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Recall lecture 1: we discussed how to 

-    associate an impact parameter 
     range                         to an  
     event class in A+A.  
 
     (namely by selecting multiplicity 
       classes via Glauber theory) € 

b∈ bmin,bmax[ ]

U.A.Wiedemann 

ALICE, 2010 

-    analyze azimuthal asymmetries 
     and disentangle collective flow  
     from fluctuations 
 
      (namely by a cumulant analysis  
        of flow harmonics) 

Lecture 2 continues here … 



II.8. Alternative flow measurements: Q-cumulants 

U.A.Wiedemann 

Construction of ‘standard’ cumulants involves sum over  
M(M-1) terms to 2nd order 
~ M4 terms to 4th order,  
~ M6 to 6th order, etc 
 
Problem: For typical event multiplicity M 
                this becomes computationally expensive 
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Solution: Use Q-vector of harmonic N      (sum over M terms only!) 
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Problem: check this! 
Bilandzic, Snellings, Voloshin,  
arXiv:1010.0233 [nucl-ex] 
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II.9.Yet another method: EP 
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For each event, one estimates directly the orientation of the event plane (EP)  
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Poskanzer, Voloshin, PRC58 (1998) 1671 

One then measures 
 
 
But we want to measure 
w.r.t. true reaction plane 
orientation 
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Correction needed 
 
Event-plane resolution R 
estimated e.g. from sub-
event method 
(A,B,C indep. sub-events) 
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II.10.Consistency of flow analysis methods 
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Many important technical issues not touched here. 
Take home message:  
-  There are many flow analysis methods with different systematic uncertainties. 
-  They are “generally” consistent,  deviations are “relatively well” understood.  

From a talk of 
R. Snellings 
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Flow harmonics measured via particle correlations. 
Here: look directly at correlations of ‘trigger’ with ‘associate’ particle 
         (often pt-cuts on ‘trig’ and ‘assoc’) 
 
If flow dominated, then 

2π
Npairs

dNpairs

dΔφ
=1+ 2 vn

(trig)vn
(assoc) cos nΔφ( )

n=1

∞

∑

Characteristic features: 
1.  Small-angle jet-like correlations around 

2.  Long-range rapidity correlation 

3.  Elliptic flow v2 seems to dominate 

4.  Away-side peak at              is smaller 

(for the semi-peripheral collisions shown here) 

(implies non-vanishing odd harmonics v1, v3, …) 

(almost rapidity-independent) 

Δφ ≈ Δη ≈ 0

Δφ ≈ π

ATLAS 
prelim 

II.11.Flow in measured two-particle correlations 

(this is a non-flow effect) 

(2.23) 



II.12.Non-vanishing odd flow harmonics 
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Event-averaged (non-fluctuating) initial conditions have   
nuclear overlap with  

€ 

φ
φ→φ +π symmetry 

Dynamics cannot break this symmetry of the initial conditions    

⇒ v2n+1 = 0 ∀n

Conclusion: 

Fig from M.Luzum, arXiv:1107.0592 

Non-vanishing odd harmonics are unambiguous signal 
for Event-by-Event fluctuations in initial conditions.   



II.13. Odd harmonics dominate central collisions 
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In the most central 0-5% events, 
 
 
 
Fluctuations in initial conditions 
dominate flow measurements 
  

v3 ≥ v2(2.24) 



II.14. Factorization of 2-particle correlations 
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If these fluctuations in the initial conditions propagate collectively  
   to the measured flow harmonics, 
then 2-particle-correlations must factorize. 
 
Do they? Check (2.23) 

€ 

2π
Npair

dNpair

dΔφ

=1+ 2 vn
(t )vn

(a )

n=1

∞

∑ cos nΔφ( )

At sufficiently low pT, data 
consistent with assumption of 
collective propagation. 



II.15.Characterizing spatial asymmetries 
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Aside: In most central collision, event-averaged (non-fluctuating) initial 
conditions would lead to 
 
Thus, no geometric reason for 2nd harmonics to dominate 
fluctuating initial conditions (see II.13). 

