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Power-like contributions to the amplitude

PDG �t:
σ
pp(p̄)
tot = 18.3s0.095 + 60.1s−0.34 ± 32.8s−0.55

Optical theorem:

σtot =
1

s
2ImAel (q = 0) ≡ 2ImTel (q = 0)

Indication: High energy elastic scattering goes via quasiparticle,
�Reggeon�, exchanges with powerlike asymptotic in c.m.energy.
Leading contirbution � Pomeron, TP ∼ s∆, ∆ > 0.
Caveat: Single Pomeron exchange violates Froissart bound
(σtot . C ln2 s)
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s-channel (s →∞, t = Q2 small) dominant contributions

Analiticity&unitarity:

Power-like terms come from poles in the complex L plane of
the t-channel amplitude, Pomeron = the rightmost singularity

Field theories (ϕ3, QCD):

p+
1 � p+

2 � . . .� p+
n

p−1 � p−2 � . . .� p−n
p± = p0 ± p3

For phenomenological applications: R/P = exchange of a �ladder�
structure in the t-channel with ordering of the ladder rungs in
rapidity y = 1/2 ln p+/p−
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Contributions to σtot

Contributions to imaginary part (Cutkosky rules):

Cut the diagram for the elastic scattering amplitude

Put cut lines on the mass shell, integrate over the phase space

Single �ladder� exchange � uniform rapidity distribution

2ImT1 = 2Im
( )

= =
∫ ∣∣∣ ∣∣∣ dτn −→

Double �ladder�

2Im

( )
= ︸ ︷︷ ︸

�elastic�

+ +︸ ︷︷ ︸
abs. corrections to2ImT1

+ ︸ ︷︷ ︸
double dN/dy
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Contributions to σtot

Rapidity gaps � splitting of the �ladder�:
Single di�raction dissociation

+ abs. corrections

Double di�raction dissociation

+ abs. corrections

Reggeon Field Theory = the theory of the Pomeron (Reggeon)
exchanges and interactions. The underlying principles of the RFT
are analyticity and t-channel unitarity of the elastic amplitude.
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RFT

The theory of Pomeron and Reggeon exchanges is known to be
very successfull phenomenologically:

Gives reliable predictions of hadronic X-sections

The σtot . C ln2 s comes out quite naturally (taking into
account multiple Pomeron exchanges)

Cuts of the RFT diagrams de�ne X-sections of various inelastic
processes via AGK rules (a special case of Cutkosky rules)

Good description of the events with rapidity gaps (single and
double di�raction). At higher energies the loop contributions
become increasingly important.

Account of loop contirbution is an untrivial task and is under
investigation by several groups (Ostapchenko, Khoze et al.,
Poghosyan; also Lund group non-RFT approach).
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RFT

The elastic amplitude T = A/(8πs) is written as (Regge factorization):

T =
∑
n,m

Vn ⊗ Gnm ⊗ Vm

Green functions Gmn are obtained within the e�ective �eld theory,
process independent

L =
1

2
φ†(
←−
∂y −

−→
∂y )φ− α′(∇bφ

†)(∇bφ) + ∆φ†φ+ Lint .

For Lint = i r3Pφ
†φ(φ† + φ) + χφ†

2
φ2

it is possible to use reaction-di�usion (or �stochastic�) models for
obtaining the Green functions with account of all loops.
[Grassberger&Sundermeyer'78; Boreskov'01]
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The stochastic model.

Consider a system of classic �par-
tons� in the transverse plane with:

Di�usion (chaotical movement) D;

Splitting (λ � prob. per unit time)

Death (m1)

Fusion (σν ≡
∫
d2b pν(b))

Annihilation (σm2 ≡
∫
d2b pm2(b))

Parton number and positions are described in terms of

probability densities ρN(y ,BN) (N = 0, 1, ...;BN ≡ {b1, . . . , bN})

with normalization pN(y) ≡ 1
N!

∫
ρN(y ,BN)

∏
dBN ;

∞∑
0

pN = 1.
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Inclusive distributions

S-parton inclusive distributions:

fs(y ;Zs) =
∑
N

1

(N − s)!

∫
dBN ρN(y ;BN)

s∏
i=1

δ(zi − bi );

∫
dZs fs(y ;Zs) =

∑
N!

(N−s)! pN(y) ≡ µs(y). � factorial moments.

Example: Start with a single parton with only di�usion and splitting
allowed.

f
1 parton
1 (y , b) =

exp(λy) exp(−b2/4Dy)

4πDy
.

� the bare Pomeron propagator.

The set of evolution equations for fs(Zs), (s = 1, . . .) coincides

with the set of equations for the Green functions of the RFT.
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The amplitude.

