Search for light charged Higgs bosons in top-quark decays with the ATLAS experiment

Spåtind 2012 - Nordic Conference on Particle Physics

Alexander Madsen

Uppsala University

January 5, 2012

# Light charged Higgs boson production at the LHC

- Many extensions to the Standard Model predict the existence of a charged Higgs boson.
- ► A light (m<sub>H<sup>+</sup></sub> < m<sub>top</sub>) charged Higgs boson can appear in the decays of top quarks.
- At the LHC, top quarks are main produced as  $t\bar{t}$  pairs.



Studies of the following channels are presented here:

► 
$$t\bar{t} \to b\bar{b}WH^+ \to \tau_{lep} + q\bar{q}$$
 (single lepton)

•  $t\bar{t} \rightarrow bbWH^+ \rightarrow \tau_{lep} + I$  (di-lepton)

ATLAS-CONF-2011-151

# Light charged Higgs boson production at the LHC

- Many extensions to the Standard Model predict the existence of a charged Higgs boson.
- ► A light (m<sub>H<sup>+</sup></sub> < m<sub>top</sub>) charged Higgs boson can appear in the decays of top quarks.
- ► At the LHC, top quarks are main produced as *tī* pairs.



Studies of the following channels are presented here:

- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow \tau_{lep} + q\bar{q}$  (single lepton)
- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow \tau_{lep} + l$  (di-lepton)

ATLAS-CONF-2011-151

# Light charged Higgs boson production at the LHC

- Many extensions to the Standard Model predict the existence of a charged Higgs boson.
- ► A light (m<sub>H<sup>+</sup></sub> < m<sub>top</sub>) charged Higgs boson can appear in the decays of top quarks.
- At the LHC, top quarks are main produced as  $t\bar{t}$  pairs.



Studies of the following channels are presented here:

- $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow \tau_{Iep} + q\bar{q}$  (single lepton)
- ►  $t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow \tau_{lep} + l$  (di-lepton)

Discriminating variable  $\cos \theta_I^*$ 

$$\cos heta_{I}^{*} = rac{2m_{bI}^{2}}{m_{ ext{top}}^{2} - m_{W}^{2}} - 1 \simeq rac{4 \ p^{b} \cdot p^{I}}{m_{ ext{top}}^{2} - m_{W}^{2}} - 1.$$

(with  $p^{l}$  and  $p^{b}$  being the 4-momenta of a lepton and corresponding b-quark)



#### Transverse masses

Ordinary W transverse mass:  $(m_T^W)^2 = \min_{\substack{p_z^{miss}, E^{miss} \\ (p^{miss})^2 = 0}} [(p^l + p^{miss})^2]$ 

Single lepton  $H^+$  events - charged Higgs transverse mass:

$$(m_T^H)^2 = \max_{ \begin{cases} p_z^{miss}, E^{miss} \\ (p^{miss} + p^l + p^b)^2 = m_{top}^2 \end{cases} } [(p^l + p^{miss})^2]$$

Dilepton  $H^+$  events - generalized charged Higgs transverse mass:

$$(m_{T2}^{H})^{2} = \max_{ \substack{p^{H^{+}}, p^{\bar{\nu}_{I}} \\ \left\{ \begin{array}{c} p^{H^{+}} + p^{\bar{\nu}} p^{2} = m_{top}^{2}, \\ (p^{H^{+}} + p^{b})^{2} = m_{top}^{2}, \\ (p^{\ell^{-}} + p^{\bar{\nu}_{\ell}} p^{2})^{2} = m_{W}^{2}, \\ (p^{\ell^{-}} + p^{\bar{\nu}_{\ell}} p^{2})^{2} = 0, \\ (p^{\bar{\nu}_{\ell}})^{2} = 0, \\ (p^{\bar{\nu}_{\ell}})^{+} - p^{-\ell^{+}} + p^{-\bar{\nu}_{\ell}} p^{-\bar{\mu}} p^{-\bar{\mu}}$$

$$m_{H^+} < m_T^H$$
 ,  $m_{T2}^H < m_{top}$ 

# (Generalized) charged Higgs boson transverse mass shapes



#### Event selection - one lepton

- One  $E_T > 25$  GeV electron or  $p_T > 20$  GeV muon.
- ▶ No additional  $E_T > 15$  GeV electron or  $p_T > 15$  GeV muon.
- At least 4 jets with  $p_T > 20$  GeV, including exactly 2 b-jets.
- At least  $E_T^{miss} > 40$  GeV (more if lepton and  $E_T^{miss}$  are aligned).

Reconstruct the hadronic side of the event by minimizing:

$$\chi^{2} = \frac{(M_{jjb} - M_{top})^{2}}{\sigma_{top}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\sigma_{W}^{2}}$$

• Discard events with  $\chi^2 > 5$ .

| tī     | Single    | W+jets | Z+jets | Diboson | QCD | $\sum SM$ | Data | 130 GeV H <sup>+</sup>            |
|--------|-----------|--------|--------|---------|-----|-----------|------|-----------------------------------|
| (bbWW) | top-quark |        |        |         |     |           |      | $\mathcal{B}(t \to b H^+) = 10\%$ |
| 3081   | 88        | 85     | 5.2    | 2.0     | 56  | 3317      | 3421 | 190                               |

#### Event selection - two leptons

- Exactly two opposite charged leptons, including at least one  $E_T > 25$  GeV electron or  $p_T > 20$  GeV muon.
- At least 2 jets with  $p_T > 20$  GeV, including exactly 2 b-jets.
- $e\mu$  events:  $\sum E_T(leptons, jets) > 130$  GeV.
- ▶ ee and  $\mu\mu$ :  $m_{II} > 15$  GeV,  $|m_{II} m_Z| > 10$  GeV and  $E_T^{miss} > 40$  GeV.

- Assign the leptons with the correct b-jets:
  - 1. Some events have an easy to find incorrect pairing  $(\cos \theta_l^* > 1)$ , in which case we choose the other lepton-b combination,
  - 2. if both combinations are physical, choose the one that minimizes  $\Delta R(I, b)_{pair1} + \Delta R(I, b)_{pair2}$  in the  $\eta \phi$ -plane,
  - 3. assign the pair with the smallest  $\cos \theta_l^*$  to the  $H^+$  side of the event,
  - 4. reject events with unphysical  $M_{T2}^H$  value.

| tī     | Single    | Z+jets | Diboson | QCD and | $\sum SM$ | Data | 130 GeV H <sup>+</sup>            |
|--------|-----------|--------|---------|---------|-----------|------|-----------------------------------|
| (bbWW) | top-quark |        |         | W+jets  |           |      | $\mathcal{B}(t \to b H^+) = 10\%$ |
| 864    | 18        | 1.5    | 0.3     | 40      | 924       | 992  | 115                               |

### Results - one lepton

- ► SM-like  $t\bar{t} \rightarrow b\bar{b}W^+W^-$  MC scaled to match data in the control region  $\cos\theta_I^* > -0.2$ .
- ►  $M_T^H$  distribution computed for events in the signal region defined by  $\cos \theta_I^* < -0.6$  and  $m_T^W < 60$  GeV.



### Results - two leptons

- ► SM-like  $t\bar{t} \rightarrow b\bar{b}W^+W^-$  MC scaled to match data in the control region  $\cos\theta_I^* > -0.4$ .
- M<sup>H</sup><sub>T2</sub> distribution computed for events in the signal region defined by cos θ<sup>\*</sup><sub>I</sub> < −0.6.</p>