€ 

φεn ≈ 0⇒ vn ≈ 0

Simplifying working hypothesis (commonly used)  
-  EbyE asymmetry of initial condition is a purely spatial eccentricity 
-  spatial eccentricity is related to (momentum) flow by linear response 

vn exp inψn[ ] = k εn exp inφn[ ] + corr For tests, see e.g. 
F. Gardim et al,  arXiv:1111.6538 

To discuss propagation of fluctuations in initial conditions, need to quantify them. 
Characterize spatial eccentricities, e.g., via moments of transverse density 

εm,ne
inφm,n ≡ −

rmeinφ{ }
rm{ }

, εn ≡ εn,n ...{ }≡
d 2xρ x( )∫ ...
d 2xρ x( )∫

Final aim: to understand the dynamical mechanism that maps  
                 fluctuating initial conditions onto flow harmonics 

(2.24) 
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II.16. Comparing spatial eccentricies with flow 
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Simple models for initial spatial eccentricities and their centrality dependence can 
be based on supplementing e.g. Glauber model with notion of energy density: 

ALICE, arXiv:1105.3865, 
PRL 
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Spatial eccentricities 
-  details model-dependent  
-  for some models   

€ 

vn ∝εn

-    Linear response (2.27) seems to be a  
     fair first approximation 
-  But deviations from linear response (2.27) do not disprove a model of eccentricity 

in initial conditions. They could be accounted for by non-linear dynamics.  
    (to which we turn now). 

(2.26) 

(2.27) 



III. Dynamical framework for collective flow 

Mean free path 
vs. collectivity  

€ 

λmfp ≈ ∞ ⇒ v2 = 0

€ 

λmfp ≈ finite

€ 

λmfp ≈ 0⇒ v2 =max

Free streaming   
Particle cascade 
(QCD transport  theory)   

Dissipative 
fluid dynamics   

Perfect fluid 
dynamics   

Theory 
tools:  

Study fluid dynamics as relevant theoretical baseline 
for discussing collective effects …  U.A.Wiedemann 

We seek a dynamical framework that maps  

     initial conditions 
     - their average eccentricities 

     - their EbyE fluctuations  

     particle spectra 
     - their pT - and     - dependence 

     - their flow harmonics 
η

System p+p ?? …  A+A   …    ?? 



III.1. Fluid dynamics - the basics 

€ 

T µν•  energy momentum tensor               …….  10  indep. components 

•  conserved charges                ……………   4n  indep. components 

€ 

Ni
µ

Tensor decomposition w.r.t. flow field               projector           

€ 

uµ (x)

€ 

Δµν = gµν − uµuν

€ 

Ni
µ = ni uµ + n i

€ 

T µν = εuµuν − pΔµν + qµuν + qν uµ +Πµν

€ 

ε ≡ uµT
µν uν

€ 

p ≡ −T µνΔµν /3

€ 

qµ ≡ ΔµαTαβu
β

€ 

Πµν ≡ Δα
µΔβ

ν + Δβ
µ Δα

ν( ) /2 −ΔµνΔαβ /3[ ]Tαβ

energy density 

isotropic pressure 

heat flow 

shear viscosity 

€ 

uµ = (1,0,0,0)

In Local Rest 
Frame (LRF) 

(1 comp.) 

(1 comp.) 

(3 comp.) 

(5 comp.) 

Convenient choice of frame: Landau frame: 
                                              Eckard frame:       … 

€ 

u = uL ⇒ qµ = 0

Consider matter in local equilibrium, characterized locally by its energy 
momentum tensor, the density of n charges, and a flow field: 

(3.1) 
(3.2) 

(3.3) 
(3.4) 
(3.5) 

(3.6) 
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III.2. Equations of motion for a perfect fluid 
A fluid is perfect if it is locally isotropic at all space-time points. This implies 

€ 

Ni
µ = ni uµ + n i

€ 

T µν = εuµuν − pΔµν + qµuν + qν uµ +Πµν

(n comp.) 

(5 comp.) 

€ 

p = p(ε,n)
€ 

∂µNi
µ ≡ 0

The equations of motion are then determined  by conservation laws 

€ 

∂µT
µν ≡ 0

(n constraints) 

 (4 constraints) 

(1 constraint) 

(3.7) 

(3.8) 

and the equation of state 

(3.9) 

(3.10) 

(3.11) 
Here, information from ab initio calculations 
(lattice) or models enters. 

