Muon Performance of the ATLAS Detector

W. Liebig University of Bergen

- Muon Identification in ATLAS
- Efficiencies and muon types
- Momentum resolution
- Pile-up

Muon Spectrometer

- Muon detection: charged particle emerging from calorimeters
- ATLAS has dedicated muon spectrometer (MS)
 - magnet system of its own: toroid field bends tracks over long distances
 - three layers of precision stations: monitored drift tubes (MDT)
 - fitted with fast trigger chambers: resistive-plate and thin-gap chambers
- Special Consequences
 - independent reconstruction of muon in MS
 - clean seed for muon identification and high muon quality after combination with ID
 - sharp momentum thresholds available for lowest level muon triggers
 - extend momentum resolution up to TeV scale

Muon Spectrometer

Muon Identification Types

- Combined muons from ID and MS track
 - best momentum resolution and background rejection
 - efficiency loss in regions with <3 MS stations

- Segment-tagged muons

 ID seeded identification where only 1-2 MS stations
- Calorimeter-tagged muons
 - isolated ionization trajectory in had. Cal.
 - identification at $\eta \sim 0$ (no MS stations)
- Standalone muons (|η|>2.5)

06-JAN-2012

Muon Identification Efficiency

- efficiency from Z tag & probe – muon + 2nd ID track at M_{inv}~M_Z
- Performance in first data
 high efficiency from the start
 - regions of (un)expected inefficency
 - Detector effects
 - track based drift tube calibration
 - alignment precision for some chambers

2011 (reprocessed)

- η
- Performance after 1 year of detector understanding

 including improvements in software
- Addition of more muon types provides uniform efficiency

Momentum Resolution

M_{u*u*} [GeV]

MC (perfect): 2.31±.01 GeV Data Spring 2011 : 2.89±.01 GeV Data Summer 2011: 2.45±.01 GeV

Resolution at High Momenta

- Muon momenta at $p \sim 1$ TeV estimated mainly by MS
 - high field integral, lever arm, hit precision in Muon Spectrometer (MS)
 - low momenta determined by ID (material effects in calo+MS strong)
 - TeV scale momentum precision depends on MS alignment
- Precisions alignment of huge MS is a challenge
 - track-based alignment needed to complement and probe quality of optical alignment

Resolution in Spectrometer

 M_{µµ} resolution probes also MS

 remaining difference incorporated in analyses by momentum smearing
 for intermediate momentum values

- High pT resolution consolidated by improving MS alignment
 - special data: solenoid on, toroid off -> study residuals from straight lines in MS
 - study tracks crossing overlaps in station sectors in
 - typical alignment precision now $< \sim 100 \mu m$

Muon Performance with Pile-up

- M_{µµ} resolution again
 now separated into periods of different machine conditions
 - discrepancies only between data and MC (from alignment)

- Muon efficiency with additional isolation cut
 - track isolation: $p_T cone 30/p_T < 0.15$
 - calorimeter isolation is corrected for pile-up, leading to similar agreement

Di-muon pairs

(in addition to new chain deployment)

muon pairs in muon triggered events

Concluding Remarks

- Good ATLAS muon performance right from beginning of p-p collisions
- Muon identification performance studied in increasing levels of detail, profiting from the rapidly growing data-set of 7 TeV collisions
 – feed-back to detectors and algorithms to make subsequent processing better
- substantial improvements from detector calibration and alignment particularly for the momentum resolution
- By using muon from all identification techniques physics analyses profit from highest and most uniform efficiency
- Performance stable when environment becomes more challenging (Pile-up, heavy ions)

Thank you !

→ Backup:

Tag and probe, low pT efficiency

