New Physics Opportunities in the Charm/Tau Region:

The BESIII - Experiment at IHEP/Beijing

Introduction

BES3/BEPC2

Physics Programme

First Results

Summary

W.Kühn, Univ. Giessen

Institute of High Energy Physics, Beijing

- The Institute of High Energy Physics (IHEP) is the biggest and most comprehensive fundamental research center in China.
- The major research fields of IHEP are particle physics, accelerator physics and technologies, radiation technologies and applications
 - 1000 employees, ~ 650 physicists and engineers,
 - 400 PhD Students and Postdocs
- Established in 1950, and became an independent institute for HEP in 1973

Satellite view of BEPCII /BESIII

South

BESIII

detector

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking

Data samples

• So far BESIII has collected :

- 2009: 225 Million J/ ψ
- 2009: 106 Million ψ'
- 2010-11: 2.9 fb⁻¹ ψ(3770) (3.5 x CLEO-c)
 - May 2011: 0.48fb⁻¹ @4010 MeV: Ds, XYZ spectroscopy
- Plans for 2012:
 - 1 Billion J/ ψ , 700 Million ψ '
 - Tau mass scan

BESIII Collaboration

Physics Topics at BESIII

- Light hadron spectroscopy search for non-qq or non-qqq states meson spectroscopy baryon spectroscopy Production and decay mechanisms of charmonium states: J/ψ , ψ (2S), η_c (1S), $\chi_{c(0,1,2)}$, η_c(2S), h_c(¹P₁), ψ(3770), etc. New Charmonium states above open charm threshold (X,Y,Z)
 - Precise measurement of R values
 - Precise measurement of CKM matrix elements
 - Search for DDbar mixing, CP violation, etc.
 - Search for rare and forbidden decays
 - Precision Tau mass measurement via threshold scan

arXiv: 0809.1869

Study of the spectroscopy – towards deeper understanding of hadron structure

Motivation:

hadrons

hadrons

hadrons

ww

222

- **Establish spectrum of light hadrons**
- Search for non-conventional hadrons
 Understand how hadrons are formed
- Why at a τ-charm collider ?
 - Gluon rich
 Clean environment
 J^{PC} filter

Glueball spectrum from LQCD

Physics Topics at BESIII

- Light hadron spectroscopy
 search for non-qq or non-qqq states
 meson spectroscopy
 baryon spectroscopy
 Production and decay mechanisms of charmonium states: J/ψ, ψ(2S), η_c(1S), χ_{c{0,1,2}}, η_c(2S), h_c(¹P₁), ψ(3770), etc. New Charmonium states above D threshold (X,Y,Z)
 - Precise measurement of R values
 - Precise measurement of CKM matrix elements
 - Search for DDbar mixing, CP violation, etc.
 - Search for rare and forbidden decays
 - Precision Tau mass measurement via threshold scan

arXiv:

0809.1869

Charmonium physics

- What to study ?
 - Production, decays, transitions, spectrum
- For what ?
 - A lab at the interface of pQCD and non-pQCD
 - **Calibrate LQCD**
 - How do quarks form a hadron ?
- Why at a tau-charm collider ?
 - □A clean environment
 - □Tagging possible
 - **Abundantly produced**

Examples of interesting/long standing issues:

- ρπ puzzle
- Missing states ?
- Mixing of states ?
- New states above open charm

threshold(X,Y,Z)

Physics Topics at BESIII

Light hadron spectroscopy search for non-qq or non-qqq states meson spectroscopy baryon spectroscopy Production and decay mechanisms of charmonium states: J/ψ , ψ (2S), η_c (1S), $\chi_{c(0,1,2)}$, η_c(2S), h_c(¹P₁), ψ(3770), etc. New Charmonium states abov D threshold (X,Y,Z) **Precise measurement of R values** Precise measurement of CKM matrix elements Search for DDbar mixing, CP violation, etc. Search for rare and forbidden decays Precision Tau mass measurement via threshold scan

arXiv: 0809.1869

R values and precision tests of the Standard Model

- Measurements of the total cross section for e⁺e⁻–annihilation into hadrons are
 - Indispensable input for the determination of the non-perturbative hadronic contribution to the running of the QED fine structure constant,
 - An essential input parameter in precision electroweak measurements

$$R_{\rm had}(s) = \frac{\sigma_{tot}(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \gamma^* \to \mu^+\mu^-)}$$