Hydrodynamic simulations are numerical solutions of (3.7),(3.8). 
‘Systematic’ model uncertainties arise from 
   - specifying initial conditions 
   - specifying the decoupling of particles (‘freeze-out’) 
   - assuming that non-perfect terms in (3.7),(3.8) can be dropped 
   - specifying (3.11) U.A.Wiedemann 



III.3. Two-dimensional Bjorken fluid dynamics 
Main assumption: initial conditions for thermodynamic fields do not depend on  
                             space-time rapidity 

(3.12) 

(3.13) 

(3.14) 

(3.16) 

€ 

η =
1
2
ln t + z
t − z
$ 

% & 
' 

( ) 

€ 

vz = z t
Longitudinal flow has ‘Hubble form’: 

Bjorken scaling means that hydrodynamic equations preserve Hubble form 

€ 

uµ = cosh yT coshη,vx,vy,sinhη( )

€ 

vr τ,r,η = 0( ) ≡ tanh yT τ,r( )

€ 

vr τ,r,η( ) ≡
vr τ,r,η = 0( )
coshη

Longitudinally boost-invariant flow profile 

at mid-rapidity 

at forward rapidity 

(3.15) 

Problem: show that e.o.m. (3.10) preserve longitudinal  
                boost-invariance of initial conditions. 
                solution see e.g. Kolb+Heinz, PRC62 (2000) 054909 

U.A.Wiedemann 



III.4. 2-dim “perfect” Hydro Simulations: Input… 
Initialization: thermo-dynamic fields                        have to be initialized, e.g. by 

(3.17) 

(3.18) 

€ 

ε τ,r,η = 0( )

€ 

p ε,n( )Equation of state: 

Input from (many) models and from lattice QCD. 
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εinit r( ) = ε τ 0,r,η = 0( )∝ 1− x
2

N part
AB
(b,r) + xN coll

AB
(b,r)
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( 
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+ 
, 

€ 

cs
2 =

∂p
∂ε

Velocity of sound: 

Expectations: 

€ 

cs
2 ≈ 0.15

€ 

cs
2 =1/3

Soft EOS 

Hard EOS 

Freeze-out: local temperature                   defines space-time hypersurface            , 
                    from which particles decouple with spectrum 

€ 

T(x) = Tfo

€ 

Σ(x)

  

€ 

E dNi

d
 
p 

=
gi

2π( )3
 
p .d  σ (x) fi p.u(x),x( )

Σ

∫

€ 

fi E,x( ) =
1

exp E −µi(x)( ) T(x)[ ] ±1

(3.19) 

(3.20) 

(3.21) 

€ 

Σ(x)
Cooper- Frye 
freeze-out 

  

€ 

d
 
σ (x)
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III.5. 2D-simulations with event-averaged IC 

PRC 72 (05) 014904  
200 GeV Au+Au 
min-bias 

Results of simulations: time evolution in transverse plane   

Conclusions from such studies: 
   - initial transverse pressure gradient  
                   - dependence of flow field  
                elliptic flow  
 
   - size and pt-dependence of       data 
     accounted for by hydro (‘maximal’) 
 
   - characteristic mass dependence,       
     since all particle species emerge  
     from common flow field 
 
   - BUT: no fluctuations, no odd harmonics 

€ 

φ

€ 

uµ

€ 

v2(pT )

€ 

uµ
€ 

v2

Kolb, Heinz nucl-th/0305084 



III.6. Dissipative corrections to a perfect fluid 
Small deviations from a locally isotropic fluid can be accounted for by restoring 

  

€ 

∂µ j
µ = ∂µ ρ uµ( ) = ρ ∂µu

µ

expansion scalar


+ uµ∂µ

comoving t−derivative


ρ = 0

€ 

Ni
µ = ni uµ + n i

€ 

T µν = εuµuν − pΔµν + qµuν + qν uµ +Πµν

(4n comp.) 

(10 comp.) 

When does perfect fluid assumption fail? Consider conserved current: 

€ 

p = p(ε,n)

€ 

∂µNi
µ ≡ 0

Now, the conservation laws and equation of state 

€ 

∂µT
µν ≡ 0

(n constraints) 
 (4 constraints) 

(1 constraint) 

Spatio-temporal variations of macroscopic fluid should be small 
if compared to microscopic reaction rates 

€ 

Γ ≅ nσ >> θ = ∂µu
µ

(3.7) 

(3.8) 

(3.22) 

(3.23) 

are not sufficient to constrain all independent thermo-dynamic fields in (3.7),(3.8). 
How do we obtain additional constraints?  

Dissipative corrections 
characterized by gradient 
expansion! 

