Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

> Urs Achim Wiedemann CERN Physics Department TH Division

> > Skeikampen, 4 January 2012

Heavy Ion Collisions - Experiments

- Alternating Gradient Synchrotron (AGS) at Brookhaven BNL •
 - variety of beams, since mid 1980's
- **CERN SPS fixed target experiments** - variety of beams, Pb-beams since 1994
- Relativistic Heavy Ion Collider RHIC at BNL ٠ - since 2000, p+p, d+Au, Au+Au, Cu-Cu, ...
- Large Hadron Collider LHC - since 2000, so far p+p, Pb+Pb,
 - $\sigma_{total}^{Pb+Pb} \approx 8 \, barn = 8 * 10^{-24} \, cm^2$ total cross section:
 - $L_{\max LHC}^{Pb+Pb} \approx 10^{27} cm^{-2} s^{-1}$ maximal luminosity:
 - \Rightarrow 8000 collisions per second!

$$\left. \sqrt{s_{NN}} \right|_{Au+Au}^{AGS} \cong 2 - 5 \, GeV$$

$$\left. \sqrt{s_{NN}} \right|_{Pb+Pb}^{SPS} \le 17 \, GeV$$

 $\sqrt{s_{NN}}$

$$\left. \sqrt{s_{NN}} \right|_{Pb+Pb}^{LHC} = 2.75 TeV$$

$$\sqrt{s_{NN}}\Big|_{Pb+Pb}^{LHC} = 2.75 TeV$$

RHIC

 $\leq 200 \, GeV$

What is measured when at the LHC?

$\sigma_{total}^{Pb+Pb} \approx 8 barn = 8 \approx$	$10^{-24} cm^2$	$L_{\max,LHC}^{Pb+Pb} \approx 10^{27}$	$cm^{-2}s^{-1}$ 1mo	$onth \approx 10^6 s \approx 1$	LHCyr Pb + I	Pb
When?	15 min~´	10 ³ s (ideal) 1	st month, 2010	1 month, 2	011 2-3	yrs
<u>How much data</u>	$\underline{?} \qquad L^{Pb+Pb}_{\text{int}} \approx$	$1 \mu b^{-1}$ $L_{ir}^{1.2}$	$a_{\rm nt}^{st year} \approx 7 - 8 \mu b^{-1}$	$L_{\rm int}^{Pb+Pb} pprox 150\mu$	<i>ub</i> ⁻¹ p +	Pb
What?	Event multip Low-p _⊤ hadr 	licity • on spectra	Abundant high processes sucl	-p _⊤ • n as jets	Rare and le processes	ptonic

Strategy for these lectures:

- explain basic theory for data accessible at the LHC (and say where it is incomplete)
- explain theory in the order in which data will become accessible
- give motivation for measurement by explaining measurement (not before)

...last introductory remark...

Fundamental question:

How do collective phenomena and macroscopic properties of matter emerge from the interactions of elementary particle physics?

Heavy Ion Physics: addresses this question

- for Quantum Chromodynamics (QCD, i.e. non-abelian QFT)
- in the regime of the highest temperatures and densities accessible in the laboratory
- How? 1. Benchmark: establish baseline, in which collective phenomenon is absent.
 - 2. Establish collectivity: by characterizing deviations from baseline
 - 3. Seek dynamical explanation, ultimately in terms of QCD.

These lectures give examples of this 'How?'

I.1. The very first measurement at a Heavy Ion Collider

PHOBOS, RHIC, 2000 ALICE, PRL 105 (2010) 252301, arXiv:1011.3916 10 Events Data 10⁵ 104 Glauber MC 10 10 10 0-5% centrality 10² 100 200 300 10 10 1 10⁻¹ 10⁻² 2000 4000 6000 8000 5000 0 10000 15000 20000 VZERO Amplitude (a.u.) Signal proportional to multiplicity

What is the benchmark for multiplicity distributions?

Multiplicity in inelastic A+A collisions is incoherent superposition of inelastic p+p collisions.

(i.e. extrapolate p+p -> p+A -> A+A without collective effects)

Glauber theory

I.2. Glauber Theory

Assumption: inelastic collisions of two nuclei (A-B) can be described by incoherent superposition of the collision of "an equivalent number of nucleon-nucleon collisions".

How many?

