

Abram Krislock

イロト 不得 とくほ とくほう

ъ

Motivation Kinematic Observables @ LHC

4 Jets + ∉_T Signal

$$M_{
m eff} \equiv \Sigma_{i=1}^4 \left(p_{
m T,jet \ i}
ight) + E_{
m T}$$

Abram Krislock

ヘロン ヘアン ヘビン ヘビン

ъ

Diagnosis of SUSY Breaking Mediation Additional Result: Third Generation Squarks

Goal: Gaugino Masses

Equations to solve

$$egin{aligned} &M_{ au au}^{ ext{end}} = f_1(m_{ ilde{\chi}_2^0},m_{ ilde{ au}_1},m_{ ilde{\chi}_1^0})\ &p_{ ext{T,AM}} = f_2(m_{ ilde{\chi}_2^0},m_{ ilde{\chi}_1^0})\ &p_{ ext{T,diff}} = f_3(m_{ ilde{\chi}_2^0},m_{ ilde{ au}_1},m_{ ilde{\chi}_1^0})\ &M_{j au au}^{ ext{end}} = f_4(m_{ ilde{ au}_L},m_{ ilde{\chi}_2^0},m_{ ilde{ au}_1^0})\ &M_{ ext{eff}}^{ ext{peak}} = f_5(m_{ ilde{ au}},m_{ ilde{ au}}) \end{aligned}$$

- Find *f*'s using MC simulation.
- Measure observables.
- Invert and solve for masses.

Abram Krislock

ヘロト ヘワト ヘビト ヘビト

э

Diagnosis of SUSY Breaking Mediation Additional Result: Third Generation Squarks

Result: Mirage Scale

Abram Krislock

Diagnosis of SUSY Breaking Mediation Additional Result: Third Generation Squarks

イロト 不得 とくほ とくほとう

3

Abram Krislock	January 4	Spaatind 2012	Diagnosis of SUSY Breaking Schemes at LHC	14/16

Diagnosis of SUSY Breaking Mediation Additional Result: Third Generation Squarks

イロト イポト イヨト イヨト

ъ

Abram Krislock	January 4	Spaatind 2012	Diagnosis of SUSY Breaking Schemes at LHC	14/16

Diagnosis of SUSY Breaking Mediation Additional Result: Third Generation Squarks

ъ

イロト イポト イヨト イヨト

bram Krislock	January 4	Spaatind 2012	Diagnosis of SUSY Breaking Schemes at LHC	14/16

Diagnosis of SUSY Breaking Mediation Additional Result: Third Generation Squarks

M_{bW}^{end} and M_{jW}^{end}

Abram Krislock

ъ

ъ

Conclusions

Way too many results for one talk!!

arXiv:1112.3966

- Gaugino masses for multiple benchmark points.
 ⇒ SUSY Breaking Mechanism.
- Third generation Squark masses.
- Relic Density of Dark Matter from Model Parameters. (DarkSUSY)

Thanks for your attention!!

Abram Krislock

ヘロト ヘワト ヘビト ヘビト