U.A.Wiedemann 



III.7. 1st order dissipative fluid dynamics 
Since conservation laws + eos do not close equations of motion, one seeks 
additional constraints from expanding 2nd law of thermodynamics to 1st order 

€ 

Sµ = suµ + β qµ

€ 

ε + p = µn + TsUse                             and                        to write:      

€ 

uν∂µT
µν ≡ 0

Entropy to first order 

€ 

T∂µSµ = Tβ −1( )∂.q + q. ˙ u + T∂.β( ) +Πµν∂ν uµ +Πθ ≥ 0

To warrant that entropy increases, require: 

€ 

β ≡1 T

€ 

Π ≡ ςθ

€ 

qµ ≡κTΔµν ∂ν lnT − ˙ u ν( )

€ 

Πµν ≡ 2η Δα
µΔβ

ν + Δβ
µ Δα

ν( ) /2 −ΔµνΔαβ /3[ ]∂αuβ

bulk viscosity 

heat conductivity 

shear viscosity 

€ 

Π,qµ ,ΠµνDetermines                      in terms of flow, energy density and dissipative coeff. 

Problem: instantaneous acausal propagation. 

Navier-Stokes 
1st order hydro 

€ 

∂µS
µ =

Π2

ςT
−
q.q
κT 2

+
ΠµνΠµν

2ηT
≥ 0

(3.24) 

(3.25) 

(3.26) 
(3.27) 
(3.28) 

(3.29) 
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III.8. 2nd order viscous hydro – entropy derivation 
Expand entropy to 2nd order in dissipative gradients 

€ 

Sµ = suµ + β qµ +α0Πq
µ +α1Π

µνqν + uµ β0Π
2 + β1q.q + β2Π

µνΠµν( )

€ 

Π,qµ ,ΠµνNow, need 9 eqs. to determine  

€ 

∂µS
µ ≥ 0

€ 

Π,qµ ,Πµνleads to differential equations for   

which involve 

€ 

α0,α1,β,β0,β1,β2,ς,κ,η

Entropy increase determined by shear viscosity (if vorticity neglected) 

€ 

T∂µS
µ =Πµν −β2DΠ

µν + 1
2 ∇

µuν[ ] ≡ 1
2η ΠµνΠ

µν

€ 

β2 = τΠ 2η

Notations: covariant derivative 

€ 

dµu
ν ≡ ∂µu

ν + Γαµ
ν uα

€ 

D ≡ uµdµ

€ 

∇µ ≡ Δµν dν = dµ − uµD
Convective derivative 

Nabla operator 

€ 

Aµν ≡ 1
2 Δα

µΔβ
ν + Δβ

µ Δα
ν( ) − 1

3Δ
µνΔαβ[ ]AαβAngular bracket 

Equations of motion involve relaxation time and viscosity. 

(3.30) 

(3.31) 



III.9. Fluid dynamics from transport theory  

Consider Boltzmann equation with relaxation time approximation 

€ 

pµdµ f (x, p) = C ≈ − uµ pµ( )
f − feq
τπ

Consider small departures from local thermal equilibrium, quadratic ansatz 

f = feq 1+εµν (x, p)p
µ pν!" #$

€ 

εµν =
1

2T 2 ε + p( )
Πµν

With this ansatz, we write momentum moments from the Boltzmann eq. 

… long journey … 

€ 

ε + p( )Duµ =∇µ p −Δν
µ∇σΠνσ +ΠµνDuν

€ 

Dε = −(ε + p)∇µu
µ + 1

2Π
µν ∇ν uµ

€ 

τπΔα
µΔβ

ν DΠαβ +Πµν =η ∇µuν − 2τπΠ
α(µωα

ν )

2nd order 
Israel-Stewart 
fluid dynamic 
equations of  
motion. 

(3.32) 

(3.33) 

(3.34) 

Dissipative fluid dynamics can also be derived as the long wave-
length limit of transport theory. 



