Experiments Confront Theory

> Unicorn: the QGP Hunters: Experimentalists. Leaving theorists as...

http://www.anti-powerpoint-party.com

Experiments Confront Theory

Theory:

Effective theory for deconfinement, near T_{c}.
Today: only the "pure" glue theory (no dynamical quarks) Based upon detailed results from the lattice

Experiment:

No confrontation today... Soon: need to add quarks Present model may be the only real competition to AdS/CFT

The standard plot

$\mathrm{SU}(3)$ gauge theory without quarks, temperature T
(Weakly) first order transition at $\mathrm{T}_{\mathrm{c}} \sim 290 \mathrm{MeV}$

Another plot of the same

Plot conformal anomaly, (e-3p)/T4: large peak above $\mathrm{T}_{\mathrm{c}} . \sim \mathrm{g}^{4}$ as $\mathrm{T} \rightarrow \infty$

Strong vs weak coupling at T_{c} ?

Resummed perturbation theory at 3-loop order works down to $\sim 3 \mathrm{~T}_{\mathrm{c}}$. Intermediate coupling: $\alpha_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{c}}\right) \sim 0.3$. Not so big... So what happens below $\sim 3 \mathrm{~T}_{\mathrm{c}}$?

Want effective theory; e.g.: chiral pert. theory: expand in $\mathrm{m}_{\pi} / \mathrm{f}_{\pi}$, exact as $\mathrm{m}_{\pi} \rightarrow 0$.

But there is no small mass scale for $\mathrm{SU}(3)$ in "semi"-QGP, $\mathrm{T}_{\mathrm{c}} \rightarrow 3 \mathrm{~T}_{\mathrm{c}}$.

Not strong coupling, even at T_{c}

QCD coupling runs like $\alpha(2 \pi \mathrm{~T})$, intermediate at $\mathrm{T}_{\mathrm{c}}, \alpha\left(2 \pi \mathrm{~T}_{\mathrm{c}}\right) \sim 0.3$
Braaten \& Nieto, hep-ph/9501375, Laine \& Schröder, hep-ph/0503061 \& 0603048 HTL resummed perturbation theory, NNLO, good to $\sim 8 \mathrm{~T}_{\mathrm{c}}$:

What to expand in?

Consider $\mathrm{SU}(\mathrm{N})$ for different N . \# perturbative gluons $\sim \mathrm{N}^{2}-1$. Scaled by ideal gas values, e and p for $\mathrm{N}=3,4$ and 6 look very similar Implicitly, expand about infinite N. Explicitly, assume classical expansion ok

Conformal anomaly $\approx \mathrm{N}$ independent

For $\mathrm{SU}(\mathrm{N})$, "peak" in e-3p/T ${ }^{4}$ just above T_{c}. Approximately uniform in N .
Not near T_{c} : transition $2 n d$ order for $\mathrm{N}=2$, 1 st order for all $\mathrm{N} \geq 3$
$\mathrm{N}=3$: weakly 1st order. $\mathrm{N}=\infty$: strongly 1st order (even for latent heat/ N^{2})

Tail in the conformal anomaly

To study the tail in $(\mathrm{e}-3 \mathrm{p}) / \mathrm{T}^{4}$, multiply by $\mathrm{T}^{2} /\left(\mathrm{N}^{2}-1\right) \mathrm{T}_{\mathrm{c}}{ }^{2}$: (e-3p)/(($\left.\mathrm{N}^{2}-1\right) \mathrm{T}^{2} \mathrm{~T}_{\mathrm{c}^{2}}{ }^{2}$ approximately constant, independent of N

Precise results for three colors

From WHOT:

$$
\begin{gathered}
p(T) \approx \#\left(T^{4}-c T^{2} T_{c}^{2}\right), T / T_{c}: 1.2 \rightarrow 2.0 \\
c \approx 1.00 \pm 0.01
\end{gathered}
$$

$$
\frac{1}{8} \frac{e-3 p}{T^{2} T_{c}^{2}} \uparrow
$$

WHOT: Umeda, Ejiri, Aoki, Hatsuda, Kanaya, Maezawa, Ohno, 0809.2842

How to get a term $\sim \mathrm{T}^{2}$ in the pressure?

Expand pressure of ideal, massive gas in powers of mass m:

$$
\int d^{4} p \operatorname{tr} \log \left(p^{2}+m^{2}\right)=\# T^{4}-\#^{\prime} m^{2} T^{2}+\ldots
$$

Quasi-particle models: choose $\mathrm{m}(\mathrm{T})$ to fit pressure.
Need $\mathrm{m}(\mathrm{T})$ to increase sharply as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$ to suppress pressure. Inelegant...

