Lund University

Jets in a quark-gluon plasma

Konrad Tywoniuk

Y. Mehtar-Tani, C.A. Salgado, KT PRL I06 (20II) I 22002
Y. Mehtar-Tani, C.A. Salgado, KT PLB 707 (20II) I56
Y. Mehtar-Tani, KT arXiv:II05:I 346 [hep-ph]
Y. Mehtar-Tani, C.A. Salgado, KT arXiv:III2.503I [hep-ph]

Spåtind 20I2, 2-7 January 20 I2

What is a jet?

What is a jet?

- Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes

What is a jet?

- Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes
- LPHD: Hadronization does not affect exclusive observables (jet shape, energy distribution etc..)

What is a jet?

- Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes
- LPHD: Hadronization does not affect exclusive observables (jet shape, energy distribution etc..)

Large time domain for PQCD: $\frac{1}{\sqrt{s}}<t<\frac{\sqrt{s}}{\Lambda_{\mathrm{QCD}}^{2}}$

QCD COHERENCE IN VACUUM

[Dokshitzer, Fadin, Khoze, Troyan, Lipatov, Bassetto, Mueller, Ciafaloni, Marchesini....]

$$
\begin{aligned}
& \vartheta_{1}>\vartheta_{2}>\vartheta_{3} \\
& \omega_{1}>\omega_{2}>\omega_{3}
\end{aligned}
$$

- leading singularities:

$$
\propto \frac{d \omega_{i}}{\omega_{i}} \frac{d \theta_{i}}{\theta_{i}} \Theta\left(\theta_{i-1}-\theta_{i}\right)
$$

TASSO Collaboration, Z. Phys. C 47 (1990) 187
OPAL Collaboration, Phys. Lett. B 247 (1990) 617

QCD COHERENCE IN VACUUM

[Dokshitzer, Fadin, Khoze, Troyan, Lipatov, Bassetto, Mueller, Ciafaloni, Marchesini....]

- included in most MC
generators: PYTHIA, HERWIG
- soft \& collinear divergences
- interferences \Rightarrow angular
ordering

QCD COHERENCE IN VACUUM

[Dokshitzer, Fadin, Khoze, Troyan, Lipatov, Bassetto, Mueller, Ciafaloni, Marchesini....]

- included in most MC generators: PYTHIA, HERWIG
- soft \& collinear divergences
- interferences \Rightarrow angular ordering - leading singularities:

$$
\propto \frac{d \omega_{i}}{\omega_{i}} \frac{d \theta_{i}}{\theta_{i}} \Theta\left(\theta_{i-1}-\theta_{i}\right)
$$

TASSO Collaboration, Z. Phys. C 47 (1990) 187
OPAL Collaboration, Phys. Lett. B 247 (1990) 617

CMS

CMS Experiment at LHC, CERN
Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

CMS Experiment at LHC, CERN
Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470
Lumi section: 173

Rho 2

MEDIUM MODIFIES THE JET EVOLUTION!

ANTENNA SETUP

$$
\left\langle d N_{q}\right\rangle_{\varphi}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\cos \theta-\cos \theta_{q \overline{\bar{q}}} \widehat{ }\right.
$$

ANTENNA SETUP

$$
\left\langle d N_{q}\right\rangle_{\varphi}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)
$$

Fundamental building block of the QCD cascade!

ANTENNA SETUP

$$
\left\langle d N_{q}\right\rangle_{\varphi}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)
$$

Fundamental building block of the QCD cascade!

- Reason: emissions at large angles are sensitive to the total charge of the emitting system

ANTENNA SETUP

$$
\begin{aligned}
& \left\langle d N_{q}\right\rangle_{\varphi}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right) \\
& \quad \text { Fundamental building block of the QCD cascade! }
\end{aligned}
$$

- Reason: emissions at large angles are sensitive to the total charge of the emitting system
- The antenna provides a nice laboratory!

ANTENNA SETUP

$$
\left\langle d N_{q}\right\rangle_{\varphi}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)
$$

Fundamental building block of the QCD cascade!