Establish counting based on

To calculate N_{part} or N_{coll} , take

 $\boldsymbol{\sigma}$ = inelastic n-n cross section

A priori, no reason for this choice other than that it gives a useful parameterization.

$$N_{part} = 7$$

 $N_{coll.} = 10$

$$N_{quarks + gluons} = ?$$

I.3. Glauber theory for n+A

We want to calculate:

- N_{part} = number of participants = number of 'wounded nucleons', which undergo at least one collision
- N_{coll} = number of n+n collisions, taking place in an n+A or A+B collision

We know the single nucleon probability distribution within a nucleus A, the so-called nuclear density

(1.1)
$$\rho(b,z) = 1$$

Normally, we are only interested in the transverse density, the nuclear profile function

(1.2)
$$T_A(b) = \int_{-\infty}^{\infty} dz \ \rho(b,z)$$

I.4. Glauber theory for n+A

The probability that no interaction occurs at impact parameter b:

(1.3)
$$P_0(\underline{b}) = \prod_{i=1}^{A} \left[1 - \int d\underline{s}_i^A T_A(\underline{s}_i^A) \sigma(\underline{b} - \underline{s}_i^A) \right] \qquad \int d\underline{s} \sigma(\underline{s}) = \sigma_{nn}^{inel}$$

If nucleon much smaller than nucleus

(1.4) $\sigma(\underline{b} - \underline{s}) \approx \sigma_{nn}^{inel} \,\delta(\underline{b} - \underline{s})$

(1.5)
$$P_0(\underline{b}) = \left[1 - T_A(\underline{b})\sigma_{nn}^{inel}\right]^A$$

The resulting nucleon-nucleon cross section is:

(1.6)
$$\sigma_{nA}^{inel} = \int d\underline{b} (1 - P_0(\underline{b})) = \int d\underline{b} \left[1 - \left[1 - T_A(\underline{b}) \sigma_{nn}^{inel} \right]^A \right]$$

$$\xrightarrow{A >> n} \longrightarrow \int d\underline{b} \left[1 - \exp \left[-AT_A(\underline{b}) \sigma_{nn}^{inel} \right] \right] \quad \text{Optical limit}$$

$$= \int d\underline{b} \left[AT_A(\underline{b}) \sigma_{nn}^{inel} - \frac{1}{2} \left(AT_A(\underline{b}) \sigma_{nn}^{inel} \right)^2 + \dots \right]$$
(1.7)

Double counting correction Wiedemann

I.5. Glauber theory for n+A

To calculate number of collisions: probability of interacting with i-th nucleon in A is

(1.8)
$$p(\underline{b},\underline{s}_{i}^{A}) = \int d\underline{s}_{i}^{A} T_{A}\left(\underline{s}_{i}^{A}\right) \sigma\left(\underline{b} - \underline{s}_{i}^{A}\right) = T_{A}(\underline{b}) \sigma_{nn}^{inel}$$

Average number of nucleon-nucleon collisions in n+A

(1.10)
$$\overline{N}_{coll}^{nA}(\underline{b}) = \sum_{n=0}^{A} n P(\underline{b}, n) = \sum_{n=0}^{A} n \binom{A}{n} (1-p)^{A-n} p^n = A p$$
$$= A T_A(\underline{b}) \sigma_{nn}^{inel}$$

Average number of nucleon-nucleon collisions in n+A

(1.11)
$$\overline{N}_{part}^{nA}(\underline{b}) = 1 + \overline{N}_{coll}^{nA}(\underline{b})$$

I.6. Glauber theory for A+B collisions

We define the nuclear overlap function

(1.12)
$$T_{AB}(\vec{b}) = \int_{-\infty}^{\infty} d\vec{s} \ T_A(\vec{s}) T_B(\vec{b} - \vec{s})$$

The average number of collisions of nucleon at s^{B} with nucleons in A is

(1.13)
$$\overline{N}_{coll}^{nA}(\underline{b}-\underline{s}^{B}) = AT_{A}(\underline{b}-\underline{s}^{B})\sigma_{nn}^{inel}$$

The number of nucleon-nucleon collisions in an A-B collision at impact parameter b is

