Search for supersymmetry in 2 lepton final states

Eirik Gramstad, Maiken Pedersen, Farid Ould-Saada, Borge K. Gjelsten

Experimental particle physics Department of physics University of Oslo

January 3, 2010

Outline

- introduction to supersymmetry and searches for it
- SUSY searches in 2L searches ATLAS
- SM background
 - ▶ fake lepton background
- results
- interpretation

Introduction to Supersymmetry and searches for it

- many extensions to the Standard Model (SM) predict the existence of new states that lead to new invisible particles
 - new coloured particles, such as the squarks, q
 , and gluinos, g
 , of supersymmetric (SUSY) theories, are among those predicted
- in R-parity conserving SUSY models, the lightest supersymmetric particle (LSP) is stable and weakly interacting, and SUSY particles are pair-produced.
 - the LSP escapes detection, giving rise to events with significant missing transverse momentum, E^{miss}_T

Typical SUSY cascade. SUSY particles are created in pairs giving two such cascades in each event

- the dominant SUSY production channels at the LHC are: squark-(anti)squark, squark-gluino and gluino pair production
- weak gauginos and sleptons may also be pairproduced, albeit with smaller cross sections
 - dilepton searches are potentially very sensitive to direct weak gaugino production

SUSY searches in ATLAS

- two different searches for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons are considered
 - in the following leptons only refer to e or μ
- > study is performed using a total integrated luminosity of $1fb^1$ of $\sqrt{s} = 7$ TeV proton-proton collisions recorded with the ATLAS detector
- in each SUSY event there are two independent cascade decays
- two leptons are produced in events in which two gauginos decay via cascade:

(a)
$$\tilde{\chi}_{i}^{0} \rightarrow l^{\pm} \nu \tilde{\chi}_{j}^{\mp} \rightarrow SS, OS$$
, occur in both legs
(b) $\tilde{\chi}_{i}^{\pm} \rightarrow l^{\pm} \nu \tilde{\chi}_{j}^{0} \rightarrow SS, OS$, occur in both legs

or events in which one gaugino decays via cascade:

(c) $\tilde{\chi}_i^0 \rightarrow I^{\pm} I^{\mp} \tilde{\chi}_j^0 \rightarrow OS$, occur in only one leg (d) $\tilde{\chi}_i^{\pm} \rightarrow I^{\pm} I^{\mp} \tilde{\chi}_j^{\pm} \rightarrow OS$, occur in only one leg

SUSY searches in ATLAS

The following 5 signal regions were studied:

- Opposite-Sign
 - 1 (OS-SR1) $E_T^{miss} > 250 \text{ GeV}$
 - 2. (OS-SR2) 3-jets (p_T > 80, 40, 40 GeV), E_T^{miss} > 220 GeV
 - 3. (OS-SR3) 4-jets ($p_T > 100, 70, 70, 70$ GeV), $E_T^{miss} > 100$ GeV
- Same-Sign
 - 1. (SS-SR1) $E_{T}^{miss} > 100$ GeV
 - 2. (SS-SR2) 2-jets ($p_T > 50, 50$ GeV), $E_T^{miss} > 80$ GeV

Results are interpreted using different SUSY models:

- Simplified Model Grids
 - involve the minimal particle contents necessary to produce SUSY-like events and are parametrized directly in terms of the sparticle masses
 - no assumption about the relative couplings at each vertex.
 - results are expressed in terms of limits on cross-section times branching ratios as a function of new particle masses
- gauge-mediated supersymmetry breaking (GMSB) scenario
 - GMSB model is fully described by six parameters: A, M_{mes} , N_5 , tan β , sign(μ) and C_{grav}
 - A is the SUSY breaking scale felt by the low energy sector
 - tan β is the ratio of the vacuum expectation values of the two Higgs doublets

SM backgrounds

- SM backgrounds to each search are evaluated using a combination of MC simulation and data-driven techniques
- \blacktriangleright in opposite sign channels the $t\bar{t}$ background dominates
- in same sign channels the fake lepton background dominates

