Measurement of the W-Boson Mass with the ATLAS Detector at the LHC

Bjørn Peter Sørensen

January 4th 2011

Master Thesis Supervisor: Troels Petersen

A (1) > A (1) > A

э

Bjørn Peter Sørensen

Overview

Overview

- Finding the W-mass at the muon channel
- We don't know the Z-component of u_{μ}
- $m_T = \sqrt{2p_T \not \! E_T (1 \cos(\phi_{MET} \phi_\mu))}$. The shape depends on m
- Do MC templates for different M_W
- Compare m_T for different W-mass in MC with data. χ^2 -fit

- Look at Z-events for comparison and calibration

Transverse Mass og W

 MC is not consistent with data because of the E^{Miss}_T

*p*_T destribution
 of the muon
 is better

< 17 ▶

Figure: Transverse Mass of W

Bjørn Peter Sørensen

Template Fit

Figure: Muon p_T destribution for different templates

- Generate MC-events with different W-mass
- Compare data with each MC-sample
- Make a χ^2 -test to find the W-mass

2

< □ > < 同 >

Bjørn Peter Sørensen

Muon Selection

- Combined (detected as a muon in inner detector and muon detector)
- mimimum 1 hit in the Pixel detector and 6 hits in the SCT detector
- At least 1 hit in the TRT
- pseudorapidity $|\eta| < 2.4$
- Isolation criteria p_{T} of a cone of size 0.2 divided by muon $p_{T} < 0.1$

▲ @ ▶ ▲ ≥ ▶ ▲

3

W and Z Events in the muon channel

$W \to \mu \nu$

- *p_T* > 25GeV
- *₽*_T > 25GeV
- *m_T* > 40GeV
- $Z \to \mu \mu$
 - Each muon should have $p_T > 25 \text{GeV}$
 - Two combined muons with opposite charge

イロト イポト イヨト イヨト 二日

• $66 < M_{\mu\mu} < 116$

Bjørn Peter Sørensen

Transverse Momentum

- Scaling p_T insteed of changing m_W
- Smearing
- More background (QCD)
- Data peaks at low p_T because of QCD

∃ >

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure: Transverse Momentum of muons for $W \to \mu \nu$ in GeV. MC histograms is added

Bjørn Peter Sørensen

χ^2 -test for $p_T^{Scaling}$ for muons in $W o \mu \nu$ - channel

- High χ^2 because of smearing
- Fit with a parabola
- Minimum for $TS_W = 0.9990$
- Uncertainty of 0.0003
- $M_W^{DATA} = M_W^{TRUTH} \cdot TS_W$

Bjørn Peter Sørensen

M_{inv} for $Z ightarrow \mu \mu$

Figure: M_{inv} for $Z \rightarrow \mu \mu$ in GeV

- Energy/momentum scale and resolution
- Z-events for calibration

メロン メロン メヨン メ

 no background on MC

3 N 3

Bjørn Peter Sørensen

Transverse Momentum

・ロト ・回ト ・ヨト ・ヨト

÷.

Figure: Transverse Momentum of muons for $Z \to \mu \mu$ in GeV

Bjørn Peter Sørensen

χ^2 -test for p_T for muons in $Z \rightarrow \mu \mu$ - channel

- High χ² because of background and smearing
- Fit with a parabola
- Minimum for $TS_Z =$ 0.9976
- Uncertainty of 0.0004

(日) (图) (문) (문) (문)

Bjørn Peter Sørensen

W-mass

W-mass

• $M_W^{truth} = 80.399 \pm 0.023 \text{ GeV} (pdg)$

•
$$TS_Z = \frac{M_Z^{DATA}}{M_Z^{MC}}|_M = 0.9976 \pm 0.0004$$

•
$$TS_W = \frac{M_W^{DATA}}{M_W^{MC}}|_{PT} = 0.9990 \pm 0.0003$$

•
$$M_W^{DATA} = M_W^{TRUTH} \cdot \frac{TS_W}{TS_Z} = 80.510 \pm 0.032 \text{ GeV}$$

Bjørn Peter Sørensen

▲口 > ▲団 > ▲臣 > ▲臣 > ▲臣 > ● ④ Q @ >

Bjørn Peter Sørensen

Comparing variables. m_T and p_T

Figure: M_T in MC

Figure: Muon p_T in $W \rightarrow \mu \nu$ -events

Bjørn Peter Sørensen