Experiments Confront Theory

Unicorn: the QGP

Hunters: Experimentalists.

Leaving theorists as...

SHOP

ANTI POWERPOINT PARTY

http://www.anti-powerpoint-party.com

Finally do something!

Experiments Confront Theory

Theory:

Effective theory for deconfinement, near T_c . Today: only the "pure" glue theory (no dynamical quarks) Based upon *detailed* results from the lattice

Experiment:

No confrontation today... *Soon:* need to add quarks Present model may be the only *real* competition to AdS/CFT

The standard plot

SU(3) gauge theory without quarks, temperature T (Weakly) first order transition at $T_c \sim 290 \text{ MeV}$

Another plot of the same

Plot conformal anomaly, (e-3p)/T⁴: large peak above T_c . ~ g^4 as $T \rightarrow \infty$

Strong vs weak coupling at T_c?

Resummed perturbation theory at 3-loop order works down to $\sim 3~T_c$.

Intermediate coupling: $\alpha_s(T_c) \sim 0.3$. Not so big... So what happens below $\sim 3 T_c$?

Want effective theory; e.g.: chiral pert. theory: expand in m_{π}/f_{π} , exact as $m_{\pi} \rightarrow 0$.

But there is *no* small mass scale for SU(3) in "semi"-QGP, $T_c \rightarrow 3 T_c$.

Not strong coupling, even at T_c

QCD coupling runs like $\alpha(2\pi T)$, intermediate at T_c , $\alpha(2\pi T_c) \sim 0.3$

Braaten & Nieto, hep-ph/9501375, Laine & Schröder, hep-ph/0503061 & 0603048

HTL resummed perturbation theory, NNLO, good to $\sim 8 \text{ T}_c$:

What to expand in?

Consider SU(N) for *different* N. # perturbative gluons \sim N² - 1. Scaled by ideal gas values, e and p for N = 3, 4 and 6 look *very* similar Implicitly, expand about infinite N. Explicitly, assume classical expansion ok

Conformal anomaly \approx N independent

For SU(N), "peak" in e-3p/T⁴ just above T_c. *Approximately* uniform in N.

Not near T_c : transition 2nd order for N = 2, 1st order for all $N \ge 3$

N=3: weakly 1st order. N = ∞ : strongly 1st order (even for latent heat/N²)

Tail in the conformal anomaly

To study the tail in $(e-3p)/T^4$, multiply by $T^2/(N^2-1)$ T_c^2 :

(e-3p)/((N²-1)T² T_c²) approximately constant, independent of N

Precise results for three colors

From WHOT:

$$p(T) \approx \# (T^4 - c T^2 T_c^2), T/T_c : 1.2 \to 2.0$$
 $c \approx 1.00 \pm 0.01$

WHOT: Umeda, Ejiri, Aoki, Hatsuda, Kanaya, Maezawa, Ohno, 0809.2842

How to get a term $\sim T^2$ in the pressure?

Expand pressure of ideal, massive gas in powers of mass m:

$$\int d^4p \, \operatorname{tr} \log(p^2 + m^2) = \# T^4 - \#' m^2 T^2 + \dots$$

Quasi-particle models: *choose* m(T) to *fit* pressure.

Need m(T) to increase *sharply* as $T \rightarrow T_c$ to suppress pressure. Inelegant...

$$\frac{m(T)}{T_c} = \frac{a}{(t-1)^b} + ct$$

$$t = T/T_c$$
, $a = .47$, $b = .13$, $c = .39$

Above: Castorina, Miller, & Satz, 1101.1255

Originally: Peshier, Kampfer, Pavlenko & Soff, PRD 1996

A simple solution

Assume there is some potential, V(q).

