Invariant Mass Distributions of SUSY Cascade Decays

Anders Kvellestad

University of Oslo

03.01.2012

- **1** SUSY Cascades and Mass Measurements
- 2 Results
- 3 Conclusions and Outlook

Outline

1 SUSY Cascades and Mass Measurements

- Masses From Kinematic Endpoints
- Complications
- The Need for Analytical Shape Formulas
- Aim and Assumptions

2 Results

3 Conclusions and Outlook

Masses From Kinematic Endpoints

- If SUSY is discovered, theory parameters must be determined
- Assume conserved R-parity
 - cascade decays
 - $\widetilde{\chi}_1^0$ LSP escapes detection
 - inv. mass peaks not accessible
- Endpoints of inv. mass distributions can provide sparticle mass relations

$$m_{ll}^{\max} = \sqrt{\frac{\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}}^{2}\right)\left(m_{\tilde{l}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}}^{2}}}$$

Complications

A few complicating aspects:

■ Experimental 'near'/'far' ambiguity - must replace m_{ql_n}, m_{ql_f} by

$$m_{\text{high}} \equiv \max\{m_{ql_n}, m_{ql_f}\}$$
$$m_{\text{low}} \equiv \min\{m_{ql_n}, m_{ql_f}\}$$

- Shapes vary with sparticle masses - danger of 'feet' or 'drops'
- Multiple solutions
- Endpoints depend on mass differences
 strong correlation in results
- Experimental limitations: combinatorics, statistics, backgrounds

The Need for Analytical Shape Formulas

Analytical expressions might help:

- Shape formulas of the form
 - $\frac{1}{\Gamma}\frac{d\Gamma}{dm} = f(m; \text{sparticle masses})$
- Provides correct 'signal hypothesis' for endpoint fitting
- Predicts 'feet' and 'drops' for given mass sets
- Fits of *complete* distributions provide masses directly

 may lift degeneracies
- \blacksquare Mass correlations still a problem
- Can be used to measure mixing parameters

Aim and Assumptions

- Shape formulas for the 'dilepton topology' have been derived (l = e, μ)
 [Miller, Osland, Raklev], [Lester]
- Aim: Derive shape formulas for the 'ditau topology'
- More complicated topology due to in-detector τ decays
 – spin effects important
- Simplifying assumptions: $-m_a = m_b = m_c = 0$
 - massive particles on-shell

1 SUSY Cascades and Mass Measurements

- 2 Results The m_{ab} Distribution The m_{high} Distribution
- 3 Conclusions and Outlook

• The m_{ab} distribution

 $\frac{1}{\Gamma} \frac{d\Gamma}{dm_{ab}}$

- Assume a, b are scalars (pions)
- Helicity states of τ_a , τ_b affect energies of a, b
 - $\begin{array}{l} -\text{ if } \tau_b \text{ is } \tau_R^- \text{ or } \tau_L^+ \Rightarrow \text{ large } E_b \\ -\text{ if } \tau_b \text{ is } \tau_L^- \text{ or } \tau_R^+ \Rightarrow \text{ small } E_b \end{array}$

The m_{ab} Distribution

$\mathbf{m}_{\mathbf{C}}$	m_B	$\mathbf{m}_{\mathbf{A}}$
800	600	400

- Weighted towards low m_{ab} values due to escaping ν
- Shapes depend strongly on handedness – endpoints are unaffected
- Shapes are fixed as long as m_τ is negligible
- summed dist. = spin-0 dist.
- Spin shapes for $m_{\tau} = 0$ derived by Nattermann et al. (2009)

• The m_{high} distribution

 $\frac{1}{\Gamma} \frac{d\Gamma}{dm_{\rm high}}$

- \blacksquare No spin only phase space
- Recall definition

 $m_{\rm high} \equiv \max\{m_{ac}, m_{bc}\}$

m_{D}	$\mathbf{m}_{\mathbf{C}}$	$\mathbf{m}_{\mathbf{B}}$	$\mathbf{m}_{\mathbf{A}}$
2000	800	500	400

• Strong shape dependence on $(m_C - m_B)$ and $(m_B - m_A)$ $- m_D$ only sets scale

- Rich structure due to composite nature of m_{high}
 – note endpoint 'foot'
- m_{τ} negligible unless $m_A, m_B m_C$ are close to degenerate

m_D	$\mathbf{m}_{\mathbf{C}}$	$\mathbf{m}_{\mathbf{B}}$	$\mathbf{m}_{\mathbf{A}}$
2000	800	600	400