A simple solution

Assume there is some potential, $\mathrm{V}(\mathrm{q})$. The vacuum, q_{0}, is the minimum of $\mathrm{V}(\mathrm{q})$:

$$
\left.\frac{d V(q)}{d q}\right|_{q=q_{0}}=0
$$

Pressure is the value of the potential at the minimum:

$$
p(T)=-V\left(q_{0}\right)
$$

For $\mathrm{T}>1.2 \mathrm{~T}_{\mathrm{c}}$, a constant $\sim \mathrm{T}^{2}$ in the pressure, is due to a constant $\sim \mathrm{T}^{2}$ in $\mathrm{V}(\mathrm{q})$:

$$
V(q)=-\#\left(T^{4}-T^{2} T_{c}^{2}+T^{2} T_{c}^{2} \tilde{V}(q)\right)
$$

Above 1.2 $\mathrm{T}_{\mathrm{c}},\langle\mathrm{q}\rangle=0$. Except near T_{c}, for most of the semi-QGP, the non-perturbative part of the pressure, $\sim \mathrm{T}^{2}$, is due just to a constant Region where $\langle\mathrm{q}\rangle \neq 0$, and $\mathrm{V}(\mathrm{q})$ matters, is very narrow: $\mathrm{T}: \mathrm{T}_{\mathrm{c}} \rightarrow 1.2 \mathrm{~T}_{\mathrm{c}}$ Unexpected consequence of precise lattice data. Large N : makes sense to speak of classical $\langle\mathrm{q}\rangle$ instead of fluctuations.

Our model: generalization of Meisinger, Miller \& Ogilvie, ph/0108009 Dumitru, Guo, Hidaka, Korthals-Altes, \& RDP, arXiv:1011.3820 + 1112.? Also: Y. Hidaka \& RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.

Hidden $Z(2)$ spins in $S U(2)$

Consider constant gauge transformation:

$$
U_{c}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-1
$$

As $U_{c} \sim 1$, locally gluons invariant:

$$
A_{\mu} \rightarrow U_{c}^{\dagger} A_{\mu} U_{c}=+A_{\mu}
$$

Nonlocally, Wilson line changes:

$$
\mathbf{L}=\mathcal{P} \mathrm{e}^{i g \int_{0}^{1 / T} A_{0} d \tau} \rightarrow-\mathbf{L}
$$

$\mathbf{L} \sim$ propagator for "test" quark.
$\mathrm{SU}(3): \operatorname{det} \mathrm{U}_{\mathrm{c}}=1 \Rightarrow$

$$
U_{c}=\mathrm{e}^{2 \pi i j / 3} \mathbf{1}
$$

$$
\mathrm{j}=0,1,2
$$

$S U(N): U_{c}=e^{2 \pi i j N} 1: Z(N)$ symmetry.
$\mathrm{Z}(\mathrm{N})$ spins of 't Hooft, without quarks

Quarks ~ background $\mathrm{Z}(\mathrm{N})$ field, break $\mathrm{Z}(\mathrm{N})$ sym.

$$
\psi \rightarrow U_{c} \psi=-\psi
$$

Hidden $\mathrm{Z}(3)$ spins in $\mathrm{SU}(3)$

Lattice, A. Kurkela, unpub.'d: 3 colors, loop l complex.
Distribution of loop shows $Z(3)$ symmetry:

$$
\mathrm{T} \gg \mathrm{~T}_{\mathrm{c}}
$$

Interface tension: box long in z .
Each end: distinct but degenerate vacua. Interface forms, action \sim interface tension:

$\mathrm{T} \sim \mathrm{T}_{\mathrm{c}}$

$$
\mathrm{T}<\mathrm{T}_{\mathrm{c}}
$$

$\mathrm{T}>\mathrm{T}_{\mathrm{c}}$: order-order interface $=$ ' t Hooft loop: measures response to magnetic charge Korthals-Altes, Kovner, \& Stephanov, hep-ph/9909516

$$
Z \sim \mathrm{e}^{-\sigma_{i n t} V_{t r}}
$$

Also: if trans. 1st order, order-disorder interface at T_{c}.

Usual spins vs Polyakov Loop

$\mathbf{L}=\mathrm{SU}(\mathrm{N})$ matrix, Polyakov loop $l \sim$ trace:

$$
\ell=\frac{1}{N} \operatorname{tr} \mathbf{L}
$$

Confinement: $\mathrm{F}_{\text {test } \mathrm{qk}}=\infty \Rightarrow\langle l\rangle=0$

$$
<\ell>\sim \mathrm{e}^{-F_{\text {test } \mathrm{qk}} / T}
$$

Above $\mathrm{T}_{\mathrm{c}}, \mathrm{F}_{\text {test } \mathrm{qk}}<\infty \Rightarrow\langle l\rangle \neq 0$
$\langle l\rangle$ measures ionization of color: partial ionization when $0<\langle l\rangle<1$: "semi"-QGP

Svetitsky and Yaffe '80:
$\mathrm{SU}(3)$ 1st order because $\mathrm{Z}(3)$ allows cubic terms:

$$
\mathcal{L}_{\mathrm{eff}} \sim \ell^{3}+\left(\ell^{*}\right)^{3}
$$

Does not apply for $\mathrm{N}>3$. So why is deconfinement 1st order for all $N \geq 3$?