(1.14)
$$\overline{N}_{coll}^{AB}(\underline{b}) = B \int d\underline{s}^{B} T_{B}(\underline{s}^{B}) \overline{N}_{coll}^{nA}(\underline{b} - \underline{s}^{B})$$
$$= AB \int d\underline{s} T_{B}(\underline{s}) T_{B}(\underline{b} - \underline{s}) \sigma_{nn}^{inel}$$
$$= AB T_{AB}(\underline{b}) \sigma_{nn}^{inel} \qquad \text{determined in functions}$$

determined in terms of nuclear overlap only

I.7. Glauber theory for A+B collisions

Probability that nucleon at
$$s^B$$
 in B is
wounded by A in configuration $\{s_i^A\}$
(1.15) $p(\underline{s}^B, \{\underline{s}_i^A\}) = 1 - \prod_{i=1}^{A} \left[1 - \sigma(\underline{s}^B - \underline{s}_i^A)\right]$
Probability of finding W_B wounded
nucleons in nucleus B:
(1.16) $P(w_b, \underline{b}) = \begin{pmatrix} B \\ W_B \end{pmatrix} \left(\prod_{i=1}^{A} \prod_{j=1}^{B} \int d\underline{s}_i^A d\underline{s}_j^B T_A(\underline{s}_i^A) T_B(\underline{s}_j^B - \underline{b})\right) p(\underline{s}_1^B, \{\underline{s}_i^A\}) \dots$
 $\dots p(\underline{s}_{W_B}^B, \{\underline{s}_i^A\}) \left[1 - p(\underline{s}_{W_B+1}^B, \{\underline{s}_i^A\})\right] \dots \left[1 - p(\underline{s}_B^B, \{\underline{s}_i^A\})\right]$

Nuclear overlap function defines inelastic A+B cross section.

I.8. Glauber theory for A+B collisions

It can be shownProblem 1: derive the expressions (1.17), (1.19)Use e.g. A. Bialas et al., Nucl. Phys. B111 (1976) 461

(1.18) Number of collisions:

$$\overline{N}_{coll}^{AB}(\underline{b}) = ABT_{AB}(\underline{b})\sigma_{NN}^{inel}$$

- (1.19) Number of participants: $\overline{N}_{part}^{AB}(\underline{b}) = \frac{A\sigma_B^{inel}(\underline{b})}{\sigma_{AB}^{inel}(\underline{b})} + \frac{B\sigma_A^{inel}(\underline{b})}{\sigma_{AB}^{inel}(\underline{b})} \neq \overline{N}_{coll}^{AB}(\underline{b}) + 1$
 - 1. There is a difference between 'analytical' and 'Monte Carlo' Glauber theory: For 'MC Glauber, a random probability distribution is picked from T_A .
 - 2. The nuclear density is commonly taken to follow a Wood-Saxon parametrization (e.g. for A > 16)
- (1.20) $\rho(\vec{r}) = \rho_0 / (1 + \exp[-(r-R)/c]); \quad R = 1.07 A^{1/3} fm, c = 0.545 fm.$

C.W. de Jager, H.DeVries, C.DeVries, Atom. Nucl. Data Table 14 (1974) 479

3. The inelastic Cross section is energy dependent, typically

(1.21)
$$\sigma_{nn}^{inel} \approx 40 \, (65) \, mb$$
 at $\sqrt{s_{nn}} = 100 \, (2700) \, GeV$.
But σ_{nn}^{inel} is sometimes used as fit parameter.

I.9 Event Multiplicity in wounded nucleon model

<u>Model assumption</u>: If \overline{n}_{nn} is the average multiplicity in an n-n collision, then

(1.22)
$$\overline{n}_{AB}(b) = \left(\frac{1-x}{2}\overline{N}_{part}^{AB}(b) + x\overline{N}_{coll}^{AB}(b)\right)\overline{n}_{NN}$$

is average multiplicity in A+B collision (x=0 defines the wounded nucleon model).

The probability of having w_b wounded nucleons fluctuates around the mean, so does the multiplicity n per event (the dispersion d is a fit parameter, say d~1)

(1.23)
$$P(n,\underline{b}) = \frac{1}{\sqrt{2\pi d \,\overline{n}_{AB}(\underline{b})}} \exp\left(-\frac{\left[n - \overline{n}_{AB}(\underline{b})\right]^2}{2d \,\overline{n}_{AB}(\underline{b})}\right)$$

How many events dN_{events} have event multiplicity dn?

$$\frac{dN_{events}}{dn} = \int db P(n,b) \left[1 - \left(1 - \sigma_{NN} T_{AB}(b)\right)^{AB} \right]$$

(1.24)

I.11. Multiplicity as a Centrality Measure

The connection between centrality and event multiplicity can be expressed in terms of