14

Physics Topics at BESIII

Light hadron spectroscopy search for non-qq or non-qqq states meson spectroscopy baryon spectroscopy Production and decay mechanisms of 0809.1869 charmonium states: J/ψ , ψ (2S), η_c (1S), $\chi_{c(0,1,2)}$, η_c(2S), h_c(¹P₁), ψ(3770), etc. New Charmonium states abov D threshold (X,Y,Z) **Precise measurement of R values Precise measurement of CKM matrix elements** Search for DDbar mixing, CP violation, etc. Search for rare and forbidden decays Precision Tau mass measurement via threshold scan

arXiv:

Leptonic decays of D mesons: Non-perturbative QCD meets CKM physics

Decay constants and Lattice QCD

CLEO-c f_{Ds} = 259.5 ± 6.6 ± 3.1 MeV Lattice: 241 ± 3 MeV [HPQCD-UKQCD] 249 ± 11 MeV [Fermilab-MILC]

CLEO-c f_D = 205.8 ± 8.5 ± 2.5 MeV Lattice: 208 ± 4 MeV [HPQCD-UKQCD] 207 ± 11 MeV [Fermilab-MILC]

CLEO-c $f_{Ds} / f_D = 1.26 \pm 0.06 \pm 0.02$ Lattice: 1.162 ± 0.009 [HPQCD-UKQCD] 1.200 ± 0.027 [Fermilab-MILC]

2.3 σ difference for f_{Ds}. real ? BESIII may resolve this issue, reaching the precision of LQCD.

Search for new physics

- Energy frontier (LHC)
 - -Direct production of new particles
 - Higgs, SUSY etc.
- Precision frontier (SuperB, Tau/Charm factories, other precision experiments)
 - -New physics appears in loops
 - Modified SM decay rates
 - -Look at rare or forbidden decay modes
 - -Non-SM-CP violation
 - -Invisible decays

Selected results

Light hadron spectroscopy

Charmonium spectroscopy

Open charm production

Observation of proton-antiproton mass threshold enhancement

\geq Evident narrow ppbar mass threshold enhancement in J/ ψ decays.

> Partial Wave Analysis (PWA)

- Convariant tensor amplitudes (S. Dulat and B. S. Zou, Eur. Phys. J A 26:125, 2005).
- Include the Julich-FSI effect (A. Sirbirtsev et al. Phys.Rev.D 71:054010, 2005).

Preliminary: PWA results and projections in $J/\Psi \rightarrow \gamma p\overline{p}$

Component	J^{PC}	$M ({\rm GeV})$	$\Gamma (\text{GeV})$	Stat.sig.
$X(p\bar{p})$	0^{-+}	1.832 ± 0.005	0.013 ± 0.020	$\gg 30\sigma$
$f_0(2100)$	0^{++}	2.103	0.209	11.2σ
$f_2(1910)$	2^{++}	1.903	0.196	7.7σ
phase space	0^{++}	_	_	6.3σ

PWA on the ppbar mass threshold structure in $\psi' o \gamma p \overline{p}$

BESI

 η_c

2.5

3.0

 $M(p\overline{p})(GeV/c^2)$

3 5

ent/(0.02GeV/c²

350

300 250

200

150

Obviously different line shape of ppbar mass spectrum near threshold from that in J/ψ decays

- Significance of X(ppbar) is larger than 6.9σ.
- The production ratio R: $R = \frac{B(\psi' \rightarrow \gamma X(p\overline{p}))}{B(J/\psi \rightarrow \gamma X(p\overline{p}))}$

first measurement

 $= (5.08 \pm 0.56(\text{stat})^{+0.72}_{-3.83}(\text{syst}) \pm 0.12(\text{mod}))\%$

Suppressed, consistent with "12% rule".