"Fake" lepton background estimation

- the fully data driven Matrix Method is used to estimate the "fake" lepton contribution - 2 step procedure
 - 1. measure a fake rate, *f*, and real efficiency, *r*
 - using the observed number of events in a particular region and inverting the Matrix (dep. on r and f) we can estimate the fake background
- 1. measure f and r:
 - use a loose and tight selection of leptons
 - tight: same as the signal leptons
 - loose: remove the isolation requirements (electrons and muons) and loosen a few other of the identification criteria (electrons only)
 - measure a f from a QCD dominated control region (low E_T^{miss})
 - f is the probability for a fake lepton to pass the *tight* requirement
 - measure r from a OS Z-region
 - r is the probability for a real lepton to pass the *tight* requirement

Fake lepton background estimation

2. find the observed number of events in the signal region and invert the matrix

- count how many TT, TI, IT and II events in our signal region
 - T refer to a lepton passing tight
 - I refer to a lepton not passing tight
- by inverting the matrix we obtain the number of real-real, real-fake, fake-real and fake-fake lepton pairs
 - we extrapolate this into our signal region by multiplying these estimates with rr, rf, fr and ff respectively

$$\begin{bmatrix} N_{TT} \\ N_{TI} \\ N_{IT} \\ N_{II} \\ N_{II} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-f) & r(1-r) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

Results

- predicted number of background events, observed number of events and the corresponding 95% CL upper _ limit on A × ε × σ, for each opposite-sign and samesign signal = region.
 - used the CLs technique to calculate limits
 - A is the fraction of events passing geometric and kinematic cuts at particle level
 - *ϵ* is the detector reconstruction and identification efficiency

	Background	Obs.	95% CL
OS-SR1	15.5 ± 4.0	13	9.9 fb
OS-SR2	13.0 ± 4.0	17	14.4 fb
OS-SR3	5.7 ± 3.6	2	$6.4~{\rm fb}$
SS-SR1	32.6 ± 7.9	25	14.8 fb
SS-SR2	24.9 ± 5.9	28	17.7 fb

Interpretation - simplified models

- > SS-SR1 ($E_{\rm T}^{\rm miss}$ < 100 GeV) is particularly sensitive to low mass weak gaugino production and the cascade decays into leptons
- cross section upper limits on $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ pair production
- ▶ results are for slepton masses between $m_{\tilde{\chi}_{1}^{0}}$ (LSP) and $m_{\tilde{\chi}_{2}^{0}}$ and

$$m_{\tilde{l},\tilde{\nu}} = m_{LSP} + 1/2(m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0})$$
 and the hierarchy $m_{\tilde{\chi}_1^\pm} = m_{\tilde{\chi}_2^0}$

Interpretation - GMSB

- 2 lepton analysis also interpreted in the GMSB model
- cascade decays with the final decay of the next-to-lightest SUSY particle (NLSP) into its SM partner and the lightest supersymmetric particle (LSP)
- scenarios:
 - ► NLSP: ˜τ₁, Ĩ_R or ˜χ₁⁰
 - LSP: a nearly massless gravitino (G̃)
 - exact same analysis using signal region OS-SR2: 3-jets ($p_T > 80, 40, 40$ GeV), $E_T^{miss} > 220$ GeV

	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Standard Model	1.9 ± 0.9	7.9 ± 3.1	$3.2{\pm}1.0$
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	3	9	5

GMSB: M_{mes} =250TeV, N_5 =3, sign(μ) = +, C_{grav} =1

- exclusion in Λ-tan β
 plane
- $ee + \mu\mu + e\mu$ channel

Conclusion

- Searches for supersymmetry with 2 leptons + E_{T}^{miss} (and jets) using $1fb^{-1}$
 - good agreement between SM background prediction and observed number of events in the signal regions
- SM backgrounds are estimated using combinations of MC and data-driven techniques
 - the fake lepton background is estimated in a fully data driven way
- model-independent limits are quoted on the cross section multiplied by acceptances and efficiencies for the inclusive analysis
- new limits have been presented on the chargino mass in direct weak gaugino production modes using simplified models.
 - charginos with masses up to 200 GeV are excluded, under the assumptions of these models.
- we've also extended the limits in the GMSB model

More information:

title	lumi [<i>fb</i> ^{−1}]	link
identical flavour lepton pairs and Etmiss	0.035	http://arxiv.org/abs/1103.6208
lepton pairs and Etmiss	0.035	http://arxiv.org/abs/1103.6214
lepton pairs and Etmiss	1.04	http://arxiv.org/abs/1110.6189
Additional 2 epton+jets+Etmiss interpretation	1.04	http://cdsweb.cern.ch/record/1398247