Polyakov Loop from Lattice: pure Glue, no Quarks

Lattice: (renormalized) Polyakov loop. Strict order parameter Three colors: Gupta, Hubner, Kaczmarek, 0711.2251. Suggests wide transition region, like pressure, to $\sim 4 \mathrm{~T}_{\mathrm{c}}$.

Polyakov Loop from Lattice: Glue plus Quarks, " T_{c} "

Quarks ~ background Z(3) field. Lattice: Bazavov et al, 0903.4379.
3 quark flavors: weak $\mathrm{Z}(3)$ field, does not wash out approximate $\mathrm{Z}(3)$ symmetry.

Skipping to the punchline

Transition region narrow: for pressure,$<1.2 \mathrm{~T}_{\mathrm{c}}$!
For interface tensions, $<4 \mathrm{~T}_{\mathrm{c}}$...
Above $1.2 \mathrm{~T}_{\mathrm{c}}$, pressure dominated by constant term $\sim \mathrm{T}^{2}$.
What does this term come from? Gluon mass $\mathrm{m}(\mathrm{T})$? But inelegant...
$\mathrm{SU}(\mathrm{N})$ in $2+1$ dimensions: ideal $\sim \mathrm{T}^{3}$. Caselle $+\ldots$: also T^{2} term in pressure. But mass would be $\mathrm{m}^{2} \mathrm{~T}$, not $\mathrm{m} \mathrm{T}^{2}$.
T^{2} term like free energy of massless fields in 2 dimensions: string? Above T_{c} ?

Need to include quarks!

Can then compute temperature dependence of:
shear viscosity, energy loss of light quarks, damping of quarkonia...

Lattice: $\mathrm{SU}(\mathrm{N})$ in $2+1$ dimensions

$\mathrm{SU}(\mathrm{N})$ in $2+1$ dim's for $\mathrm{N}=2,3,4,5, \& 6$. Below plot of $\mathrm{T}_{\mathrm{c}} / \mathrm{T}$, $\operatorname{not} \mathrm{T} / \mathrm{T}_{\mathrm{c}}$. Clear evidence for non-ideal terms $\sim \mathrm{T}^{2}$, not $\sim \mathrm{T}$

With quarks: " T_{c} " moves down: which T_{c} ?

Just glue: $\mathrm{T}_{\mathrm{c}}{ }^{\text {deconf }} \sim 290 \mathrm{MeV}$. Common lore: with quarks, one " T_{c} ", decreases. Matrix model: $\mathrm{T}_{\mathrm{c}}{ }^{\text {deconf }}$ does not change by addition of dynamical quarks. With light quarks, only chiral trans, when $\langle l o o p\rangle\left\langle<1\right.$. Hence T_{c} chiral $\ll \mathrm{T}_{\mathrm{c}}{ }^{\text {deconf }}$.

Shear viscosity changes with T

In semi-QGP, η suppressed from pert. value through function $\mathbf{R}(q)$. Not like kinetic theory Log sensitivity, through constant \nsim

$$
\eta=\frac{c_{\mathrm{pert}} T^{3}}{g^{4} \log \left(\kappa / g^{2} N_{c}\right)} \mathbf{R}(q)
$$

"Bleaching" of color near T_{c}.

Roughly speaking, as \langle loop $\rangle \rightarrow 0$, all colored fields disappear. Quarks, in fundamental rep. as \langle loop \rangle. Gluons, in adjoint rep., as $\langle\text { loop }\rangle^{2}$.

Bleaching of color as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$: robust consequence of the confinement of color
QGP: quarks and gluons. Semi-QGP: dominated by quarks, by $\sim\langle$ loop〉

Why recombination works at RHIC but not at LHC?
($\mathrm{v}_{2} / \#$ quarks vs kinetic energy/\# quarks)

Suppression of color universal for all fields, independent of mass.
Why charm quarks flow the same as light quarks? (single charm vs pions)
An effective theory can provide a bridge from lattice simulations to experiment

Matrix model: two colors

Simple approximation

Two colors: transition 2 nd order, vs 1 st for $\mathrm{N} \geq 3$

$$
\text { Using large } \mathrm{N} \text { at } \mathrm{N}=2
$$

Matrix model: $\mathrm{SU}(2)$

Simple approximation: constant $\mathrm{A}_{0} \sim \sigma_{3}$, nonperturbative, $\sim 1 / \mathrm{g}$:

$$
A_{0}^{c l}=\frac{\pi T}{g} q \sigma_{3} \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \mathbf{L}(q)=\left(\begin{array}{cc}
\mathrm{e}^{i \pi q} & 0 \\
0 & \mathrm{e}^{-i \pi q}
\end{array}\right)
$$

Single dynamical field, q
Loop l real. $\mathrm{Z}(2)$ degenerate vacua $\mathrm{q}=0$ and 1 :

$$
\ell=\cos (\pi q)
$$

Point halfway in between: $\mathrm{q}=1 / 2, l=0$.
Confined vacuum, \mathbf{L}_{c},

$$
\mathbf{L}_{c}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

Classically, $\mathrm{A}_{0}{ }^{\mathrm{cl}}$ has zero action: no potential for q .

