Model 000

Modelling the Impact Parameter Dependence of the nPDFs With EKS98 and EPS09 Parametrizations Spaatind 2012

Ilkka Helenius

In collaboration with Kari J. Eskola, Heli Honkanen, and Carlos Salgado

> University of Jyväskylä Department of Physics

4.1.2012

Introduction and Motivation	Model	Application	Summary & Outlook
	000	0000	0
Outline			

Introduction and Motivation

- Parton Distribution Functions
- Nuclear Geometry in Heavy Ion Collisions

Model

- Assumptions
- Fitting Procedure
- Outcome

Application

- Nuclear Modification Factor R_{AA}
- Central-to-Peripheral Ratio R_{CP}

Introduction and Motivation Model Application Summary & Outlook

Parton Distribution Functions

• Hard interactions in hadronic collisions happens between partons (quarks and gluons)

 \Rightarrow Requires parton distribution functions (PDFs) $f_{i/N}(x,Q^2)$

- Determined from experimental data+DGLAP (e.g. CTEQ)
- Heavy ion collisions: protons (and neutrons) bound to nucleus
 ⇒ Nuclear PDFs (nPDFs)

$$f_{i/A}(x,Q^2) = R_{i/A}(x,Q^2) \cdot f_{i/N}(x,Q^2)$$

- Nuclear modification $R_{i/A}(x,Q^2)$ from global analysis
 - EKS98 (LO DGLAP evolution) [Eur.Phys.J., C9:61-68, 1999]
 - EPS09 (LO, NLO DGLAP evolution, with uncertainties) [*JHEP*, 04:065, 2009]

Introduction and Motivation

Model

Application

Summary & Outlook 0

Hard Processes in Heavy Ion Collisions

The hard cross section for given centrality class in A + B collisions

$$\mathrm{d}\sigma^{AB\to k+X} = \sum_{i,j} \int_{b_1}^{b_2} \mathrm{d}^2 \mathbf{b} \, T_{AB}(\mathbf{b}) \, f_{i/A} \otimes f_{j/B} \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X} \quad (1)$$

Nuclear overlap function

Amount of the interacting matter at impact parameter b.

$$T_{AB}(\mathbf{b}) = \int d^2 \mathbf{s} T_A(\mathbf{s_1}) T_B(\mathbf{s_2}),$$

where $s_1 = s + b/2$ and $s_2 = s - b/2$.

Introduction and Motivation

Model

Application 0000 Summary & Outlook 0

Nuclear Thickness Function

Amount of nuclear matter in beam direction

Introduction and Motivation	Model	Application	Summary & Outlook
	●○○	0000	0
Framework			

Nuclear modification with spatial dependence

• We replace

$$R_{i/A}(x,Q^2) \rightarrow r_{i/A}(x,Q^2,\mathbf{s}),$$

where ${\bf s}$ the transverse position of the nucleon

Definition

$$R_A(x,Q^2) = \frac{1}{A} \int \mathrm{d}^2 \mathbf{s} \, T_A(\mathbf{s}) r_A(x,Q^2,\mathbf{s}),$$

where $R_A(x,Q^2)$ from EKS98 or EPS09

Introduction and Motivation	Model	Application	Summary & Outlook
	○●○	0000	0
Fitting Procedure			

Assumption: spatial dependence of the form

$$r_A(x, Q^2, s) = 1 + c_1(x, Q^2)[T_A(s)] + c_2(x, Q^2)[T_A(s)]^2 + c_3(x, Q^2)[T_A(s)]^3 + c_4(x, Q^2)[T_A(s)]^4$$

Important: no A dependence in fit parameters $c_i(x, Q^2)!$

Parameters $c_i(x, Q^2)$ obtained by minimizing the χ^2 . For EKS98s:

$$\chi^{2}(x,Q^{2}) = \sum_{A} \left[\frac{R_{A}(x,Q^{2}) - \frac{1}{A} \int d^{2}s \, T_{A}(s) r_{A}(x,Q^{2},s)}{R_{A}(x,Q^{2}) - 1} \right]^{2},$$

where $A = 16, 20, 24, \dots, 300$.