• Strong shape dependence on $(m_C - m_B)$ and $(m_B - m_A)$ $- m_D$ only sets scale

- Rich structure due to composite nature of m_{high}
 – note endpoint 'foot'
- m_{τ} negligible unless $m_A, m_B m_C$ are close to degenerate

m_D	$\mathbf{m}_{\mathbf{C}}$	$\mathbf{m}_{\mathbf{B}}$	$\mathbf{m}_{\mathbf{A}}$
2000	800	700	400

- Strong shape dependence on $(m_C - m_B)$ and $(m_B - m_A)$ $- m_D$ only sets scale
- Rich structure due to composite nature of m_{high}
 note endpoint 'foot'
- m_{τ} negligible unless $m_A, m_B m_C$ are close to degenerate

The m_{high} Distribution

- ... and including spin (work in progress):
- Splits into four distinct distributions
- One complete analytical result so far (thin black dist.)

The m_{high} Distribution

- ... and including spin (work in progress):
- Splits into four distinct distributions
- One complete analytical result so far (thin black dist.)

The m_{high} Distribution

- ... and including spin (work in progress):
- Splits into four distinct distributions
- One complete analytical result so far (thin black dist.)

- 1 SUSY Cascades and Mass Measurements
- 2 Results
- **3** Conclusions and Outlook

Conclusions and Outlook

- Main result: The actual analytical expressions (not shown explicitly here due to complicated form)
- Distribution shapes depend strongly on tau handedness (stau and neutralino mixing)
- Strong dependence on mass scenario for m_{high}
 promising for complete shape fit
- Further work:
 - Derive remaining shape formulas
 - Compare shapes to simulated data
 - Investigate deviations due to cuts, detector effects, etc

Thank you

Backup slides

General Method

- Method developed in
 [Miller, Osland, Raklev, hep-ph/0510356]
 adapted for the 'ditau topology'
- Start from variables with known distributions

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} u \, \mathrm{d} v \, \mathrm{d} w} = g(u, v, w)$$

Kinematics

 $m^2 = h(u, v, w; \text{sparticle masses})$

Variable changes and integrations

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}m^2} = \iint \left|\frac{\partial(u,v,w)}{\partial(u,v,m^2)}\right| \frac{1}{\Gamma}\frac{\mathrm{d}^3\Gamma}{\mathrm{d}u\,\mathrm{d}v\,\mathrm{d}w}\,\mathrm{d}u\,\mathrm{d}v$$

Main difficulty of the derivations:

- All possible integration regions must be covered
- 2- or 3-dimensional regions with complicated structure
- Expressions 'fraction' for each integration
- Order of final *m* regions shift with sparticle mass scenarios
- In sum: lots of bookkeeping!

Multiple Solutions

- One set of endpoints may be consistent with several sets of sparticle masses
- In some scenarios, endpoints are linearly dependent
- Need extra information
- Fits of analytical shape formulas can provide this information

[Gjelsten, Miller, Osland, Raklev, hep-ph/0611259]

The m_{ab} Distribution

- Weighted towards low m_{ab} values due to escaping ν [Nattermann et al., arXiv:0903.0714]
- Shapes depend strongly on chirality endpoints are unaffected
- Shapes are fixed as long as m_{τ} is negligible
- summed dist. = spin-0 dist.
- Spin shapes for $m_{\tau} = 0$ derived by Nattermann et al. (2009)

- Strong shape dependence on $(m_C m_B)$ and $(m_B m_A) m_D$ only sets scale
- Rich structure due to composite nature of m_{high}
 note endpoint 'foot'
- m_{τ} negligible unless m_A , $m_B m_C$ are close to degenerate

- Strong shape dependence on $(m_C m_B)$ and $(m_B m_A) m_D$ only sets scale
- Rich structure due to composite nature of m_{high}
 note endpoint 'foot'
- m_{τ} negligible unless m_A , $m_B m_C$ are close to degenerate

- Strong shape dependence on $(m_C m_B)$ and $(m_B m_A) m_D$ only sets scale
- Rich structure due to composite nature of m_{high}
 note endpoint 'foot'
- m_{τ} negligible unless m_A , $m_B m_C$ are close to degenerate