Potential for q , interface tension

Computing to one loop order about $\mathrm{A}_{0}{ }^{\text {cl }}$ gives a potential for q : Gross, RDP, Yaffe, ' 81

Use $V_{\text {pert }}(q)$ to compute σ : Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

$$
V_{t o t}(q)=\frac{2 \pi^{2} T^{2}}{g^{2}}\left(\frac{d q}{d z}\right)^{2}+V_{\text {pert }}(q) \quad \Rightarrow \sigma=\frac{4 \pi^{2}}{3 \sqrt{6}} \frac{T^{2}}{\sqrt{g^{2}}}
$$

Balancing $\mathrm{S}_{\mathrm{cl}} \sim 1 / \mathrm{g}^{2}$ and $\mathrm{V}_{\text {pert }} \sim 1$ gives $\sigma \sim 1 / \sqrt{ } \mathrm{g}^{2}\left(\right.$ not $\left.1 / \mathrm{g}^{2}\right)$.
Width interface $\sim 1 / \mathrm{g}$, justifies expansion about constant $\mathrm{A}_{0}{ }^{\text {cl }}$. GKA ${ }^{\text {'04: }} \sigma \sim \ldots+\mathrm{g}^{2}$

Potentials for the q's

Add non-perturbative terms, by hand, to generate $\langle q\rangle \neq 0$:
By hand? $\mathrm{V}_{\text {non }}(\mathrm{q})$ from: monopoles, vortices...
Liao \& Shuryak: ph/0611131, 0706.4465, 0804.0255, 0804.4890

$$
V_{e f f}(q)=V_{\text {pert }}(q)+V_{\text {non }}(q)
$$

$$
\mathrm{T}\left\langle\mathrm{~T}_{\mathrm{c}}:\langle\mathrm{q}\rangle=1 / 2 \rightarrow\right.
$$

Three possible "phases"

Two phases are familiar:

$$
\begin{aligned}
& \langle\mathrm{q}\rangle=0,1:\langle l\rangle= \pm 1: \text { "Complete" QGP: usual perturbation theory. } \mathrm{T} \gg \mathrm{~T}_{\mathrm{c}} . \\
& \langle\mathrm{q}\rangle=1 / 2:\langle l\rangle=0: \text { confined phase. } \mathrm{T}<\mathrm{T}_{\mathrm{c}}
\end{aligned}
$$

Also a third phase, "partially" deconfined (adjoint Higgs phase)

$$
0<\langle\mathrm{q}\rangle<1 / 2:\langle l\rangle<1: \text { "semi"-QGP. From some } \mathrm{x} \mathrm{~T}_{\mathrm{c}}>\mathrm{T}>\mathrm{T}_{\mathrm{c}} x \text { ? }
$$

Lattice: one transition, to confined phase, at T_{c}. No other transition above T_{c}. Still, there is an intermediate phase, the "semi"-QGP

Strongly constrains possible non-perturbative terms, $\mathrm{V}_{\mathrm{non}}(\mathrm{q})$.

Getting three "phases", one transition

Simple guess: $\mathrm{V}_{\text {non }} \sim$ loop 2,

$$
\begin{aligned}
V_{e f f} & \sim \frac{a}{\pi^{2}}\left(\ell^{2}-1\right)+q^{2}(1-q)^{2} \\
& \sim q^{2}(1-a)-2 q^{3}+\ldots
\end{aligned}
$$

1st order transition directly from complete QGP to confined phase, not 2nd Generic if $\mathrm{V}_{\text {non }}(\mathrm{q}) \sim \mathrm{q}^{2}$ at $\mathrm{q} \ll 1$.