More detailed backgrounds - SS

Same Sign [SS-SR1]	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Fake	3.5 ± 1.6	14.4 ± 4.4	9.2 ± 3.3
Charge flip	0.73 ± 0.08	1.1 ± 0.14	neg.
Dibosons	0.79 ± 0.27	1.7 ± 0.5	1.1 ± 0.22
Standard Model	5.0 ± 1.6	17.2 ± 4.4	10.3 ± 3.3
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	6	14	5
Same Sign [SS-SR2]	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Same Sign [SS-SR2] Fake	$e^{\pm}e^{\pm}$ 1.5±0.9	$e^{\pm}\mu^{\pm}$ 13.4±4.1	$\mu^{\pm}\mu^{\pm}$ 6.7±2.7
Same Sign [SS-SR2] Fake Charge flip	$e^{\pm}e^{\pm}$ 1.5±0.9 0.59±0.06	$\frac{e^{\pm}\mu^{\pm}}{13.4\pm4.1}$ 1.4±0.14	
Same Sign [SS-SR2] Fake Charge flip Dibosons	$ \begin{array}{r} e^{\pm}e^{\pm} \\ 1.5 \pm 0.9 \\ 0.59 \pm 0.06 \\ 0.25 \pm 0.14 \end{array} $	$\begin{array}{c} e^{\pm}\mu^{\pm} \\ 13.4{\pm}4.1 \\ 1.4{\pm}0.14 \\ 0.86{\pm}0.21 \end{array}$	$\frac{\mu^{\pm}\mu^{\pm}}{6.7\pm2.7}$ <i>neg.</i> 0.64±0.05
Same Sign [SS-SR2] Fake Charge flip Dibosons Standard Model	$\begin{array}{c} e^{\pm}e^{\pm} \\ 1.5\pm0.9 \\ 0.59\pm0.06 \\ 0.25\pm0.14 \\ 2.4\pm0.9 \end{array}$	$\begin{array}{c} e^{\pm}\mu^{\pm} \\ 13.4\pm4.1 \\ 1.4\pm0.14 \\ 0.86\pm0.21 \\ 15.6\pm4.1 \end{array}$	$\begin{array}{c} \mu^{\pm}\mu^{\pm} \\ 6.7\pm2.7 \\ neg. \\ 0.64\pm0.05 \\ \hline 6.9\pm2.7 \end{array}$
Same Sign [SS-SR2] Fake Charge flip Dibosons Standard Model Cosmic rays	$\begin{array}{c} e^{\pm}e^{\pm}\\ 1.5\pm0.9\\ 0.59\pm0.06\\ 0.25\pm0.14\\ 2.4\pm0.9\\ <10^{-3} \end{array}$	$\begin{array}{c} e^{\pm}\mu^{\pm} \\ 13.4{\pm}4.1 \\ 1.4{\pm}0.14 \\ 0.86{\pm}0.21 \\ 15.6{\pm}4.1 \\ < 10^{-3} \end{array}$	$\begin{array}{c} \mu^{\pm}\mu^{\pm} \\ 6.7 \pm 2.7 \\ neg. \\ 0.64 \pm 0.05 \\ 6.9 \pm 2.7 \\ < 10^{-3} \end{array}$
Same Sign [SS-SR2] Fake Charge flip Dibosons Standard Model Cosmic rays Observed	$\begin{array}{c} e^{\pm}e^{\pm}\\ 1.5\pm0.9\\ 0.59\pm0.06\\ 0.25\pm0.14\\ 2.4\pm0.9\\ <10^{-3}\\ 4\end{array}$	$\begin{array}{c} e^{\pm}\mu^{\pm} \\ 13.4 \pm 4.1 \\ 1.4 \pm 0.14 \\ 0.86 \pm 0.21 \\ 15.6 \pm 4.1 \\ < 10^{-3} \\ 14 \end{array}$	$\begin{array}{c} \mu^{\pm}\mu^{\pm} \\ 6.7\pm2.7 \\ neg. \\ 0.64\pm0.05 \\ 6.9\pm2.7 \\ < 10^{-3} \\ 10 \end{array}$

