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What is a jet?

• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes
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What is a jet?

• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes

• LPHD: Hadronization does not affect exclusive 
observables (jet shape, energy distribution etc..)
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[Dokshitzer, Fadin, Khoze, Troyan, Lipatov, Bassetto, Mueller, Ciafaloni, Marchesini....]

QCD COHERENCE IN VACUUM

∝ dωi

ωi

dθi

θi
Θ (θi−1 − θi)

3

ϑ1 ϑ2 ϑ3

ϑ1 > ϑ2 > ϑ3

ω1 > ω2 > ω3

TASSO Collaboration, Z. Phys. C 47 (1990) 187
OPAL Collaboration, Phys. Lett. B 247 (1990) 617

- leading singularities:



[Dokshitzer, Fadin, Khoze, Troyan, Lipatov, Bassetto, Mueller, Ciafaloni, Marchesini....]

included in most MC 
generators: PYTHIA, HERWIG
soft & collinear divergences
interferences ⇒ angular 
ordering

QCD COHERENCE IN VACUUM

∝ dωi

ωi

dθi

θi
Θ (θi−1 − θi)

3

ϑ1 ϑ2 ϑ3

ϑ1 > ϑ2 > ϑ3

ω1 > ω2 > ω3

TASSO Collaboration, Z. Phys. C 47 (1990) 187
OPAL Collaboration, Phys. Lett. B 247 (1990) 617

- leading singularities:



[Dokshitzer, Fadin, Khoze, Troyan, Lipatov, Bassetto, Mueller, Ciafaloni, Marchesini....]

included in most MC 
generators: PYTHIA, HERWIG
soft & collinear divergences
interferences ⇒ angular 
ordering

QCD COHERENCE IN VACUUM

∝ dωi

ωi

dθi

θi
Θ (θi−1 − θi)

3

ϑ1 ϑ2 ϑ3

ϑ1 > ϑ2 > ϑ3

ω1 > ω2 > ω3

TASSO Collaboration, Z. Phys. C 47 (1990) 187
OPAL Collaboration, Phys. Lett. B 247 (1990) 617

softhard
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MEDIUM MODIFIES THE JET 
EVOLUTION!



ANTENNA SETUP

〈dNq〉ϕ =
αsCF

π

dω

ω

dθ

θ
Θ(cos θ − cos θqq̄)

Θqq̄
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ANTENNA SETUP

Reason: emissions at large angles are sensitive to the 
total charge of the emitting system 

The antenna provides a nice laboratory!

Question: how will the antenna radiation pattern look 
like if it were to traverse a quark-gluon medium? 
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J ≡ Jq + Jq̄

ANTENNA SETUP IN MEDIUM

eikonal approximation for fixed 
opening angle of the pair
medium is modeled as a classical 
background field

g❋, γ❋

Mehtar-Tani, Salgado, KT PRL 106 (2011) 122002
Mehtar-Tani, Salgado, KT arXiv:1102.4317 [hep-ph]
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[Dµ, Fµν ] = Jν , [Dµ, Jµ] = 0Classical Yang-Mills eq:

Linear response:

Gelis, Mehtar-Tani (2005), Mehtar-Tani (2007)
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ANTENNA IN MEDIUM

J = Re

{∫ ∞

0
dy′+

∫ y′+

0
dy+

(
1−∆med(y+, 0)

)

×
∫

d2z exp
[
−iκ̄ · z − 1

2

∫ ∞

y′+
dξ n(ξ)σ(z) + i

k+

2
δn2y+

]

×
(
∂y − ik+ δn

)
· ∂z K(y′+,z ; y+,y |k+)

∣∣
y=δny+

}
+ sym. ,

Multiple scattering ⇒ effective propagators:

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph], E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

|δn| ! θqq̄
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Multiple scattering ⇒ effective propagators:

Describes Brownian motion through medium potential...