Easy to avoid, if $\mathrm{V}_{\mathrm{non}}(\mathrm{q}) \sim \mathrm{q}$ for small q . Then $\langle\mathrm{q}\rangle \neq 0$ at all $\mathrm{T}>\mathrm{T}_{\mathrm{c}}$. Imposing the symmetry of $\mathrm{q} \leftrightarrow 1-\mathrm{q}, \mathrm{V}_{\text {non }}(\mathrm{q})$ must include

$$
V_{n o n}(q) \sim q(1-q)
$$

Term $\sim \mathrm{q}$ at small q avoids transition from pert. QGP to adjoint Higgs phase

Cartoons of deconfinement

Consider:

$$
V_{e f f}=q^{2}(1-q)^{2}-a q(1-q), a \sim T_{c}^{2} / T^{2}
$$

$\Downarrow a=0$: complete QGP

$\mathrm{a}=1 / 2: \quad \mathrm{T}_{\mathrm{c}}=>$
Stable vacuum at $\mathrm{q}=1 / 2$ Transition second order

$\downarrow \mathrm{a}=1 / 4$: semi QGP

0 -parameter matrix model, $\mathrm{N}=2$

Meisinger, Miller, Ogilvie ph/0108009:
take $V_{\text {non }} \sim T^{2}$

$$
V_{n o n}(q)=\frac{4 \pi^{2}}{3} T^{2} T_{c}^{2}\left(-\frac{c_{1}}{5} q(1-q)+\frac{c_{3}}{15}\right)
$$

Two conditions: transition occurs at T_{c}, pressure $\left(\mathrm{T}_{\mathrm{c}}\right)=0$
Fixes c_{1} and c_{3}, no free parameters. But not close to lattice data (from '89!)

1-parameter matrix model, $\mathrm{N}=2$

Dumitru, Guo, Hidaka, Korthals-Altes, RDP ‘10: to usual perturbative potential,

$$
V_{\text {pert }}(q)=\frac{4 \pi^{2}}{3} T^{4}\left(-\frac{1}{20}+q^{2}(1-q)^{2}\right)
$$

Add - by hand - a non-pert. potential $\mathrm{V}_{\mathrm{non}} \sim \mathrm{T}^{2} \mathrm{~T}_{\mathrm{c}}{ }^{2}$. Also add a term like $\mathrm{V}_{\text {pert }}$:

$$
V_{n o n}(q)=\frac{4 \pi^{2}}{3} T^{2} T_{c}^{2}\left(-\frac{c_{1}}{5} q(1-q)-c_{2} q^{2}(1-q)^{2}+\frac{c_{3}}{15}\right)
$$

Now just like any other mean field theory. $\langle\mathrm{q}\rangle$ given by minimum of $\mathrm{V}_{\text {eff }}$:

$$
V_{e f f}(q)=V_{\text {pert }}(q)+\left.V_{\text {non }}(q) \quad \frac{d}{d q} V_{e f f}(q)\right|_{q=\langle q\rangle}=0
$$

$\langle q\rangle$ depends nontrivially on temperature.
Pressure value of potential at minimum:

$$
p(T)=-V_{e f f}(\langle q\rangle)
$$

Lattice vs matrix models, $\mathrm{N}=2$

Choose c_{2} to fit $\mathrm{e}-3 \mathrm{p} / \mathrm{T}^{4}$: optimal choice

$$
c_{1}=0.23, c_{2}=.91, c_{3}=1.11
$$

Reasonable fit to $\mathrm{e}-3 \mathrm{p} / \mathrm{T}^{4}$; also to $\mathrm{p} / \mathrm{T}^{4}, \mathrm{e} / \mathrm{T}^{4}$.
N.B $: \mathrm{c}_{2} \sim 1$. At T_{c}, terms $\sim \mathrm{q}^{2}(1-\mathrm{q})^{2}$ almost cancel.

Width of transition region, $0-$ vs 1 -parameter

1-parameter model: get sharper e-3p/T T^{4} because $\langle\mathrm{q}\rangle->0$ much quicker above T_{c}. Physically: sharp e-3p/T4 implies region where $\langle\mathrm{q}\rangle$ is significant is narrow
N.B.: $\langle\mathrm{q}\rangle \neq 0$ at all T , but numerically, negligible above $\sim 1.2 \mathrm{~T}_{\mathrm{c}} ; \mathrm{p} \sim\langle\mathrm{q}\rangle^{2}$. Above $\sim 1.2 \mathrm{~T}_{\mathrm{c}}$, the T^{2} term in the pressure is due entirely to the constant term, c_{3} !

Polyakov loop: 1-parameter matrix model \neq lattice

Lattice: renormalized Polyakov loop. 0-parameter model: close to lattice 1-parameter model: sharp disagreement. $\langle l\rangle$ rises to ~ 1 much faster - ? Sharp rise also found using Functional Renormalization Group (FRG):

Braun, Gies, Pawlowski, 0708.2413; Marhauser, Pawlowski, 0812.1144

Interface tension, $\mathrm{N}=2$

σ vanishes as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}, \sigma \sim(\mathrm{t}-1)^{2 v}$. Ising $2 v \sim 1.26$; Lattice: ~ 1.32. Matrix model: ~ 1.5 : c c important.

$$
\sigma(T)=\frac{4 \pi^{2} T^{2}}{3 \sqrt{6 g^{2}}} \frac{\left(t^{2}-1\right)^{3 / 2}}{t\left(t^{2}-c_{2}\right)}, t=\frac{T}{T_{c}}
$$

Semi-class.: GKA '04. Include corr.'s $\sim \mathrm{g}^{2}$ in matrix $\sigma(\mathrm{T})$ (ok when $\mathrm{T}>1.2 \mathrm{~T}_{\mathrm{c}}$) N.B.: width of interface diverges as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}, \sim \sqrt{ }\left(\mathrm{t}^{2}-\mathrm{c}_{2}\right) /\left(\mathrm{t}^{2}-1\right)$.