The vacuum, q_0 , is the minimum of V(q):

$$\left. \frac{dV(q)}{dq} \right|_{q=q_0} = 0$$

Pressure is the value of the potential at the minimum:

$$p(T) = -V(q_0)$$

For $T > 1.2 T_c$, a *constant* $\sim T^2$ in the pressure, is due to a *constant* $\sim T^2$ in V(q):

$$V(q) = -\# (T^4 - T^2 T_c^2 + T^2 T_c^2 \widetilde{V}(q))$$

Above 1.2 T_c , $\langle q \rangle = 0$. Except near T_c , for *most* of the semi-QGP, the non-perturbative part of the pressure, $\sim T^2$, is due *just* to a constant Region where $\langle q \rangle \neq 0$, and V(q) matters, is *very* narrow: T: $T_c \rightarrow 1.2 \ T_c$ Unexpected consequence of *precise* lattice data.

Large N: makes sense to speak of classical $\langle q \rangle$ instead of fluctuations.

Our model: generalization of Meisinger, Miller & Ogilvie, ph/0108009 Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, arXiv:1011.3820 + 1112.? Also: Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.

Hidden Z(2) spins in SU(2)

Consider *constant* gauge transformation:

$$U_c = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathbf{1}$$

As $U_c \sim 1$, locally gluons *invariant*:

$$A_{\mu} \rightarrow U_c^{\dagger} A_{\mu} U_c = + A_{\mu}$$

Nonlocally, Wilson *line* changes:

$$\mathbf{L} = \mathcal{P} e^{ig \int_0^{1/T} A_0 d\tau} \to -\mathbf{L}$$

 $U_c = e^{2\pi i \mathbf{j}/3} \mathbf{1}$

 $L \sim \text{propagator for "test" quark.}$

SU(3): det
$$U_c = 1 \Rightarrow$$

 $j = 0, 1, 2$

SU(N): $U_c = e^{2 \pi i j/N} 1$: Z(N) symmetry.

Z(N) spins of 't Hooft, with out quarks

Quarks \sim background Z(N) field, break Z(N) sym.

$$\psi \to U_c \psi = -\psi$$

Hidden Z(3) spins in SU(3)

Lattice, A. Kurkela, unpub.'d: 3 colors, loop *l* complex.

Distribution of loop shows Z(3) symmetry:

Interface tension: box long in z.

Each end: distinct but degenerate vacua.

Interface forms, action ~ interface tension:

 $T > T_c$: order-order interface = 't Hooft loop:

measures response to magnetic charge

Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

$$Z \sim e^{-\sigma_{int}V_{tr}}$$

Also: if trans. 1st order, order-disorder interface at Tc.

Usual spins vs Polyakov Loop

$$L = SU(N)$$
 matrix, Polyakov loop $l \sim trace$:

$$\ell = \frac{1}{N} \operatorname{tr} \mathbf{L}$$

Confinement: $F_{\text{test qk}} = \infty \implies \langle l \rangle = 0$

$$<\ell>\sim \mathrm{e}^{-F_{\mathrm{test}\,\mathrm{qk}}/T}$$

Above T_c , $F_{\text{test qk}} < \infty \Rightarrow \langle l \rangle \neq 0$

 $\langle l \rangle$ measures ionization of color:

partial ionization when $0 < \langle l \rangle < 1$: "semi"-QGP

Svetitsky and Yaffe '80:

SU(3) 1st order because Z(3) allows *cubic* terms:

$$\mathcal{L}_{eff} \sim \ell^3 + (\ell^*)^3$$

Does not apply for N > 3. So why is deconfinement 1st order for all $N \ge 3$?

Polyakov Loop from Lattice: pure Glue, no Quarks

Lattice: (renormalized) Polyakov loop. Strict order parameter

Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.

Suggests wide transition region, like pressure, to $\sim 4 \text{ T}_c$.

Polyakov Loop from Lattice: Glue plus Quarks, "Tc"

Quarks ~ background Z(3) field. Lattice: Bazavov et al, 0903.4379.

3 quark flavors: weak Z(3) field, does *not* wash out approximate Z(3) symmetry.