(1.25)
$$\left\langle N_{part}^{A+A} \right\rangle_{n>n_0} = \frac{\int_{n_0} dn \int db P(n,\underline{b}) \left[1 - P_0(\underline{b})\right] N_{part}(\underline{b})}{\int_{n_0} dn \int d\underline{b} P(n,\underline{b}) \left[1 - P_0(\underline{b})\right]}$$

• Centrality class = percentage of the minimum bias cross section

I.12. Centrality Class fixes Impact Parameter

The connection between centrality and event multiplicity can be expressed in terms of

(1.25)
$$\left\langle N_{part}^{A+A} \right\rangle_{n>n_0} = \frac{\int_{n_0} dn \int db P(n,\underline{b}) \left[1 - P_0(\underline{b})\right] N_{part}(\underline{b})}{\int_{n_0} dn \int d\underline{b} P(n,\underline{b}) \left[1 - P_0(\underline{b})\right]}$$

• Centrality class specifies range of impact parameters

I.13. Cross-Checking Centrality Measurements

The interpretation of min. bias multiplicity distributions in terms of centrality measurements can be checked in multiple ways, e.g.

I.14. Cross-Checking Centrality Measurements

The interpretation of min. bias multiplicity distributions in terms of centrality measurements can be checked in multiple ways, e.g.

2. Testing Glauber in d+Au and in p+Au(+ n forward)

STAR Coll.

I.15. Final remarks on event multiplicity in A+B

There is **no 1st principle QCD calculation** of event multiplicity, neither in p+p nor in A+B

• Total charged event multiplicity: models failed to predict RHIC

• and failed to predict LHC

I.16. Final remarks on event multiplicity in A+B

There is **no 1st principle QCD calculation** of event multiplicity, neither in p+p nor in A+B

- Clear deviations from multiplicity of wounded nucleon model
- \sqrt{s} dependence of event multiplicity not understood in pp and AA

ALICE Coll., PRL 106, 032301 (2001) arXiv:1012.1657

I.17. Final remarks on event multiplicity

Multiplicity distribution is not only used as centrality measure but:

Multiplicity (or transverse energy) constrains density of produced matter

Bjorken estimate

$$\varepsilon(\tau_0) = \frac{1}{\pi R^2} \frac{1}{\tau_0} \frac{dE_T}{dy}$$

$$\frac{dE_T}{dy} \approx \frac{dN}{dy} \left\langle E_T \right\rangle$$

This estimate is based on geometry, thermalization is <u>not</u> assumed, numerically:

$$\varepsilon(\tau_0 \simeq 1 fm/c) = 3 - 4 GeV / fm^3$$

II.1. Azimuthal Anisotropies of Particle Production

We know how to associate an impact parameter range $b \in [b_{\min}, b_{\max}]$ to an event class in A+A, namely by selecting a multiplicity class.

What can we learn by characterizing not only the modulus b, but also the orientation \underline{b} ?

II.2. Particle production w.r.t. reaction plane

Consider single inclusive particle momentum spectrum

(2.1)
$$f(\vec{p}) = dN/E d\vec{p}$$

(2.2)
$$\vec{p} = \begin{pmatrix} p_x = p_T \cos\phi \\ p_y = p_T \sin\phi \\ p_z = \sqrt{p_T^2 + m^2} \sinh Y \end{pmatrix}$$

To characterize azimuthal asymmetry, measure n-th harmonic moment of (2.1) in some detector acceptance D [phase space window in (p_T, Y) -plane].

(2.3)
$$V_n \equiv \left\langle \left\langle e^{i n \phi} \right\rangle \right\rangle = \left\langle \frac{\int_D d\vec{p} \, e^{i n \phi} f(\vec{p})}{\int_D d\vec{p} \, f(\vec{p})} \right\rangle_{event}$$

n-th order flow

iverage

Problem: Eq. (2.3) cannot be used for data analysis, since the orientation of the reaction plane is not known a priori.

II.3. Why is the study of v_n interesting?

- Single 2->2 process
- Maximal asymmetry
- NOT correlated to the reaction plane
- Many 2->2 or 2-> n processes
- Reduced asymmetry $\sim 1/\sqrt{N}$
- NOT correlated to the reaction plane

- final state interactions
- asymmetry caused not only by multiplicity fluctuations
- <u>collective component</u> is correlated to the reaction plane

The azimuthal asymmetry of particle production has a collective and a random component. Disentangling the two requires a statistical analysis of finite multiplicity fluctuations.