Lattice:
de Forcrand,
D'Elia, Pepe,
lat/0007034

Lattice: A_{0} mass as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}-$ up or down?
Gauge invariant: 2 pt function of loops:

$$
\left\langle\operatorname{tr} \mathbf{L}^{\dagger}(x) \operatorname{tr} \mathbf{L}(0)\right\rangle \sim \mathrm{e}^{-\mu x} / x^{d}
$$

μ / T goes down as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$
Kaczmarek, Karsch, Laermann, Lutgemeier lat/9908010

Gauge dependent: singlet potential

$$
\left\langle\operatorname{tr}\left(\mathbf{L}^{\dagger}(x) \mathbf{L}(0)\right)\right\rangle \sim \mathrm{e}^{-m_{D} x} / x
$$

$\mathrm{m}_{\mathrm{D}} / \mathrm{T}$ goes $u p$ as $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$
Cucchieri, Karsch, Petreczky lat/0103009, Kaczmarek, Zantow lat/0503017

Which way do masses go as $T \rightarrow T_{c}$? Both are constant above $\sim 1.5 \mathrm{~T}_{\mathrm{c}}$.

Adjoint Higgs phase, $\mathrm{N}=2$

$\mathrm{A}_{0}{ }^{\mathrm{cl}} \sim \mathrm{q} \sigma_{3}$, so $\langle\mathrm{q}\rangle \neq 0$ generates an (adjoint) Higgs phase: RDP, ph/0608242; Unsal \& Yaffe, 0803.0344, Simic \& Unsal, 1010.5515

In background field, $\mathrm{A}=\mathrm{A}_{0}{ }^{\mathrm{cl}}+\mathrm{A}^{q u}: \mathrm{D}_{0}{ }^{\mathrm{cl}} \mathrm{A}^{q u}=\partial_{0} \mathrm{Aqu}^{q u}+\mathrm{ig}\left[\mathrm{A}_{0}{ }^{\mathrm{cl}}, \mathrm{Aqu}\right]$ Fluctuations $\sim \sigma_{3}$ not Higgsed, $\sim \sigma_{1,2}$ Higgsed, get mass $\sim 2 \pi T\langle q\rangle$ Hence when $\langle\mathrm{q}\rangle \neq 0$, for $\mathrm{T}<1.2 \mathrm{~T}_{\mathrm{c}}$, splitting of masses:

Matrix model: $\mathrm{N} \geq 3$

Why the transition is always 1st order

One parameter model

Path to $\mathrm{Z}(3)$, three colors

SU(3): two diagonal λ 's, so two q's:

$$
A_{0}=\frac{2 \pi T}{3 g}\left(q_{3} \lambda_{3}+q_{8} \lambda_{8}\right)
$$

$\mathrm{Z}(3)$ paths: move along $\lambda_{8}, \operatorname{not} \lambda_{3}: \mathrm{q}_{8} \neq 0, \mathrm{q}_{3}=0$.

$$
\mathbf{L}=\mathrm{e}^{2 \pi i q_{8} \lambda_{8} / 3}
$$

$$
\begin{aligned}
& q_{8}=0 \\
& \mathbf{L}=\mathbf{1}
\end{aligned}
$$

$$
q_{8}=3 / 8
$$

$$
q_{8}=1
$$

Path to confinement, three colors

Now move along $\lambda_{3}: \quad \mathbf{L}=\mathrm{e}^{2 \pi i q_{3} \lambda_{3} / 3}$
In particular, consider $\mathrm{q}_{3}=1$:
Elements of $\mathrm{e}^{2 \pi \mathrm{i} / 3} \mathbf{L}_{\mathrm{c}}$ same as those of \mathbf{L}_{c}.
Hence $\operatorname{tr} \mathbf{L}_{c}=\operatorname{tr} \mathbf{L}_{c}{ }^{2}=0$: \mathbf{L}_{c} confining vacuum

$$
\mathbf{L}_{c}=\left(\begin{array}{ccc}
\mathrm{e}^{2 \pi i / 3} & 0 & 0 \\
0 & \mathrm{e}^{-2 \pi i / 3} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Path to confinement: along λ_{3}, not $\lambda_{8}, \mathrm{q}_{3} \neq 0, \mathrm{q}_{8}=0$.