σ(r) = 2αSCA

∫
d2q

(2π)2
V2(q)

[
1− cos(r · q)

]

K
(
y′+,z; y+,y|k+

)
=

∫
D[r] exp

[∫ y′+

y+
dξ

(
i
k+

2
ṙ2(ξ)− 1

2
n(ξ)σ(r)

)]

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph], E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

|δn| ! θqq̄
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After performing the integrations we find for the amplitude of the quark part

− k2Ai,a
(1),q(k) = 2 ig2

∫
d2q

(2π)2

∫ ∞

0
dx+

[
T · Amed(x

+, q)
]ab

Qb
q ei(k

−−v−)x+

×
{
νi

ν2

[
1− exp

(
i
ν2

2k+
x+

)]
+

κi

κ2
exp

(
i
ν2

2k+
x+

)}
, (3.42)

where νi = (k−q)i−x pi. Thus, the amplitude for gluon radiation off the quark
reads

Ma
(1)λ,q = 2 ig2

∫
d2q

(2π)2

∫ ∞

0
dx+

[
T · Amed(x

+, q)
]ab

Qb
q ei(k

−−v−)x+

×
[
ν

ν2
−L exp

(
i
ν2

2k+
x+

)]
· ελ , (3.43)

where
L =

ν

ν2
− κ

κ2
, (3.44)

is the well-known Lipatov vertex in LC gauge [33, 34], also called an emission
current in [14]. The amplitude for gluon radiation off the anti-quark, M(1),q̄, is
deduced from M(1),q by substituting the momentum p → p̄ and quark charge
q → q̄. Note that the phase in (3.43) (last term in the first line) is superfluous
since it cancels in the cross section.

Note that when the off-shell gluon becomes collinear to the quark, i.e., ν2 →
0, no singularity arises because of the phase structure. The same cancellation
does not takes when κ2 → 0, on the other hand. In particular, it diverges
in the infrared limit, i.e., when the energy of the gluon goes to zero, ω → 0.
[DIAGRAMMATICAL INTERPRETATION?]

Let us now turn to the evaluation of the cross-section. The gluon spectrum is
calculated by taking the square of the amplitude and averaging over the medium
field. To do so we assume the medium color charges to be uncorrelated and
having longitudinal support on the line element [0, L+] but infinite and uniform
in the transverse direction, thus, one can treat the medium charge density as a
Gaussian white noise defined by the two-point function

〈ρamed(x
+, q)ρ∗bmed(x

′+, q′)〉 = δabm2
D n(x+) δ(x+ − x′+) (2π)2δ(2)(q − q′) ,

(3.45)
which yields

〈Aa
med(x

+, q)A∗b
med(x

′+, q′)〉 = δabm2
D n(x+) δ(x+ − x′+)

× (2π)2δ(2)(q − q′)V2(q) . (3.46)

Following previous works, we define the potential V(q) to be a Yukawa-type,

V(q) =
1

q2 +m2
D

, (3.47)
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THE SOFT LIMIT

8

Considering soft gluon emissions: only the quarks interact!

Jq(x) = g Up(x+, 0) δ(3)("x− "p

E
t)Θ(t) Qq
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Considering soft gluon emissions: only the quarks interact!

∆med = 1 − 1
N2

c − 1
〈TrUp(x+, 0)U †

p̄(x+, 0)〉

∆med ≈ 1− e−
1
12 q̂ θ2

qq̄ L3

q̂: medium transport coefficient

θqq

L0- the decoherence parameter!

Jq(x) = g Up(x+, 0) δ(3)("x− "p

E
t)Θ(t) Qq



DECOHERENCE
- a two scale problem!

Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

∆med ≈ 1− exp[− 1
12

Q2
s r2
⊥]

Q2
s = q̂ L

r⊥ = θqq̄ L

•                       (Dipole regime)r⊥ < Q−1
s •                       (Decoh. regime)r⊥ > Q−1

s

r⊥Θqq̄ Q−1
s

r⊥Θqq̄ Q−1
s

• Hard scale:                                    andQ ≡max (r−1
⊥ , Qs) k⊥ < Q
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 length∆med ≈
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9

Qhard = max
(
r−1
⊥ , Qs

)
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Θqq̄

ONSET OF DECOHERENCE 
- THE SOFT LIMIT

∆med → 0 Coherence
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Θqq̄

ONSET OF DECOHERENCE 
- THE SOFT LIMIT

∆med → 0 Coherence Θqq̄

∆med → 1 Decoherence

dN tot
q,γ∗ =

αsCF

π

dω

ω

sin θ dθ

1− cos θ
[Θ(cos θ − cos θqq̄) + ∆med Θ(cos θqq̄ − cos θ)] .
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ONSET OF DECOHERENCE 
- FINITE ENERGIES
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and dΩ = d cos θ dϕ. The quantity in (4.67) can be interpreted as a decoherence
parameter, as we shall see below. Proceeding as for the calculation of the spec-
trum in vacuum, see Section 2, the medium-induced angular radiation pattern
off the quark is simply given by Pq = J , and analogously for the antiquark,
since the medium-induced independent spectra are vanishing in the soft limit.
Thus, after integrating out the azimuthal angle ϕ, we obtain