- Reason: emissions at large angles are sensitive to the total charge of the emitting system
- The antenna provides a nice laboratory!
- Question: how will the antenna radiation pattern look like if it were to traverse a quark-gluon medium?

ANTENNA SETUP IN MEDIUM

Mehtar-Tani, Salgado, KT PRL I06 (20II) I22002
Mehtar-Tani, Salgado, KT arXiv: I I 02.43I7 [hep-ph]

- eikonal approximation for fixed opening angle of the pair
medium is modeled as a classical background field

$$
J_{q}^{(0)}(x)=g \delta^{(3)}\left(\vec{x}-\frac{\vec{p}}{E} t\right) \Theta(t) Q_{q}
$$

ANTENNA SETUP IN MEDIUM

Mehtar-Tani, Salgado, KT PRL I06 (20II) I22002
Mehtar-Tani, Salgado, KT arXiv: I I 02.43 I 7 [hep-ph]

- eikonal approximation for fixed opening angle of the pair
medium is modeled as a classical background field

$$
J_{q}^{(0)}(x)=g \delta^{(3)}\left(\vec{x}-\frac{\vec{p}}{E} t\right) \Theta(t) Q_{q}
$$

Classical Yang-Mills eq: $\quad\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \quad, \quad\left[D_{\mu}, J^{\mu}\right]=0$

ANTENNA SETUP IN MEDIUM

Mehtar-Tani, Salgado, KT PRL 106 (20II) I22002
Mehtar-Tani, Salgado, KT arXiv:II02.43I7 [hep-ph]

- eikonal approximation for fixed opening angle of the pair
- medium is modeled as a classical background field

$$
J_{q}^{(0)}(x)=g \delta^{(3)}\left(\vec{x}-\frac{\vec{p}}{E} t\right) \Theta(t) Q_{q}
$$

Classical Yang-Mills eq:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \quad, \quad\left[D_{\mu}, J^{\mu}\right]=0
$$

Linear response: $\quad \square A^{i}-2 i g\left[A_{\text {med }}^{-}, \partial^{+} A^{i}\right]=-\frac{\partial^{i}}{\partial^{+}} J^{+}+J^{i}$

ANTENNA IN MEDIUM

Y. Mehtar-Tani, KT arXiv:II05.I346 [hep-ph], E. lancu, J. Casalderrey-Solana arXiv:I I 05.1760 [hep-ph]

Multiple scattering \Rightarrow effective propagators:
$\mathcal{J}=\operatorname{Re}\left\{\int_{0}^{\infty} d y^{\prime+} \int_{0}^{y^{\prime+}} d y^{+}\left(1-\Delta_{\text {med }}\left(y^{+}, 0\right)\right)\right.$
$\times \int d^{2} \boldsymbol{z} \exp \left[-i \overline{\boldsymbol{\kappa}} \cdot \boldsymbol{z}-\frac{1}{2} \int_{y^{\prime}}^{\infty} d \xi n(\xi) \sigma(\boldsymbol{z})+i \frac{k^{+}}{2} \delta \boldsymbol{n}^{2} y^{+}\right]$

$\left.\times\left.\left(\boldsymbol{\partial}_{y}-i k^{+} \delta \boldsymbol{n}\right) \cdot \boldsymbol{\partial}_{z} \mathcal{K}\left(y^{\prime+}, \boldsymbol{z} ; y^{+}, \boldsymbol{y} \mid k^{+}\right)\right|_{\boldsymbol{y}=\delta \boldsymbol{n} y^{+}}\right\}+\mathrm{sym}$.