II.4. Cumulant Method

If reaction plane is unknown, consider particle correlations

(2.4)
$$\left\langle e^{i n (\phi_1 - \phi_2)} \right\rangle_{D_1 \wedge D_2} = \frac{\int_{D_1 \wedge D_2} d\vec{p}_1 d\vec{p}_2 \, e^{i n (\phi_1 - \phi_2)} f(\vec{p}_1, \vec{p}_2)}{\int_{D_1 \wedge D_2} d\vec{p}_1 d\vec{p}_2 \, f(\vec{p}_1, \vec{p}_2)}$$

A two-particle distribution has an uncorrelated and a correlated part

(2.5)
$$f(\vec{p}_1, \vec{p}_2) = f(\vec{p}_1)f(\vec{p}_2) + f_c(\vec{p}_1, \vec{p}_2)$$

(2.6) Short hand $(1,2) = (1)(2) + (1,2)_c$ Cor

Correlated part

Assumption: Event multiplicity N>>1
correlated part is O(1/N)-correction to
$$f(\vec{p}_1)f(\vec{p}_2)$$

(2.7) $\left\langle \left\langle e^{i n(\phi_1 - \phi_2)} \right\rangle \right\rangle = \underbrace{v_n \{2\} v_n \{2\}}_{O(1/N)} \underbrace{\left\langle \left\langle e^{i n(\phi_1 - \phi_2)} \right\rangle_{corr}}_{O(1/N)} \right\rangle}_{O(1/N)}$ Flow via 2nd order cumulants
"Non-flow effects"
(2.8) If $v_n \{2\} \gg \frac{1}{\sqrt{N}}$, then non-flow corrections are negligible.
What, if this is not the case? U.A.Wiedemann

II.5. 4-th order Cumulants

2nd order cumulants allow to characterize v_n , if $v_n >> 1/\sqrt{N}$. Consider now 4-th order cumulants:

(2.9)
$$(1,2,3,4) = (1)(2)(3)(4) + (1,2)_{c}(3)(4) + \dots + (1,2)_{c}(3,4)_{c} + (1,3)_{c}(2,4)_{c} + (1,4)_{c}(2,3)_{c} + (1,2,3)_{c}(4) + \dots + (1,2,3,4)_{c}$$

If the system is isotropic, i.e. $v_n(D)=0$, then k-particle correlations are unchanged by rotation $\phi_i \rightarrow \phi_i + \phi$ for all i, and only labeled terms survive. This defines

(2.9)
$$c_n \{4\} \equiv \left\langle \left\langle e^{i n(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle \right\rangle - \left\langle \left\langle e^{i n(\phi_1 - \phi_3)} \right\rangle \right\rangle \left\langle \left\langle e^{i n(\phi_2 - \phi_4)} \right\rangle \right\rangle - \left\langle \left\langle e^{i n(\phi_1 - \phi_4)} \right\rangle \right\rangle \left\langle \left\langle e^{i n(\phi_2 - \phi_3)} \right\rangle \right\rangle$$

For small, non-vanishing v_n , one finds

Borghini, Dinh, Ollitrault, PRC (2001)

(2.10)
$$C_n\left\{4\right\} = -v_n^4\left\{4\right\} + O\left(\frac{1}{N^3}, \frac{v_{2n}^2}{N^2}\right)$$

Improvement: signal can be separated from fluctuating background, if

$$v_n\{4\} \gg \frac{1}{N^{3/4}}$$
 . A. Wiedemann

II.6. LHC and RHIC Data on Elliptic Flow: v_2

0.3

(2.11)

- Signal $v_2 \approx 0.2$ implies 2-1 asymmetry of particles production w.r.t. reaction plane.
- 'Non-flow' effect for 2nd order cumulants

$$(2.12) \qquad N \sim 100 \Longrightarrow 1 / \sqrt{N} \sim O(v_2)$$

2nd order cumulants do not characterize solely collectivity.

$$(2.13) \quad 1/N^{3/4} \sim 0.03 << v_2$$

Non-flow effects should disappear if we go from 2nd to 4th order cumulants.

II.7. Establishing collectivity in v₂

 pt-integrated v2 stabilizes at 4th order cumulants pt-differential v2 from 2nd and 4th order cumulants

We have established a <u>strong collective effect</u>, which cannot be mimicked by multiplicity fluctuations in the reaction plane.