Green functions:

fs(y ;Zs) ∝
∑
m

∫
dXm Vm(Xm)Gmn(0;Xm|y ;Zn);

fm(y = 0,Xm) ∝ Vm(Xm) � particle�mPomeron
vertices

The amplitude (g(b) assumed narrow;
∫
g(b)d2b ≡ ε):

T (Y ) = 〈A|T |Ã〉 =

=
∞∑
s=1

(−1)s−1

s!

∫
dZsdZ̃s fs(y ;Zs)f̃s(Y − y ; Z̃s)

s∏
i=1

g(zi − z̃i − b).

It does not depend on the linkage point y (�boost invariance�) if

λ

∫
g(b)d2b =

∫
pm2(b)d2b +

1

2

∫
pν(b)d2b ,
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Correspondence RFT�Stochastic model

We use the simplest form of g(b), pm2(b) and pν(b):

pm2(b) = m2 θ(a − |b|); pν(b) = ν θ(a − |b|);
g(b) = θ(a − |b|);.

with a � some small scale; ε ≡ πa2.
RFT stochastic model

Rapidity y Evolution time y
Slope α′ Di�usion coe�cient D

∆ = α(0)− 1 λ−m1

Splitting vertex r3P λ
√
ε

Fusion vertex r3P (m2 + 1
2ν)
√
ε

Quartic coupling χ 1
2(m2 + ν)ε

Boost invariance (λ = m2 + ν
2 ) ⇔ equality of fusion and splitting vertices.
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Summary of the stochastic approach

The approach allows to compute numerically (via the explicit
evolution of the stochastic system) the RFT Green functions in
their convolutions which correspond to

the elastic scattering amplitude

the single di�ractive cut of the amplitude.

⇒ ;

Peculiarities of the stochastic approach to the RFT:

Presence of the triple and 2→ 2 couplings

Regularization scale (equivalient to the cuto� or the Pomeron
size in RFT) enters via functions g(b), pm2(b) and pν .

Neglect of the real part of the P exchange amplitude.
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Fitting the cross sections

The calculation method is described in detail in R.K., K.Boreskov
and L.Bravina, Eur. Phys. J. C 71 (2011) 1757 [arXiv:1105.3673
[hep-ph]]. In addition to that in the ongoing calculations we

Implement two-channel eikonal p�nP vertices to incorporate
low-M2 di�raction (|p〉 = α|1〉+ β|2〉)
Account the secondary Reggeons contribution in the lowest
order

Neglect the real part of the Pomeron exchange amplitude
(keeping it for the secondary Reggeons)

Neglect central di�raction in calculation of SD cross sections.
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Cross sections

Prelliminary results on X-sections and slope (B = d
dt

ln dσel
dt

∣∣∣
t=0

):

�t with ∆ = 0.255 (compare with 0.095 of the PDG �t), reg. scale
a = 0.018fm=0.09GeV−1, α′ = 0.0035fm2=0.09GeV−2,
r3P = 0.087GeV−1 [Kaidalov'79].
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Conclusions

Results of an academic interest (from the paper in EPJC71):

The full account of loop corrections doesn't turn the Pomeron
into the subcritical as in 0D RFT (T ∼ s∆ with ∆ < 0)
though e�ectively reduces the intercept value.

The role of 2→ 2 coupling is minor in 2D compared to 0D
RFT.

Phenomenological outcome:

We are able to compute all-loop total, elastic, high-M2 SD
X-sections and elastic scattering slope within a single approach.

Further challenges:

Complete the �tting, obtain predictions for the 14TeVLHC run;

dN/dy energy dependence;

Study of the high-density regime Green Functions.
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Backup � cross sections de�nitions

σtot(Y ) = 2 ImM(Y ,q = 0), σel =

∫
d2q

(2π)2
|M(Y ,q)|2 ,

f (Y ,b) =
1

(2π)2

∫
d2q e−iqbM(Y ,q) .

σtot(Y ) = 2

∫
d2b Imf (Y ,b) , σel =

∫
d2b |f (Y ,b)|2.

f (Y ,b) ' iT (Y ,b), T ≡ Imf
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Backup - calculation method

Taking an explicit note of the initial parton distributions

T =
∑
n,k

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)︸ ︷︷ ︸

Tsample

⊗P̃k(X̃ ).

Main idea: simulate a sample of 2 parton sets which correspond to
fs and f̃s on the average, compute Tsample and make its MC average.
For N partons with �xed positions

fs(Zs) =
∑

{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

Tsample =

Nmin∑
s=1

(−1)s−1
∑

i1<i2...<is

∑
j1<...<js

gi1j1 . . . gis js .

expansion of Tsample in the number of P exchanges s;

works for any position of the linkage point y .
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Backup � calculation method 2

Setting the linkage point to full rapidity interval y = Y simpli�es
the calculation: f̃s(y = 0,Zs) = Ns(Zs)/εs/2 and the MC average
involves evolution from only one side:

T =
∑
n

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − X̃ )⊗ P̃s(X̃ ).︸ ︷︷ ︸

Tsample
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