PWA Projection:

 $M^2_{\gamma p}(GeV/c^2)$

 $M_{\gamma p}^2 (GeV/c^2)^2$

(b)

Confirmation of X(1835) and Observation of two new structures

Confirmation of X(1835) and Observation of two new structures

Resonance	M(MeV/c²)	Γ (MeV/c²)	Stat.Sig.
X(1835)	1836.5±3.0 ^{+5.6} -2.1	190.1±9.0 ⁺³⁸ -36	> 20σ
X(2120)	2122.4±6.7 ^{+4.7} -2.7	83±16 ⁺³¹ -11	7.2σ
X(2370)	2376.3±8.7 ^{+3.2} -4.3	83±17 ⁺⁴⁴ -6	6.4σ

What's the nature of these structures?

✓ First time observation of resonant structures in the 2.4 GeV/c² region

LQCD prediction: lowest pseudoscalar glueball: around 2.4 GeV

J/ ψ -->γppη' decay suitable for observing 0⁻⁺ glueballs.

Nature of X(2120)/X(2370)
 pseudoscalar glueball ?
 η/η' excited states?

Observation of h_c (taged and inclusive)

PRL104, 132002 (2010)

BESIII results include both stat. and syst. errors, which is the most precision measurement: the interference between η_c decay and non-resonant contributions is important.

Difference?: Other processes contributing? Related to pπ puzzle, ... ??

Q. Zhao, PLB697(2011)52

Summary

- A new facility for Charm/Tau physics went successfully into operation
- Huge amounts of J/ ψ,ψ (2s) and D mesons can be produced and studied with a state-of-the art detector
- Precision physics with the potential for standard model tests
- Light hadron spectroscopy, search for exotica in charmonium decays (glue-rich environment)
- Charmonium spectroscopy, open charm physics
- First two years of running
 - -Many updates to PDG
 - -New states of unknown structure
 - -Some puzzles and surprises

Publications (2010/11)

- Properties of the h_c (PRL 104, 132002 (2010))
- $\psi' \rightarrow \gamma \gamma J/\psi$ (submitted soon)
- \cdot Charmonium Decays
 - $cJ \rightarrow \pi^0 \pi^0$, $\eta\eta$ (PRD 81, 052005 (2010))
 - $cJ \rightarrow \gamma \rho, \gamma \omega, \gamma \phi$ (PRD83,112005(2011))
 - $cJ \rightarrow ww, \phi\phi, w\phi$ (PRL 107, 092001 (2011))
 - ψ' → γπ⁰, γη, γη' (PRL 105, 261801 (2010))
 - $-\chi_{cJ} \rightarrow 4\pi^0$ (PRD 83, 012006 (2011))
 - η , η' and $\eta_c \rightarrow \pi\pi$ (*Phys. Rev. D* 84, 032006 (2011))
 - Observation of $\chi_{cJ} \rightarrow ppK^{+}K^{-}$ (PRD83,112009(2011))
- Light Quark States
 - $-a_0(980) f_0(980)$ mixing (PRD 83, 032003 (2011))
 - $\eta' \rightarrow \eta \pi^{\dagger} \pi^{-}$ matrix element (PRD 83, 012003 (2011))
 - X(1860) in $J/\psi \rightarrow \gamma(pp)$ (Chinese Physics C 34, 4 (2010))
 - X(1835) in $J/\psi \rightarrow \gamma(\eta' \pi^*\pi^-)$ (*PRL 106, 072002 (2011*))
 - X(1870) in $J/\psi \rightarrow \omega(\eta \pi^*\pi^-)$ (submitted to PRL)