$q_{3}=0$
$\ell=1$

$q_{3}=3 / 8$
$\ell \approx .8$

$q_{3}=1$
$\ell=0$

General potential for any $\mathrm{SU}(\mathrm{N})$

Ansatz: constant, diagonal matrix $\mathrm{i}, \mathrm{j}=1 \ldots \mathrm{~N}$

$$
A_{0}^{i j}=\frac{2 \pi T}{g} q_{i} \delta^{i j}
$$

$$
\mathbf{L}_{i j}=\mathrm{e}^{2 \pi i q_{j}} \delta_{i j}
$$

For $\operatorname{SU}(\mathrm{N}), \Sigma_{\mathrm{j}=1 \ldots \mathrm{~N}} \mathrm{q}_{\mathrm{j}}=0$. Hence $\mathrm{N}-1$ independent q^{\prime} 's, = \# diagonal generators.
At 1-loop order, the perturbative potential for the q_{j} 's is

$$
V_{p e r t}(q)=\frac{2 \pi^{2}}{3} T^{4}\left(-\frac{4}{15}\left(N^{2}-1\right)+\sum_{i, j} q_{i j}^{2}\left(1-q_{i j}\right)^{2}\right), q_{i j}=\left|q_{i}-q_{j}\right|
$$

As before, assume a non-perturbative potential $\sim \mathrm{T}^{2} \mathrm{~T}_{\mathrm{c}}{ }^{2}$:

$$
V_{n o n}(q)=\frac{2 \pi^{2}}{3} T^{2} T_{c}^{2}\left(-\frac{c_{1}}{5} \sum_{i, j} q_{i j}\left(1-q_{i j}\right)-c_{2} \sum_{i, j} q_{i j}^{2}\left(1-q_{i j}\right)^{2}+\frac{4}{15} c_{3}\right)
$$

Path to confinement, four colors

Move to the confining vacuum along one direction, $\mathrm{q}_{\mathrm{j}} \mathrm{c}$: (For general interfaces, need all $\mathrm{N}-1$ directions in q_{j} space)

Perturbative vacuum: $\mathrm{q}=0$.
Confining vacuum: $\mathrm{q}=1$.

$$
q_{j}^{c}=\left(\frac{2 j-N-1}{2 N}\right) q, j=1 \ldots N
$$

Four colors:

$$
\begin{array}{ll}
q=0 & q=1 / 2 \\
\ell=1 & \ell \approx .65
\end{array}
$$

General N : confining vacuum = uniform distribution for eigenvalues of \mathbf{L} For infinite N , flat distribution.

Cubic term for all $\mathrm{N} \geq 3$, so transition first order

Define $\phi=1-\mathrm{q}$, Confining point $\phi=0$

$$
V_{t o t}=\frac{\pi^{2}\left(N^{2}-1\right)}{45} T_{c}^{4} t^{2}\left(t^{2}-1\right) \tilde{V}(\phi, t), t=\frac{T}{T_{c}}
$$

$$
\begin{aligned}
& \widetilde{V}(\phi, t)=-m_{\phi}^{2} \phi^{2}-2\left(\frac{N^{2}-4}{N^{2}}\right) \phi^{3}+\left(2-\frac{3}{N^{2}}\right) \phi^{4} \\
& m_{\phi}^{2}=1+\frac{6}{N^{2}}-\frac{c_{1}}{t^{2}-c_{2}}
\end{aligned}
$$

No term linear in ϕ. Cubic term in ϕ for all $\mathrm{N} \geq 3$. Along q^{c}, about $\phi=0$ there is no symmetry of $\phi \rightarrow-\phi$ for any $\mathrm{N} \geq 3$.

Hence terms $\sim \phi^{3}$, and so a first order transition, are ubiquitous. Special to matrix model, with the qi's elements of Lie algebra.

Svetitsky and Yaffe ' 80 : $\mathrm{V}_{\text {eff }}(\mathrm{loop}) \Rightarrow 1$ st order only for $\mathrm{N}=3$; loop in Lie group

Also 1st order for $\mathrm{N} \geq 3$ with FRG: Braun, Eichhorn, Gies, Pawlowski, 1007.2619.

Cubic term for four colors

Construct $\mathrm{V}_{\text {eff }}$ either from q's, or equivalently, loops: $\operatorname{tr} \mathbf{L}, \operatorname{tr} \mathbf{L}^{2}, \operatorname{tr} \mathbf{L}^{3} \ldots$. $\mathrm{N}=4: \mid \operatorname{tr} \mathbf{L}^{2}$ and $\left|\operatorname{tr} \mathbf{L}^{3}\right|^{2}$ not symmetric about $\mathrm{q}=1$, so cubic terms, $\sim(\mathrm{q}-1)^{3}$.
(\mid tr $\left.\mathbf{L}^{2}\right|^{2}$ symmetric, residual $Z(2)$ symmetry)
Cubic terms special to moving along q_{c} in a matrix model. Not true in loop model

Cubic term for four colors

Lattice vs $0-$ and 1 - parameter matrix models, $\mathrm{N}=3$

Results for $\mathrm{N}=3$ similar to $\mathrm{N}=2$.
0 -parameter model way off. Good fit e-3p/T ${ }^{4}$ for 1-parameter model,

$$
c_{1}=0.32, c_{2}=0.83, c_{3}=1.13
$$

Again, $\mathrm{c}_{2} \sim 1$, so at T_{c}, terms $\sim \mathrm{q}^{2}(1-\mathrm{q})^{2}$ almost cancel.