Skipping to the punchline

Transition region *narrow*: for pressure, $< 1.2 \text{ T}_c!$ For interface tensions, $< 4 \text{ T}_c...$

Above 1.2 T_c , pressure dominated by *constant* term ~ T^2 .

What does this term come from? Gluon mass m(T)? But inelegant...

SU(N) in 2+1 dimensions: ideal ~ T^3 . Caselle + ...: *also* T^2 term in pressure. But mass would be m^2 T, *not* m T^2 .

T² term like free energy of massless fields in 2 dimensions: string? Above T_c?

Need to include quarks!

Can then compute temperature dependence of:

shear viscosity, energy loss of light quarks, damping of quarkonia...

Lattice: SU(N) in 2+1 dimensions

SU(N) in 2+1 dim's for N = 2, 3, 4, 5, & 6. Below plot of T_c/T , not T/T_c . Clear evidence for non-ideal terms ~ T^2 , not ~ T

With quarks: "T_c" moves down: which T_c?

Just glue: $T_c^{deconf} \sim 290 \text{ MeV}$. Common lore: with quarks, one " T_c ", decreases.

Shear viscosity changes with T

In semi-QGP, η suppressed from pert. value through function $\mathbf{R}(q)$. Not like kinetic theory Log sensitivity, through constant \varkappa

$$\eta = \frac{c_{\text{pert}} T^3}{g^4 \log(\kappa/g^2 N_c)} \mathbf{R}(q)$$

"Bleaching" of color near T_c.

```
Roughly speaking, as \langle loop \rangle \rightarrow 0, all colored fields disappear. Quarks, in fundamental rep. as \langle loop \rangle. Gluons, in adjoint rep., as \langle loop \rangle^2.
```

Bleaching of color as $T \rightarrow T_c$: robust consequence of the confinement of color

QGP: quarks and gluons. Semi-QGP: dominated by quarks, by $\sim \langle loop \rangle$

Why recombination works at RHIC but not at LHC?

(v₂ /# quarks vs kinetic energy/# quarks)

Suppression of color universal for all fields, independent of mass.

Why charm quarks flow the same as light quarks? (single charm vs pions)

An effective theory can provide a bridge from lattice simulations to experiment

Matrix model: two colors

Simple approximation

Two colors: transition 2nd order, vs 1st for $N \ge 3$

Using large N at N = 2

Matrix model: SU(2)

Simple approximation: constant $A_0 \sim \sigma_3$, nonperturbative, $\sim 1/g$:

$$A_0^{cl} = \frac{\pi T}{g} q \sigma_3 \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \mathbf{L}(q) = \begin{pmatrix} e^{i\pi q} & 0 \\ 0 & e^{-i\pi q} \end{pmatrix}$$

Single dynamical field, q

Loop l real. Z(2) degenerate vacua q = 0 and 1:

$$\ell = \cos(\pi q)$$

Point *half* way in between: $q = \frac{1}{2}$, l = 0. Confined vacuum, L_c ,

$$\mathbf{L}_c = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right)$$

Classically, A_0^{cl} has zero action: *no* potential for q.

Potential for q, interface tension

Computing to one loop order about A_0^{cl} gives a potential for q: Gross, RDP, Yaffe, '81

Use $V_{pert}(q)$ to compute σ : Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

$$V_{tot}(q) = \frac{2\pi^2 T^2}{g^2} \left(\frac{dq}{dz}\right)^2 + V_{pert}(q) \qquad \Rightarrow \sigma = \frac{4\pi^2}{3\sqrt{6}} \frac{T^2}{\sqrt{g^2}}$$

Balancing $S_{cl} \sim 1/g^2$ and $V_{pert} \sim 1$ gives $\sigma \sim 1/\sqrt{g^2}$ (not $1/g^2$).

Width interface $\sim 1/g$, justifies expansion about constant A_0^{cl} . GKA '04: $\sigma \sim ... + g^2$

Potentials for the q's

Add *non*-perturbative terms, by *hand*, to generate $\langle q \rangle \neq 0$:

By hand? $V_{non}(q)$ from: monopoles, vortices...