dNmed
q

∣∣
ω→0

=
αsCF

π
∆med(θqq̄, L)

dω

ω

sin θ dθ

1− cos θ
Θ(cos θqq̄ − cos θ) . (4.68)

demonstrating that the medium-induced soft gluon radiation off the quark is
completely suppressed inside the cone of opening angle θqq̄, as opposed to the
standard angular structure obtained in vacuum, see (2.24). The medium pa-
rameters only enter in the decoherence parameter ∆med, which does not depend
on θ, such that the functional form of the spectrum remains vacuum-like and
antiangular ordered, see (2.25) [7].

The spectrum found above has some similarities with the radiation off a
color octet antenna in the vacuum, c.f. (??), in which a large angle term, corre-
sponding to the total charge of the pair, also appears. Several differences exist,
however, with (4.68), most importantly, (i) the disappearance of the medium-
induced radiation in the limit of vanishing opening angles, θqq̄ → 0, and (ii)
the relevant color factor, CF , in the medium case, indicating the radiation off
a quark in the fundamental representation. The latter point is, in fact, further
clarified by taking into account multiple scattering with the medium. Then the
adjoint color CA contained in q̂ exponentiates [8].

From the functional analysis of the decoherence parameter we identify two
regimes.

• The dipole regime: is defined by |r⊥| # m−1
D , which translates the fact that

the maximum transverse separation between the quark and the antiquark
is smaller than the Debye screening. In other words, the qq̄-dipole is
probed coherently by the medium. Eq. (4.67) can then be expanded
for small dipole sizes r⊥. The integral in Eq. (4.67) is straightforward,
yielding

∆med ≈ 1

6
q̂L+ r2⊥

[
ln

1

r⊥mD
+ const.

]
. (4.69)

• The saturation regime: when the dipole size becomes larger than the in-
medium correlation length,i.e., |r⊥| % m−1

D , the dipole cross-section satu-
rates to a universal value that does not depend on the dipole parameters

∆med ≈ q̂L+

m2
D

. (4.70)

Neglecting the color factor and the coupling constant in (3.48) (which can
be absorbed in the redefinition of the mean free path), we can rewrite
(4.70) as ∆med ≈ L/λ‖. This is nothing but the effective number of
scattering centers which in this limit has to be smaller than one not to
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CONCLUSIONS

copious jets in heavy-ion collisions at the LHC
medium induces soft radiation at large angles 
⇒ onset of decoherence

a two scale problem: r⊥-1 vs. Qs

⇒ jet probes medium, and vice versa
the radiation pattern off an antenna 
⇒ building block for jet calculus in medium 
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MEDIUM-INDUCED RADIATION

emitted off a single emitter
gluon interaction ⇒ k⊥-broadening
transport parameter: q̂ = mD2 /λ
infrared & collinear safe spectrum
energy loss distribution: P(ΔE)
need more emitters to see coherence!

✘

✘

✘

✘

QGP

∆E ! αsCR

2π
q̂L2

k2
⊥ ! q̂L ∝ ∆E

L

Energy loss:

Broadening:

Baier, Dokshitzer, Mueller, Peigne, Schiff (1997-2001), Zakharov (1996), 
Wiedemann (2000), Gyulassy, Levai, Vitev (2001-2002)

ωc =
1
2
q̂L2

Salgado, Wiedemann (2003) 
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Rmed
q = 32πq̂

∫

V(q)

∫ L+

0
dx+

[
1− cos

(
ν2

2k+
x+

)]
ν

ν2
·L

Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read

ω
dN interf

d3k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

{[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L −
[
1− cos

(
ν̄2

2k+
x+

)]
ν

ν2
· L̄

}
.

(3.59)

Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely

dNmed = dNmed
q + dNmed

q̄ (3.60)

where

ω
dNmed

q

d3k
=

αsCF

(2π)2 ω2

(
Rmed

q − Jmed
q

)
. (3.61)

The independent spectrum Rmed
q was already discussed in the previous subsec-

tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives

Jmed
q = −32π q̂

∫

V(q)

∫ L+

0
dx+

{
1

2

[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L
}

, (3.62)
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely
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tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives
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