RECONSTRUCTING THE REST FRAME OF

T+ T SYSTEMS

PETER ROSENDAHL THOMAS BURGESS BJARNE STUGU

IFT University of Bergen

MOTIVATION

- We want to study resonances decaying to a pair of taus.
- ^{**} Unfortunately, some observables are best defined the rest frame of τ pairs, especially variables for studying the τ polarisation
 - At LHC, Z and Higgs bosons are produced with high boost
 - Due to neutrinos in the τ decays, no trivial way exists to reconstruct the resonance rest frame

- * For resonances at the Z mass or above, the τ-jets are collinear.
 - In resonance rest frame, the visible τ-jets are nearly back-to-back.
- Proposed method:
 - Reconstruct rest frame by finding boost that makes τ-jets back-toback

τ-jet

τ-jet

3

Z-BOOST RECONSTRUCTION

- We define acollinarity, α, as the deviation from being back-to-back
- Z and Higgs bosons at LHC are produced with a predominantly longitudinal boost
- Search for the boost along the z-axis, β_z, that minimises α between the τ-jets

Easy to minimise since α always has single minimum - can be found with a simple binary search

FULL BOOST RECONSTRUCTION

- Method can easily be extended to search for the full boost - not only along the z-axis.
- # First find β_z
- Stimate transverse direction by summing up τ-jets p_T and E_T^{miss}
- Sinally, search for minimum along transverse direction to find β_T

In many cases reconstructing β_z will be sufficient

PERFORMANCE

- Rest frame is nicely found for all generated boost values
- Better performance in full boost method,
 - * However needs accurate transverse direction as input

Spaatind - 05 jan 2012

APPLICATIONS

POLARISATION STUDY

- Decays of τ-leptons carry information about polarisation
- # Effect strongest in $\tau \rightarrow \pi v$
 - * Looking at $E(\pi)/M_Z$
- Subset Set Stress S
- Almost fully recovered in reconstructed frame (Δ)

 $\tau \rightarrow \pi \nu$ decays from Pythia8 + Tauola simulation

SPIN RECONSTRUCTION

- * Polarisation configuration depends on the boson spin
- ** Spin information can be extracted by studying the polarisation correlation of τ^+ vs. τ^-

SENSITIVITY TO SPIN

From these distributions a likelihood function can be created

 $\log \mathcal{L} = \sum_{i=0}^{N} \left(\log(P_1^i) - \log(P_0^i) \right) / N$

and a sensitivity to spin defined as

$$n_{\sigma} = S\sqrt{N}$$

Entries/0.01 16 🕅 Z 14 Mean 1.47e-01 12 RMS 1.33e-02 10 **Higgs** Mean -1.64e-01 8 RMS 1.60e-02 6 Sensitivity 0.47 2 -0.4 -0.2 0.0 0.2 0.4 0.6 logL

Likelihoods for Z and Higgs

Sensitivity

In detector frame	In recon. frame
0.23	0.47

ALTERNATIVE MASS ESTIMATION

- * Neutrinos in the τ decay makes reconstruction the mass of a resonance nontrivial
- * In the resonance rest frame, the leading τ-jet energy will accumulate towards half the resonance mass
- * As a simple approximation the kinematic edge can be found at the steepest slope in the leading τ-energy distribution

Mass can be extrapolated similarly to W mass measurements

COMPARISON TO OTHER METHODS

- Both methods can be applied on all events
 - Methods currently used at the LHC, only works for a fraction of suitable event topologies
 - In the region where the Coll. Approx. breaks down, this method can be applied without using E_T^{miss}
- Method is extremely fast and simple
 - more 1000x faster than likelihood method currently used by CMS and ATLAS

SUMMARY AND OUTLOOK

- * A way of reconstructing rest frame of τ pair resonances and its applications have been presented
 - Method and its applications are published at arxiv:1105.6003 (recently accepted in JHEP)
 - Suitable to all τ decay channels and not necessarily specific to τ pairs
- * No detector effects have been included in plots shown
 - * However, we are investigating use of the method in ATLAS
- % C++ code available on request

Peter Rosendahl, University of Bergen

Thank you for your attention

14