Liao & Shuryak: ph/0611131, 0706.4465, 0804.0255, 0804.4890

$$V_{eff}(q) = V_{pert}(q) + V_{non}(q)$$

$$T >> T_c$$
: $\langle q \rangle = 0,1 \rightarrow$

$$T < T_c$$
: $\langle q \rangle = \frac{1}{2} \rightarrow$

Three possible "phases"

Two phases are familiar:

$$\langle q \rangle = 0$$
, 1: $\langle l \rangle = \pm$ 1: "Complete" QGP: usual perturbation theory. T >> T_c.

$$\langle q \rangle = 1/2$$
: $\langle l \rangle = 0$: confined phase. T < T_c

Also a *third* phase, "partially" deconfined (adjoint Higgs phase)

$$0 < \langle q \rangle < 1/2$$
: $\langle l \rangle < 1$: "semi"-QGP. From some x $T_c > T > T_c$ x?

Lattice: *one* transition, to confined phase, at T_c. *No* other transition above T_c. Still, there is an intermediate phase, the "semi"-QGP

Strongly constrains possible non-perturbative terms, $V_{non}(q)$.

Getting three "phases", one transition

Simple guess: $V_{non} \sim loop^2$,

$$V_{eff} \sim \frac{a}{\pi^2} (\ell^2 - 1) + q^2 (1 - q)^2$$

 $\sim q^2 (1 - a) - 2q^3 + \dots$

1st order transition *directly* from complete QGP to confined phase, *not* 2nd Generic if $V_{non}(q) \sim q^2$ at q << 1.

Easy to avoid, if $V_{non}(q) \sim q$ for small q. Then $\langle q \rangle \neq 0$ at all $T > T_c$. Imposing the symmetry of $q \leftrightarrow 1 - q$, $V_{non}(q)$ must include

$$V_{non}(q) \sim q(1-q)$$

Term ~ q at small q avoids transition from pert. QGP to adjoint Higgs phase

Cartoons of deconfinement

Consider:

$$V_{eff} = q^2 (1 - q)^2 - a q (1 - q), \ a \sim T_c^2 / T^2$$

 \downarrow a = 0: complete QGP

↓ a = ¼: semi QGP

a = $\frac{1}{2}$: $T_c = >$ Stable vacuum at $q = \frac{1}{2}$ Transition *second* order

0-parameter matrix model, N = 2

Meisinger, Miller, Ogilvie ph/0108009:

take $V_{non} \sim T^2$

$$V_{non}(q) = \frac{4\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} q(1-q) + \frac{c_3}{15} \right)$$

Two conditions: transition occurs at T_c , pressure(T_c) = 0

Fixes c₁ and c₃, no free parameters. But not close to lattice data (from '89!)

1-parameter matrix model, N = 2

Dumitru, Guo, Hidaka, Korthals-Altes, RDP '10: to usual perturbative potential,

$$V_{pert}(q) = \frac{4\pi^2}{3} T^4 \left(-\frac{1}{20} + q^2 (1-q)^2 \right)$$

Add - by hand - a non-pert. potential $V_{non} \sim T^2 T_c^2$. Also add a term like V_{pert} :

$$V_{non}(q) = \frac{4\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} q(1-q) - c_2 q^2 (1-q)^2 + \frac{c_3}{15} \right)$$

Now just like any other mean field theory. $\langle q \rangle$ given by minimum of V_{eff} :

$$V_{eff}(q) = V_{pert}(q) + V_{non}(q) \qquad \frac{d}{dq} V_{eff}(q) \Big|_{q=\langle q \rangle} = 0$$

 $\langle q \rangle$ depends nontrivially on temperature.