ANTENNA IN MEDIUM

Y. Mehtar-Tani, KT arXiv: I I05.I346 [hep-ph], E. lancu, J. Casalderrey-Solana arXiv:I I05.I760 [hep-ph]

Multiple scattering \Rightarrow effective propagators:

$$
\begin{aligned}
\mathcal{J}= & \operatorname{Re}\left\{\int_{0}^{\infty} d y^{\prime+} \int_{0}^{y^{\prime+}} d y^{+}\left(1-\Delta_{\operatorname{med}}\left(y^{+}, 0\right)\right)\right. \\
& \times \int d^{2} \boldsymbol{z} \exp \left[-i \overline{\boldsymbol{\kappa}} \cdot \boldsymbol{z}-\frac{1}{2} \int_{y^{\prime+}}^{\infty} d \xi n(\xi) \sigma(\boldsymbol{z})+i \frac{k^{+}}{2} \delta \boldsymbol{n}^{2} y^{+}\right] \\
& \left.\times\left.\left(\boldsymbol{\partial}_{y}-i k^{+} \delta \boldsymbol{n}\right) \cdot \boldsymbol{\partial}_{z} \mathcal{K}\left(y^{\prime+}, \boldsymbol{z} ; y^{+}, \boldsymbol{y} \mid k^{+}\right)\right|_{\boldsymbol{y}=\delta n y^{+}}\right\}+\mathrm{sym} .
\end{aligned}
$$

Describes Brownian motion through medium potential...

$$
\begin{array}{ll}
\mathcal{K}\left(y^{\prime+}, \boldsymbol{z} ; y^{+}, \boldsymbol{y} \mid k^{+}\right)=\int \mathcal{D}[\boldsymbol{r}] \exp \int_{y^{+}}^{y^{\prime+}} d \xi\left(i \frac{k^{+}}{2} \dot{\boldsymbol{r}}^{2}(\xi)\right. & \left.\left.\frac{1}{2} n(\xi) \sigma(\boldsymbol{r})\right)\right] \\
\sigma(\mathbf{r})=2 \alpha_{S} C_{A} \int \frac{d^{2} \mathbf{q}}{(2 \pi)^{2}} \mathcal{V}^{2}(\mathbf{q}[1-\cos (\mathbf{r} \cdot \mathbf{q})] & \mathcal{V}(\boldsymbol{q})=\frac{1}{\boldsymbol{q}^{2}+m_{D}^{2}}
\end{array}
$$

ANTENNA IN MEDIUM

Y. Mehtar-Tani, KT arXiv: I I05.I346 [hep-ph], E. lancu, J. Casalderrey-Solana arXiv:I I05.I760 [hep-ph]

Multiple scattering \Rightarrow effective propagators:
celeces)

$$
\begin{aligned}
\mathcal{J}= & \operatorname{Re}\left\{\int_{0}^{\infty} d y^{\prime+} \int_{0}^{y^{\prime+}} d y+\left(1-\Delta_{\operatorname{med}}\left(y^{+}, 0\right)\right)\right. \\
& \times \int d^{2} \boldsymbol{z} \exp \left[-i \overline{\boldsymbol{\kappa}} \cdot \boldsymbol{z}-\frac{1}{2} \int_{y^{\prime+}}^{\infty} d \xi n(\xi) \sigma(\boldsymbol{z})+i \frac{k^{+}}{2} \delta \boldsymbol{n}^{2} y^{+}\right] \quad|\delta n| \simeq \theta_{q \bar{q}} \\
& \left.\times\left.\left(\boldsymbol{\partial}_{y}-i k^{+} \delta \boldsymbol{n}\right) \cdot \boldsymbol{\partial}_{z} \mathcal{K}\left(y^{\prime+}, \boldsymbol{z} ; \boldsymbol{y}^{+}, \boldsymbol{y} \mid k^{+}\right)\right|_{\boldsymbol{y}=\delta n y^{+}}\right\}+\mathrm{sym} .
\end{aligned}
$$

Describes Brownian motion through medium potential...

$$
\begin{array}{ll}
\mathcal{K}\left(y^{\prime+}, \boldsymbol{z} ; y^{+}, \boldsymbol{y} \mid k^{+}\right)=\int \mathcal{D}[\boldsymbol{r}] \exp \int_{y^{+}}^{y^{\prime+}} d \xi\left(i \frac{k^{+}}{2} \dot{\boldsymbol{r}}^{2}(\xi)\right. & \left.\left.\frac{1}{2} n(\xi) \sigma(\boldsymbol{r})\right)\right] \\
\sigma(\mathbf{r})=2 \alpha_{S} C_{A} \int \frac{d^{2} \mathbf{q}}{(2 \pi)^{2}} \mathcal{V}^{2}(\mathbf{q}[1-\cos (\mathbf{r} \cdot \mathbf{q})] & \mathcal{V}(\boldsymbol{q})=\frac{1}{\boldsymbol{q}^{2}+m_{D}^{2}}
\end{array}
$$