Introduction and Motivation

Model

Summary & Outlook

Spatial Dependence of Nuclear Modification for Au

Observations

- The shape in x is similar to EKS98
- Effects are slightly stronger in small s compared to EKS98
- Nuclear effects die out when $s > R_A$

Introduction and Motivation Model Application Summary & Outlook 0000 Nuclear Modification Factor R_{AA}

18 20
 Introduction and Motivation
 Model oco
 Application oco
 Summary & Outlook oc

 1-jet Central-to-Peripheral Ratio for RHIC

Introduction and Motivation Model Application Summary & Outlook

 R_{dAu} for π^0 's in different centrality classes at $\sqrt{s} = 200$ GeV, $\eta = 0$ Data: PHENIX ($|\eta| < 0.5$) [*Phys. Rev. Lett. 98*, 172302, 2007]

More centrality dependent data is needed (p+Pb at LHC?)

Introduction and Motivation	Model	Application	Summary & Outlook
	000	0000	•
Summary			

We have

- Developed a model for spatial dependence of nuclear modification based on
 - the A dependence of the EKS98/EPS09 (= data!)
 - the nuclear thickness function $T_A(s)$
- Program to calculate $r_A(x, Q^2, \mathbf{s})$
- \bullet Calculated R_{AA}^{1-jet} , R_{CP}^{1-jet} and $R_{dAu}^{\pi^0}$ in LO

We will

- Calculate also NLO ratios
- Make the codes for $r_A(x,Q^2,\mathbf{s})$ calculation public (EKS98s and EPS09s)
 - \Rightarrow Nuclear modifications of any hard process in different centrality classes can now be computed consistently with EKS98/EPS09!

Backup

Fit Outcome

Example fit: gluon modification from EKS98

Fit Outcome

Example fit: gluon modification from EPS09

Fitted $R(x,Q^2)$ vs. old $R(x,Q^2)$

Spaatind 2012 4.1.2012

Ilkka Helenius (JYFL)

Comparision of the spatial dependence

Centrality Classes for RHIC

Numerical Calculation of $T_A(s)$

Thickness function

• Woods-Saxon density profile:

$$T_A(\mathbf{s}) = \int_0^\infty \mathrm{d}z \frac{2\,n_0}{1 + \exp[\frac{\sqrt{\mathbf{s}^2 + z^2} - R_A}{d}]}$$

Needs numerical integration

• Change of variable as $z = \frac{1-t}{t}$ gives

$$T_{A}(\mathbf{s}) = \int_{0}^{1} \mathrm{d}t \frac{2 n_{0}}{t^{2} \left\{ 1 + \exp\left[\frac{\sqrt{\mathbf{s}^{2} + \left(\frac{1-t}{t}\right)^{2}} - R_{A}}{d}\right] \right\}}$$

• Singularity at t = 0 is ok, because

$$\lim_{t \to 0} \rho^{WS}(t) = 0$$

A-dependent modification

Thickness function

• If the Modification of the form $r_A(x,Q^2,s) = 1 + c(x,Q^2)[T_A(s)]$

• The parameter $c(x,Q^2)$ from the normalization condition

$$c(x,Q^2) = rac{A(R_i^A(x,Q^2)-1)}{\int \mathrm{d}^2 {f s} \left[T_A({f s})
ight]^2}$$

\Rightarrow Strong A dependence of $c(x, Q^2)!$

The s dependence not entirely decomposed from $c(x, Q^2)$.

[[]Phys.Rev., C61:044904, 2000]

Central-to-Peripheral Ratio R_{CP}^{1-jet}

• The 1-jet distribution for a centrality class with $b \in [b_1, b_2]$ can be calculated from

$$\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d} p_T \mathrm{d} y} \right\rangle_{b_1, b_2} = \frac{\int_{b_1}^{b_2} \mathrm{d}^2 b \frac{\mathrm{d}^2 N_{AA}^{1-jet}(b)}{\mathrm{d} p_T \mathrm{d} y}}{\int_{b_1}^{b_2} \mathrm{d}^2 b \, p_{AA}^{inel}(b)}$$

$$(b) = 1 \qquad e^{-T_{AA}(b)\sigma_i^{NN}} \text{ (optical Clauber model)}$$

• $p_{AA}^{inel}(b) = 1 - e^{-T_{AA}(\mathbf{b})\sigma_{inel}^{NN}}$ (optical Glauber model)

Parameters from Optical Glauber Model

	central = 0 - 5%		peripheral = 60 - 80%			
	b_1 [fm]	b_2 [fm]	$\langle N_{bin} \rangle$	$b_1 [\mathrm{fm}]$	b_2 [fm]	$\langle N_{bin} \rangle$
RHIC	0.0	3.355	1083	11.62	13.42	15.11
LHC	0.0	3.478	1772	12.05	13.91	19.08

• RHIC:
$$\sigma_{inel}^{NN} = 42 \text{ mb}$$

• LHC: $\sigma_{inel}^{NN} = 64 \text{ mb}$