Pressure value of potential at minimum:

$$p(T) = -V_{eff}(\langle q \rangle)$$

Lattice vs matrix models, N = 2

Choose c_2 to fit e-3p/ T^4 : optimal choice

$$c_1 = 0.23$$
, $c_2 = .91$, $c_3 = 1.11$

Reasonable fit to $e-3p/T^4$; also to p/T^4 , e/T^4 .

N.B.: $c_2 \sim 1$. At T_c , terms $\sim q^2(1-q)^2$ almost cancel.

Width of transition region, 0- vs 1-parameter

1-parameter model: get sharper e-3p/T⁴ because $\langle q \rangle$ -> 0 *much* quicker above T_c. Physically: sharp e-3p/T⁴ implies region where $\langle q \rangle$ is significant is *narrow*

N.B.: $\langle q \rangle \neq 0$ at all T, but numerically, *negligible* above ~ 1.2 T_c; p ~ $\langle q \rangle^2$.

Above ~1.2 T_c, the T² term in the pressure is due *entirely* to the *constant* term, c₃!

Polyakov loop: 1-parameter matrix model ≠ lattice

Lattice: renormalized Polyakov loop. 0-parameter model: close to lattice 1-parameter model: sharp disagreement. $\langle l \rangle$ rises to ~ 1 much faster - ?

Sharp rise also found using Functional Renormalization Group (FRG):

Braun, Gies, Pawlowski, 0708.2413; Marhauser, Pawlowski, 0812.1144

Interface tension, N = 2

 σ vanishes as $T \rightarrow T_c$, $\sigma \sim (t-1)^{2\nu}$.

Ising $2v \sim 1.26$; Lattice: ~ 1.32 .

Matrix model: ~ 1.5 : c_2 important.

$$\sigma(T) = \frac{4\pi^2 T^2}{3\sqrt{6g^2}} \, \frac{(t^2 - 1)^{3/2}}{t(t^2 - c_2)} \, , \, t = \frac{T}{T_c}$$

Semi-class.: GKA '04. *Include* corr.'s $\sim g^2$ in matrix $\sigma(T)$ (ok when $T > 1.2 T_c$)

N.B.: width of interface *diverges* as $T \rightarrow T_c$, $\sim \sqrt{(t^2 - c_2)/(t^2 - 1)}$.

Lattice: A_0 mass as $T \rightarrow T_c$ - up or down?

Gauge invariant: 2 pt function of loops:

$$\langle \operatorname{tr} \mathbf{L}^{\dagger}(x) \operatorname{tr} \mathbf{L}(0) \rangle \sim e^{-\mu x} / x^d$$

 μ/T goes down as $T \rightarrow T_c$

Kaczmarek, Karsch, Laermann, Lutgemeier lat/9908010¹

Gauge dependent: singlet potential

$$\langle \operatorname{tr} \left(\mathbf{L}^{\dagger}(x) \mathbf{L}(0) \right) \rangle \sim e^{-m_D x} / x$$

m_D/T goes up as T \rightarrow T_c Cucchieri, Karsch, Petreczky lat/0103009, Kaczmarek, Zantow lat/0503017

Which way do masses go as $T \rightarrow T_c$? Both are constant above $\sim 1.5 \text{ T}_c$.

Adjoint Higgs phase, N = 2

 $A_0^{cl} \sim q \sigma_3$, so $\langle q \rangle \neq 0$ generates an (adjoint) Higgs phase: RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, $A = A_0^{cl} + A^{qu}$: $D_0^{cl} A^{qu} = \partial_0 A^{qu} + i g [A_0^{cl}, A^{qu}]$ Fluctuations $\sim \sigma_3$ not Higgsed, $\sim \sigma_{1,2}$ Higgsed, get mass $\sim 2 \pi T \langle q \rangle$ Hence when $\langle q \rangle \neq 0$, for $T < 1.2 T_c$, *splitting* of masses:

Matrix model: $N \ge 3$

Why the transition is always 1st order

One parameter model

Path to Z(3), three colors

SU(3): *two* diagonal λ 's, so *two* q's:

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \; ; \; \lambda_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$A_0 = \frac{2\pi T}{3\,g} \, (q_3 \, \lambda_3 + q_8 \, \lambda_8)$$

Z(3) paths: move along λ_8 , not λ_3 : $q_8 \neq 0$, $q_3 = 0$.

$$\mathbf{L} = e^{2\pi i q_8 \lambda_8/3}$$

Path to confinement, three colors

Now move along
$$\lambda_3$$
:

$$\mathbf{L} = e^{2\pi i q_3 \lambda_3/3}$$

In particular, consider $q_3 = 1$:

Elements of $e^{2\pi i/3}$ L_c same as those of L_c.

Hence tr $L_c = \text{tr } L_c^2 = 0$: L_c confining vacuum

$$\mathbf{L}_c = \begin{pmatrix} e^{2\pi i/3} & 0 & 0\\ 0 & e^{-2\pi i/3} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Path to confinement: along λ_3 , not λ_8 , $q_3 \neq 0$, $q_8 = 0$.

$$q_3 = 0$$

$$\ell = 1$$

$$q_3 = 3/8$$

$$\ell \approx .8$$

$$q_3 = 1$$

$$\ell = 0$$

General potential for any SU(N)

Ansatz: constant, diagonal matrix
$$A_0^{ij} = \frac{2\pi T}{g} q_i \delta^{ij}$$
 $\mathbf{L}_{ij} = e^{2\pi i q_j} \delta_{ij}$

For SU(N), $\Sigma_{j=1...N}$ $q_j = 0$. Hence N-1 independent q_j 's, = # diagonal generators.

At 1-loop order, the perturbative potential for the q_i 's is

$$V_{pert}(q) = \frac{2\pi^2}{3} T^4 \left(-\frac{4}{15} (N^2 - 1) + \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 \right) , \ q_{ij} = |q_i - q_j|$$

As before, assume a non-perturbative potential $\sim T^2 T_c^2$:

$$V_{non}(q) = \frac{2\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} \sum_{i,j} q_{ij} (1 - q_{ij}) - c_2 \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 + \frac{4}{15} c_3 \right)$$

Path to confinement, four colors

Move to the confining vacuum along *one* direction, q_i^c:

(For general interfaces, need *all* N-1 directions in q_j space)

Perturbative vacuum: q = 0.

Confining vacuum: q = 1.

$$q_j^c = \left(\frac{2j - N - 1}{2N}\right) q, j = 1 \dots N$$

Four colors:

General N: confining vacuum = uniform distribution for eigenvalues of L For infinite N, flat distribution.

Cubic term for all $N \ge 3$, so transition first order

Define
$$\phi = 1 - q$$
,
Confining point $\phi = 0$
$$V_{tot} = \frac{\pi^2(N^2 - 1)}{45} T_c^4 t^2 (t^2 - 1) \widetilde{V}(\phi, t), t = \frac{T}{T_c}$$

$$\widetilde{V}(\phi, t) = -m_{\phi}^2 \phi^2 - 2\left(\frac{N^2 - 4}{N^2}\right) \phi^3 + \left(2 - \frac{3}{N^2}\right) \phi^4$$

$$m_{\phi}^2 = 1 + \frac{6}{N^2} - \frac{c_1}{t^2 - c_2}$$

No term linear in ϕ . Cubic term in ϕ for all $N \ge 3$.

Along q^c, about $\phi = 0$ there is *no* symmetry of $\phi \rightarrow -\phi$ for any $N \ge 3$.

Hence terms $\sim \phi^3$, and so a first order transition, are *ubiquitous*. Special to matrix model, with the q_i 's elements of Lie *algebra*.

Svetitsky and Yaffe '80: $V_{eff}(loop) \Rightarrow 1st \text{ order } only \text{ for } N=3; loop \text{ in Lie } group$

Also 1st order for $N \ge 3$ with FRG: Braun, Eichhorn, Gies, Pawlowski, 1007.2619.