THE SOFT LIMIT

Considering soft gluon emissions: only the quarks interact!

$$
J_{q}(x)=g U_{p}\left(x^{+}, 0\right) \delta^{(3)}\left(\vec{x}-\frac{\vec{p}}{E} t\right) \Theta(t) Q_{q}
$$

THE SOFT LIMIT

Considering soft gluon emissions: only the quarks interact!

$$
J_{q}(x)=g U_{p}\left(x^{+}, 0\right) \delta^{(3)}\left(\vec{x}-\frac{\vec{p}}{E} t\right) \Theta(t) Q_{q}
$$

Wilson line along the trajectory:

$$
U_{p}\left(x^{+}, 0\right)=\mathcal{P}_{+} \exp \left\{i g \int_{0}^{x^{+}} d z^{+}\left[T \cdot A_{\text {med }}^{-}\left(z^{+}, z^{+} p_{\perp} / p^{+}\right)\right]\right\}
$$

THE SOFT LIMIT

Considering soft gluon emissions: only the quarks interact!

$$
J_{q}(x)=g U_{p}\left(x^{+}, 0\right) \delta^{(3)}\left(\vec{x}-\frac{\vec{p}}{E} t\right) \Theta(t) Q_{q}
$$

Wilson line along the trajectory:

$$
U_{p}\left(x^{+}, 0\right)=\mathcal{P}_{+} \exp \left\{i g \int_{0}^{x^{+}} d z^{+}\left[T \cdot A_{\text {med }}^{-}\left(z^{+}, z^{+} p_{\perp} / p^{+}\right)\right]\right\}
$$

$\Delta_{\text {med }}=1-\frac{1}{N_{c}^{2}-1}\left\langle\operatorname{Tr} U_{p}\left(x^{+}, 0\right) U_{\bar{p}}^{\dagger}\left(x^{+}, 0\right)\right\rangle$

$$
\approx 1-e^{-\frac{1}{12} \hat{q} \theta_{q \bar{q}}^{2} L^{3}}
$$

- the decoherence parameter!

DECOHERENCE
 - a two scale problem!

- $\quad r_{\perp}<Q_{s}^{-1}$ (Dipole regime)

$\Delta_{\mathrm{med}} \approx \frac{1}{12} Q_{s}^{2} r_{\perp}^{2}$
- $r_{\perp}>Q_{s}^{-1}$
(Decoh. regime)

$\Delta_{\mathrm{med}} \approx 1-\exp \left[-\frac{1}{12} Q_{s}^{2} r_{\perp}^{2}\right]$
$r_{\perp}=\theta_{q \bar{q}} L$
$Q_{\text {hard }}=\max \left(r_{\perp}^{-1}, Q_{s}\right)$

DECOHERENCE
 - a two scale problem!

$\Delta_{\text {med }} \approx 1-\exp \left[-\frac{1}{12} Q_{s}^{2} r_{\perp}^{2}\right]$
$r_{\perp}=\theta_{q \bar{q}} L$
$Q_{\mathrm{hard}}=\max \left(r_{\perp}^{-1}, Q_{s}\right)$
$\mathrm{k}_{\perp} \gg$ Qhard: suppression!