III.10. Input: transport coefficients are 
fundamental properties of hot QCD matter 

€ 

Gxy,xy
R ω,0( ) ≡ dt dx eiωtΘ t( ) Txy (t,x),Txy (0,0)[ ]∫

eq

The Green-Kubo formula defines transport coefficient as long wave-
length limit of retarded Green’s function of energy-momentum tensor 

(3.35) 

U.A.Wiedemann 

€ 

η ≡ − lim
ω→0

1
ω
ImGxy,xy

R ω,0( )

Calculable from first principles in quantum field theory (QCD) 

€ 

1
4π

1+
135 ς(3)
8 (2λ)3 / 2

+ ...
% 

& 
' 

( 

) 
* 

Strongly coupled N=4 SYM  
Kovtun, Son, Starinets, hep-th/
0309213 

Arnold, Moore, Yaffe, 
JHEP 11 (2000) 001 

€ 

λ ≡ g2Nc

First attempts in finite temperature lattice 
QCD: H. Meyer, PRD76 (2007) 101701 

Motivates the scanning of  
 
 
in units of  

η / s
1/ 4π



III.11. Input: relaxation times 
Also relaxation times are calculable from first principles in QFT … 
In some theories with gravity dual, e.g. N=4 SYM, all relaxation times 
and transport coefficients are known  
 
in the weak coupling limit,  
 

(3.36) 
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Remarkable curiosity: all modes propagate causal  
        (need not be the case since hydro holds in long wavelength limit only) 

€ 

τπ λ<<1 ~ 5.9
η

ε + p

€ 

τπ λ>>1 ~ 4 − 2ln2 +
375
8
ς(3)λ−3 / 2

' 

( 
) 

* 

+ 
, 
η

ε + p
≈
0.2
T

Relaxation time is 
very short 

Bhattacharyya, Hubeny, Minwalla,Rangamani 2008  
Kanitschneider, Skenderis (2009) 
Buchel, Myers (2009) 
Romatschke (2009) 

and in the strong coupling limit 

(3.37) 

Numerical simulations show very weak dependence on value of 
relaxation time (see following slides). 



III.12. Sensitivity of flow on shear viscosity 
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M. Luzum, P. Romatschke, PRC 78 (2008) 034915 
 

Elliptic flow decreases strongly even for close to minimal values of η / s

To understand order of magnitude,  
consider 1st order Navier-Stokes  
dissipative hydrodynamics 

€ 

d(τ s)
dτ

=
4
3η
τ T

(3.38) 

‘Perfect liquid’ description applicable,  
if change of entropy small compared to s 

€ 

η
τ T

1
s

<<1

Put in numbers 

€ 

τ~ 1 fm /c, T ~ 200MeV

€ 

η
s

<<1(3.39) 



III.13. Input with EbyE fluctuations 

•  Typical transverse energy density distribution from Glauber model 

S. Flörchinger, UAW, 
arXiv:1108.5535, 
JHEP in press 

Relevance for v3 first pointed out by     B. Alver and G. Roland,  PRC81 (2010) 054905 

•  Fluctuations in initial velocity fields (normally not included) 
Vorticity of flow field Divergence of flow field 

EbyE fluctuations needed to account for odd harmonic flow coefficients.  



III.14. Odd harmonics in transport models… 
•  AMPT: includes fluctuations in the initial state … 
G-L Ma & X.N. Wang, arXiv:1011.5249v2 

•  This is not a fluid dynamic simulation 
but the AMPT transport model has very 
small m.f.p’s 



III.15. How does fluid dynamics propagate 
fluctuations in heavy ion collisions? 

•  Consider linear fluid dynamic perturbations on top of analytically 
   known event-averaged fluid dynamic solution (Gubser’s model) 

P. Staig and E. Shuryak, arXiv:1109.6633 

•  Find that higher Fourier modes of fluid dynamic perturbations 
  dissipate faster 
•  Emphasize analogy with CMB radiation spectrum  



III.16. How does fluid dynamics propagate 
fluctuations in heavy ion collisions? 

•  If fluid dynamic description holds, Reynold’s number is 

S. Flörchinger, UAW, arXiv:1108.5535, JHEP in press 

•  consider linear and non-linear propagation of fluid dynamic 
   perturbations on top of analytically known Bjorken model: 
 
   late time dynamics governed (after coord. trafo) by 2-dim  
   Navier-Stokes equation     € 

Re∝1 (η /s) ≅1−10

Heavy Ions CMB 
•   Bjorken expansion (1-dim) •   Hubbel expansion (3-dim) 

•   time scale clearly sufficient for  
   fluid dynamic description 

•   time-scale sufficient for fluid dynamic  
   description? (exp support but no deep  
   th understanding) 
•   expansion delays onset of non-linearities 
    only in longitudinal dimension 

•   expansion delays onset of non- 
    linearities 
     •   dynamics of fluctuations gives access to 

    material properties (viscosities, relaxation 
    times, calculable from 1st principles of QFT) 

•   dynamics of fluctuations gives access to 
    matter content of Universe 

Much more to come … 