More detailed backgrounds - OS

Opposite Sign [OS-SR1]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$
$t\bar{t}$	1.8 ± 0.5	5.1 ± 1.4	3.3 ± 0.9
Z/γ^* +jets	0.01 ± 0.67	1.03 ± 0.42	$0.81 {\pm} 0.27$
Fakes	0.17 ± 0.21	0.92 ± 0.97	-0.08 ± 0.03
Dibosons	$0.54{\pm}0.30$	$0.04 {\pm} 0.04$	$0.67 {\pm} 0.40$
Single-top	0.11 ± 0.12	0.47 ± 0.23	$0.48 {\pm} 0.19$
Standard Model	2.7 ± 1.3	7.6 ± 1.9	5.3 ± 1.4
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	2	8	3
Opposite Sign [OS-SR2]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$
$t\bar{t}$	$1.4{\pm}0.3$	$3.9{\pm}1.0$	2.6 ± 0.6
Z/γ^* +jets	0.45 ± 50	$0.84 {\pm} 0.67$	0.27 ± 0.30
Fakes	0.01 ± 0.14	2.8 ± 2.6	-0.13 ± 0.06
Dibosons	neg.	0.03 ± 0.04	0.24 ± 0.21
Single-top	0.05 ± 0.10	$0.39 {\pm} 0.30$	0.09 ± 0.17
Standard Model	$1.9{\pm}0.9$	7.9 ± 3.1	$3.2{\pm}1.0$
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	3	9	5
Opposite Sign [OS-SR3]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$
$t\bar{t}$	0.77 ± 0.52	2.1 ± 1.6	$1.4{\pm}0.9$
Z/γ^* +jets	0.01 ± 0.17	neg.	$0.27 {\pm} 0.51$
Fakes	0.13 ± 0.14	$0.91 {\pm} 0.96$	-0.03 ± 0.02
Single-top	neg.	0.00 ± 0.02	$0.10 {\pm} 0.11$
Standard Model	0.91 ± 0.70	3.1 ± 1.7	1.8 ± 1.4
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	0	1	1

Flavour subtraction analysis

- limits are set on the excess number of identical-flavour events
- the flavour-subtraction limits are set using toy pseudo-experiments
- the identical flavour excess is quantified using the quantity S, defined as

$$S = \frac{N(e^{\pm}e^{\mp})}{\beta(1 - (1 - \tau_e)^2)} - \frac{N(e^{\pm}\mu^{\mp})}{1 - (1 - \tau_e)(1 - \tau_{\mu})} + \frac{\beta N(\mu^{\pm}\mu^{\mp})}{(1 - (1 - \tau_{\mu})^2)}$$
(1)

 $ightarrow au_{e}$ and au_{μ} are the electron and muon plateau trigger efficiencies respectively

 \blacktriangleright β is ratio of electron to muon efficiency times acceptance

- Flavour Subtraction signal regions
 - 1. (FS-SR1) $E_T^{miss} > 80$ GeV, Z-veto ($80 < m_{II} < 100$ GeV)
 - 2. (FS-SR2) E_T^{miss} > 80 GeV and at least 2 jets
 - 3. (FS-SR3) E_T^{miss} > 250 GeV

Flavour subtraction analysis II

	\mathcal{S}_{obs}	$\bar{\mathcal{S}}_b$	RMS
FS-SR1	$131.6 \pm 2.5 (sys)$	118.7 ± 27.0	48.6
FS-SR2	$142.2 \pm 1.0 (sys)$	67.1 ± 28.6	49.0
FS-SR3	$-3.06\pm0.04(sys)$	$0.7{\pm}1.6$	4.5

The observed values of S (S_{obs} , left column), mean (middle column) and root-mean-squared (RMS, right column) of the distributions of the expected S_b from one million hypothetical signal-free pseudo-experiments.

	$S > S_{obs}$ (%)	Limit $\bar{\mathcal{S}}_s$ (95% CL)
FS-SR1	39	94
FS-SR2	6	158
FS-SR3	79	4.5

Consistency of the observation with the SM expectation (middle column), computed as the percentage of signal-free pseudo-experiments giving values of S greater than the observation, S_{obs} . Observed limit (right column) on the numbers of same-flavour events from new phenomena multiplied by detector acceptances and efficiencies in each signal region.