ONSET OF DECOHERENCE - THE SOFT LIMIT

$\Delta_{\text {med }} \rightarrow 0 \quad$ Coherence

ONSET OF DECOHERENCE - THE SOFT LIMIT

$\Delta_{\text {med }} \rightarrow 0 \quad$ Coherence
$\Delta_{\text {med }} \rightarrow 1 \quad$ Decoherence

ONSET OF DECOHERENCE - THE SOFT LIMIT

$\Delta_{\text {med }} \rightarrow 0 \quad$ Coherence
$\Delta_{\text {med }} \rightarrow 1 \quad$ Decoherence
$d N_{q, \gamma^{*}}^{\text {tot }}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{\sin \theta d \theta}{1-\cos \theta}\left[\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+\Delta_{\text {med }} \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right]$

ONSET OF DECOHERENCE - THE SOFT LIMIT

$\Delta_{\text {med }} \rightarrow 0 \quad$ Coherence
$\Delta_{\text {med }} \rightarrow 1 \quad$ Decoherence
$d N_{q, \gamma^{*}}^{\text {tot }}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{\sin \theta d \theta}{1-\cos \theta}\left[\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+\Delta_{\text {med }} \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right]$
$\left.d N_{q, \gamma^{*}}^{\mathrm{tot}}\right|_{\text {opaque }}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{\sin \theta d \theta}{1-\cos \theta}$.

1) Independent emissions!
2) "Memory loss" effect

ONSET OF DECOHERENCE - FINITE ENERGIES

$Q_{\text {hard }}=\max \left(r_{\perp}^{-1}, Q_{s}\right)$ Above $\omega_{\max }$ medium induces independent radiation inside the cone.

Dilute medium
$\Delta_{\text {med }} \approx \frac{1}{6} \hat{q} L^{+} r_{\perp}^{2}\left[\ln \frac{1}{r_{\perp} m_{D}}+\right.$ const. $]$
$\Delta_{\text {med }} \approx n_{0} L^{+} \equiv N_{\text {scat }}$
dipole regime
decoher. regime

THE DENSE REGIME

$\Delta_{\text {med }} \longrightarrow 1$

THE DENSE REGIME

THE DENSE REGIME

Independent component:

Baier, Dokshitzer, Mueller, Peigne, Schiff (I997-200 I), Zakharov (I996), Wiedemann (2000), Gyulassy, Levai, Vitev (200I-2002)
$\Delta_{\text {med }} \rightarrow 1$ independent spectrum appears interferences are destroyed jet broadening

THE DENSE REGIME

CONCLUSIONS

* copious jets in heavy-ion collisions at the LHC
* medium induces soft radiation at large angles
\Rightarrow onset of decoherence
* a two scale problem: $\mathrm{r}_{\perp}{ }^{-1} \mathrm{vs} . \mathrm{Q}_{\mathrm{s}}$
\Rightarrow jet probes medium, and vice versa
* the radiation pattern off an antenna
\Rightarrow building block for jet calculus in medium

MEDIUM-INDUCED RADIATION

Baier, Dokshitzer, Mueller, Peigne, Schiff (I997-200I), Zakharov (I996),
Wiedemann (2000), Gyulassy, Levai,Vitev (200I-2002)

Energy loss: $\quad \Delta E \simeq \frac{\alpha_{s} C_{R}}{2 \pi} \hat{q} L^{2}$
Broadening: $\quad k_{\perp}^{2} \simeq \hat{q} L \propto \frac{\Delta E}{L}$

QGP
emitted off a single emitter

- gluon interaction $\Rightarrow \mathrm{k}_{\perp}$-broadening
- transport parameter: $\hat{q}=m_{D}^{2} / \lambda$
- infrared \& collinear safe spectrum
- energy loss distribution: $\mathrm{P}(\Delta \mathrm{E})$
- need more emitters to see coherence!

ANGULAR SPECTRUM

?
$1 / \theta$
Y. Mehtar-Tani, C.A. Salgado, KT arXiv:III2.503I [hep-ph]

$1 / \theta$
antiangular ordering
large angles
inside cone
Y. Mehtar-Tani, C.A. Salgado, KT arXiv:III2.503I [hep-ph]

ENERGY SPECTRUM

"Dipole" regime
 - dipole size: $\mathbf{r}_{\perp}{ }^{-1}$
 - coherent spectrum

"Saturation" regime

- medium scale: $\mathrm{Q}_{\text {s }}$
- two components:
- outside the cone
- inside the cone
Y. Mehtar-Tani, C.A. Salgado, KT arXiv: I I I 2.503 I [hep-ph]