Polyakov loop: matrix models \neq lattice

Renormalized Polyakov loop from lattice does not agree with either matrix model $\langle l\rangle-1 \sim\langle\mathrm{q}\rangle^{2}$: By $1.2 \mathrm{~T}_{\mathrm{c}},\langle\mathrm{q}\rangle \sim .05$, negligible.
Again, for $\mathrm{T}>1.2 \mathrm{~T}_{\mathrm{c}}$, the T^{2} term in pressure due entirely to the constant term, c_{3} ! Rapid rise of $\langle l\rangle$ as with FRG: Braun, Gies, Pawlowski, 0708.2413

Order-order interface tension, σ, from matrix model close to lattice. For $\mathrm{T}>1.2 \mathrm{~T}_{\mathrm{c}}$, path along λ_{8}; for $\mathrm{T}<1.2 \mathrm{~T}_{\mathrm{c}}$, along both λ_{8} and λ_{3}.
$\sigma\left(\mathrm{T}_{\mathrm{c}}\right) / \mathrm{T}_{\mathrm{c}}{ }^{2}$ nonzero but small, $\sim .02$. Results for $\mathrm{N}=2$ and $\mathrm{N}=3$ similar - ?

Adjoint Higgs phase, $\mathrm{N}=3$

For $\mathrm{SU}(3)$, deconfinement along $\mathrm{A}_{0} \mathrm{cl} \sim \mathrm{q} \lambda_{3}$. Masses $\sim\left[\lambda_{3}, \lambda_{\mathrm{i}}\right]$: two off-diagonal. Splitting of masses only for $\mathrm{T}<1.2 \mathrm{~T}_{\mathrm{c}}$:
Measureable from singlet potential, $\left\langle\operatorname{tr} \mathrm{L}^{\dagger}(\mathrm{x}) \mathrm{L}(0)\right\rangle$, over all x .

Matrix model: $\mathrm{N} \geq 3$

To get the latent heat right, two parameter model.
Thermodynamics, interface tensions improve

Latent heat, and a 2-parameter model

Latent heat, $\mathrm{e}\left(\mathrm{T}_{\mathrm{c}}\right) / \mathrm{T}_{\mathrm{c}}{ }^{4}$: 1-parameter model too small:
1-para.: 0.33. BPK: $1.40 \pm .1$; DG: $1.67 \pm .1$.

$$
c_{3}(T)=c_{3}(\infty)+\frac{c_{3}(1)-c_{3}(\infty)}{t^{2}}, t=\frac{T}{T_{c}}
$$

2-parameter model, $\mathrm{c}_{3}(\mathrm{~T})$. Like MIT bag constant

WHOT: $\mathrm{c}_{3}(\infty) \sim 1$. Fit $\mathrm{c}_{3}(1)$ to DG latent heat
Fits lattice for $\mathrm{T}<1.2 \mathrm{~T}_{\mathrm{c}}$, overshoots above.

2-parameter model, $\mathrm{N}=4$

Assume $\mathrm{c}_{3}(\infty)=0.95$, like $\mathrm{N}=3$. Fit $\mathrm{c}_{3}(1)$ to latent heat, Datta \& Gupta, 1006.0938 Order-disorder $\sigma\left(\mathrm{T}_{\mathrm{c}}\right) / \mathrm{T}_{\mathrm{c}}{ }^{2} \sim .08$, vs lattice, .12, Lucini, Teper, Wenger, lat/0502003

$$
c_{3}(1)=1.38, c_{3}(\infty)=.95, c_{1}=1.025, c_{2}=0.39
$$

2-parameter model, $\mathrm{N}=6$

Order-disorder $\sigma\left(T_{c}\right) / T_{c}{ }^{2} \sim .25$, vs lattice, .39, Lucini, Teper, Wenger, lat/0502003

$$
c_{3}(1)=1.42, c_{3}(\infty)=.95, c_{1}=1.21, c_{2}=0.23
$$

Matrix model, $G(2)$ gauge group

G(2): no center, yet has "confining" trans: Holland, Minkowski, Pepe, Wiese, lat/0302023 Very strong constraint on matrix model: we predict broad conformal anomaly/T ${ }^{4}$. Pressure in $\mathrm{G}(2)$ not like pressure in $\mathrm{SU}(\mathrm{N})$, but interface tension

