Study of B_s mesons with the CMS detector at LHC

Giacomo Fedi (Helsinki University)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.helsinki.fi/yliopisto 12/25/11 1

- CMS experiment at LHC
- B_s meson study
 - Underlying physics
 - Analysis strategy

CMS (Compact Muon Solenoid)

CP violation is taken into account in the Standard Model including a complex phase in the CKM matrix which describes the quark mixing

$$\begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}.$$
$$\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$$

B_s physics: Overview

•The flavour eigenstates of B_s can oscillate among them

• Interference between B_s decay directly into $J/\psi\phi$ or via $B_s/anti-B_s$ mixing gives rise to a CP violation phase

$$B_{s} \xrightarrow{\Phi_{D}} J/\psi\phi$$

$$\Phi_{M} \overrightarrow{B}_{s} \xrightarrow{-\Phi_{D}} \Phi_{s} = \Phi_{M} - 2\Phi_{D}$$

- In the Standard Model $\Phi_s \approx -2\beta_s = -(0.0363 \pm 0.0017)$ rad
- If in the mixing new physics is present, the measured parameter can be larger
- Two CP eigenstates of B_s : B_L and B_H
- A disentangling analysis is needed: CP=(-1)^L and L=0,1,2 since
- B_s is a pseudo-scalar while J/ψ and ϕ are vector bosons

- Measure of the $\Delta\Gamma_s$ (next step)
- Measure of the ϕ_s (final step)

7

: Definition of the three angles used for the describtion of the deacy

• One pair of opposite sign muons with $p_T>4$ GeV and $|\eta|<2.2$;

• J/ ψ candidate with a vertex probability>15%, p_T>7 GeV, mass within 150 MeV the PDG mass, cos α >0.9;

• One pair of opposite sign tracks (suppose to be kaons) p_T >0.7 GeV and >5 tracker hits;

• B_s built from 4 track vertex, constraining the dimuon mass to be the J/psi PDG mass, vertex probability>2%, p_T >8 GeV, 5.2<mass<5.6 GeV, L_{xv}/ σ >3.

Fit ΔΓ_s model to Monte Carlo simulation

Efficiency corrections (ct - angles) determined through Monte Carlo simulations.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Flavour tagging: find the correlation between the initial flavour of the B_s and the other particles in the events.

- Challenges to deal with:
 - High luminosity \rightarrow high number of interactions per single event
 - Lifetime measurement with decay length cut
 - No π -K discrimination in CMS
- Cross section measurement (done)
- Measure of the $\Delta\Gamma_s$, no flavour tagging needed (soon)
- Measure of the φ_s (final step)