Study of B_{s} mesons with the CMS detector at LHC

Giacomo Fedi (Helsinki University)

Outline

- CMS experiment at LHC
- B_{s} meson study
- Underlying physics
- Analysis strategy

CMS (Compact Muon Solenoid)

Bs meson

CP violation in the SM

CP violation is taken into account in the Standard Model including a complex phase in the CKM matrix which describes the quark mixing

$$
\begin{aligned}
& {\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right] .} \\
& \beta_{s}=\arg \left(-V_{t s} V_{t b}^{*} / V_{c s} V_{c b}^{*}\right)
\end{aligned}
$$

B_{s} physics: Overview

-The flavour eigenstates of B_{s} can oscillate among them

- Interference between B_{s} decay directly into $J / \psi \varphi$ or via $B_{s} / a n t i-B_{s}$ mixing gives rise to a CP violation phase

$$
\Phi_{s}=\Phi_{M}-2 \Phi_{D}
$$

- In the Standard Model $\Phi_{\mathrm{s}} \approx-2 \beta_{\mathrm{s}}=-(0.0363 \pm 0.0017) \mathrm{rad}$
- If in the mixing new physics is present, the measured parameter can be larger
- Two $C P$ eigenstates of B_{s} : B_{L} and B_{H}
- A disentangling analysis is needed: $C P=(-1)^{L}$ and $L=0,1,2$ since B_{s} is a pseudo-scalar while J / ψ and φ are vector bosons

Group activity

- Cross section measurement (done) PHYSICAL REVIEW D 84, 052008 (2011)

- Measure of the $\Delta \Gamma_{s}$ (next step)
- Measure of the ϕ_{s} (final step)

$\Delta \Gamma_{\mathrm{s}}$ - disentangling time-angular distribution

$$
\begin{aligned}
\frac{\mathrm{d}^{4} \Gamma}{d t d \Omega} \propto & \left|A_{0}(t)\right|^{2} \cdot f_{1}(\Omega)+\left|A_{\|}(t)\right|^{2} \cdot f_{2}(\Omega)+ \\
& \left|A_{\perp}(t)\right|^{2} \cdot f_{3}(\Omega)+\Im\left(A_{\|}^{*}(\mathrm{t}) A_{\perp}(t)\right) \cdot f_{4}(\Omega)+ \\
& \Re\left(A_{0}^{*}(\mathrm{t}) A_{\|}(t)\right) \cdot f_{5}(\Omega)+\Im\left(A_{0}^{*}(\mathrm{t}) A_{\perp}(t)\right) \cdot f_{6}(\Omega)
\end{aligned}
$$

$$
\begin{aligned}
& \left|A_{0}(t)\right|^{2}=\left|A_{0}(0)\right|^{2} e^{-\Gamma_{q} t}\left[\cosh \left(\frac{\Delta \Gamma_{q}}{2} t\right)-\cos \phi_{q} \sinh \left(\frac{\Delta \Gamma_{q}}{2} t\right)\right] \\
& \left|A_{\|}(t)\right|^{2}=\left|A_{\|}(0)\right|^{2} e^{-\Gamma_{q} t}\left[\cosh \left(\frac{\Delta \Gamma_{q}}{2} t\right)-\cos \phi_{q} \sinh \left(\frac{\Delta \Gamma_{q}}{2} t\right)\right] \\
& f_{1}(\Omega)=\frac{9}{32 \pi} 2 \cos ^{2} \psi\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right) \\
& f_{2}(\Omega)=\frac{9}{32 \pi} \sin ^{2} \psi\left(1-\sin ^{2} \theta \sin ^{2} \varphi\right) \\
& f_{3}(\Omega)=\frac{9}{32 \pi} \sin ^{2} \psi \sin ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \Im\left(A_{0}^{*}(\mathrm{t}) A_{\perp}(t)\right)=\left|A_{0}(0)\right|\left|A_{\perp}(0)\right| e^{-\Gamma_{q} t}\left[-\cos \delta_{\perp} \sin \phi_{q} \sinh \left(\frac{\Delta \Gamma_{q}}{2} t\right)\right] \\
& \text { - }\left|A_{\perp}(0)\right|^{2}+\left|A_{\|}(0)\right|^{2}+\left|A_{0}(0)\right|^{2}=1 \text {. }
\end{aligned}
$$

Reconstruction and selections

- One pair of opposite sign muons with $p_{T}>4 \mathrm{GeV}$ and $|\eta|<2.2$;
$\cdot \mathrm{J} / \psi$ candidate with a vertex probability $>15 \%, \mathrm{p}_{\mathrm{T}}>7 \mathrm{GeV}$, mass within 150 MeV the PDG mass, cosa>0.9;
- One pair of opposite sign tracks (suppose to be kaons) $p_{T}>0.7 \mathrm{GeV}$ and >5 tracker hits;
- B_{s} built from 4 track vertex, constraining the dimuon mass to be the $\mathrm{J} / \mathrm{psi}$ PDG mass, vertex probability>2\%, $\mathrm{p}_{\mathrm{T}}>8 \mathrm{GeV}, 5.2<$ mass $<5.6 \mathrm{GeV}, \mathrm{L}_{\mathrm{xy}} / \sigma>3$.

Fit $\Delta \Gamma_{s}$ model to Monte Carlo simulation

Efficiency corrections (ct - angles) determined through Monte Carlo simulations.

Final goal: Φ_{s} measurement

Flavour tagging: find the correlation between the initial flavour of the B_{s} and the other particles in the events.

Conclusions

(LHCb - CDF - D0 results)

- Challenges to deal with:
- High luminosity \rightarrow high number of interactions per single event
- Lifetime measurement with decay length cut
- No т-K discrimination in CMS
- Cross section measurement (done)
- Measure of the $\Delta \Gamma_{s}$, no flavour tagging needed (soon)
- Measure of the ϕ_{s} (final step)