Cubic term for four colors

Construct V_{eff} either from q's, or equivalently, loops: tr L, tr L^2 , tr L^3

N = 4: ltr L|² and ltr L³|² not symmetric about q = 1, so cubic terms, \sim (q - 1)³. (ltr L²|² symmetric, residual Z(2) symmetry)

Cubic terms *special* to moving along q_c in a *matrix* model. *Not* true in loop model

Cubic term for four colors

Lattice vs 0- and 1- parameter matrix models, N = 3

Results for N=3 similar to N=2.

0-parameter model way off.

$$c_1 = 0.32, c_2 = 0.83, c_3 = 1.13$$

Again, $c_2 \sim 1$, so at T_c , terms $\sim q^2(1-q)^2$ almost cancel.

Polyakov loop: matrix models ≠ lattice

Renormalized Polyakov loop from lattice does not agree with either matrix model $\langle l \rangle$ - 1 ~ $\langle q \rangle^2$: By 1.2 T_c, $\langle q \rangle$ ~ .05, negligible.

Again, for $T > 1.2 T_c$, the T^2 term in pressure due *entirely* to the *constant* term, c_3 ! Rapid rise of $\langle l \rangle$ as with FRG: Braun, Gies, Pawlowski, 0708.2413

Interface tension, N = 2 and 3

Order-order interface tension, σ , from matrix model close to lattice.

For T > 1.2 T_c, path along λ_8 ; for T < 1.2 T_c, along both λ_8 and λ_3 .

 $\sigma(T_c)/T_c^2$ nonzero but *small*, ~ .02. Results for N = 2 and N = 3 similar - ?

Adjoint Higgs phase, N = 3

For SU(3), deconfinement along $A_0^{cl} \sim q \lambda_3$. Masses $\sim [\lambda_3, \lambda_i]$: two off-diagonal. Splitting of masses only for T < 1.2 T_c:

Measureable from singlet potential, $\langle \operatorname{tr} L^{\dagger}(x) L(0) \rangle$, over *all* x.

Matrix model: $N \ge 3$

To get the latent heat right, two parameter model.

Thermodynamics, interface tensions improve

Latent heat, and a 2-parameter model

Latent heat, $e(T_c)/T_c^4$: 1-parameter model too small:

1-para.: 0.33. BPK: $1.40 \pm .1$; DG: $1.67 \pm .1$.

$$c_3(T) = c_3(\infty) + \frac{c_3(1) - c_3(\infty)}{t^2}, t = \frac{T}{T_c}$$

2-parameter model, $c_3(T)$. Like MIT bag constant

WHOT: $c_3(\infty) \sim 1$. Fit $c_3(1)$ to DG latent heat

Fits lattice for $T < 1.2 T_c$, overshoots above.

 $c_3(1) = 1.33, c_3(\infty) = .95$

2-parameter model, N = 4

Assume $c_3(\infty) = 0.95$, like N=3. Fit $c_3(1)$ to latent heat, Datta & Gupta, 1006.0938 Order-disorder $\sigma(T_c)/T_c^2 \sim .08$, vs lattice, .12, Lucini, Teper, Wenger, lat/0502003

$$c_3(1) = 1.38$$
, $c_3(\infty) = .95$, $c_1 = 1.025$, $c_2 = 0.39$

2-parameter model, N = 6

Order-disorder $\sigma(T_c)/T_c^2 \sim .25$, vs lattice, .39, Lucini, Teper, Wenger, lat/0502003

$$c_3(1) = 1.42$$
, $c_3(\infty) = .95$, $c_1 = 1.21$, $c_2 = 0.23$

Matrix model, G(2) gauge group

G(2): *no* center, yet has "confining" trans: Holland, Minkowski, Pepe, Wiese, lat/0302023 Very strong constraint on matrix model: we predict *broad* conformal anomaly/T⁴. Pressure in G(2) not like pressure in SU(N), but interface tension

