
  Hunt for the Quark Gluon Plasma

QGP as a “Unicorn”.  Experimentalists as hunters, 
so (in this field), “All theorists are...”
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 http://www.anti-powerpoint-party.com
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Theory vs Experiment

Theory: 

Effective theory for deconfinement, near Tc.
Today: only the “pure” glue theory (no dynamical quarks)

Based upon detailed results from the lattice

Experiment:

Soon: including quarks
Will provide competition to AdS/CFT
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The standard plot
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continuum S.B. limit
fixed Nt=8 result [9]

T[MeV]

3p/T4

¡/T4

a

T→↑ Tc

SU(3) gauge theory without quarks, temperature T
(Weakly) first order transition at Tc ~ 290 MeV

e/T4→ 

←3p/T4 

e(T)= 
energy density
p(T)= 
pressure

WHOT: Umeda, 
Ejiri, Aoki, 
Hatsuda, Kanaya, 
Maezawa, Ohno, 
0809.2842
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Another plot of the same
Plot conformal anomaly, (e-3p)/T4: large peak above Tc. ~ g4 as T → ∞
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Strong vs weak coupling at Tc?
Resummed perturbation theory at 3-loop order works down to ~ 3 Tc.  
Intermediate coupling: αs(Tc) ~ 0.3. Not so big... So what happens below ~ 3 Tc?  

Want effective theory; e.g.: chiral pert. theory: expand in  mπ/fπ, exact as mπ → 0.

But there is no small mass scale for SU(3) in “semi”-QGP, Tc → 3 Tc.

→→→

Andersen, Su, 
& Strickland,
1005.1603
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What to expand in?
Consider SU(N) for different N.  # perturbative gluons ~ N2 - 1.
Scaled by ideal gas values, e and p for N = 3, 4 and 6 look very similar
Implicitly, expand about infinite N.  Explicitly, assume classical expansion ok
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T/Tc

�/�SB

p/pSB

SU(3)
SU(4)
SU(6)

N=3: 
Boyd et al,
lat/9602007

N = 4 & 6: 
Datta & Gupta, 
1006.0938
                         

 p/pideal

e/eideal #

T→

N = 3, 4, 6

↑ Tc 4 Tc ↑
7Thursday, November 3, 11



Conformal anomaly ≈ N independent
For SU(N), “peak” in e-3p/T4  just above Tc.  Approximately uniform in N.

Not near Tc: transition 2nd order for N = 2, 1st order for all N ≥ 3
         N=3: weakly 1st order.  N =  ∞: strongly 1st order (even for latent heat/N2)
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/(T
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T/Tc

SU(3)
SU(4)
SU(6)

Datta & Gupta, 1006.0938 long tail?

↑ Tc 4 Tc ↑

1
N2 � 1

e� 3p

T 4
"

T→

N = 3, 4, 6
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Tail in the conformal anomaly
To study the tail in (e-3p)/T4, multiply by T2 /(N2-1) Tc2:
(e-3p)/((N2-1)T2 Tc2) approximately constant, independent of N

Datta & Gupta, 1006.0938
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↑ Tc 4 Tc ↑T→
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N2 � 1

e� 3p
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N = 3, 4, 6
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Precise results for three colors

From WHOT:
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WHOT: Umeda, 
Ejiri, Aoki, 
Hatsuda, Kanaya, 
Maezawa, Ohno, 
0809.2842 

c ⇡ 1.00± 0.01

p(T ) ⇡ #(T 4 � c T 2T 2
c ) , T/Tc : 1.2 ! 2.0
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How to get a term ~ T2 in the pressure?

Expand pressure of ideal, massive gas in powers of mass m:

Quasi-particle models: choose m(T) to fit pressure.
Need m(T) to increase sharply as T → Tc to suppress pressure.  Inelegant...

2.0

1.5

1.0
2.0 3.0 4.0

T→

m(T)↑

Above: Castorina, Miller, & Satz, 
1101.1255

Originally: Peshier, Kampfer, 
Pavlenko & Soff, PRD 1996

t = T/Tc, a = .47, 
b = .13, c = .39

m(T )

Tc
=

a

(t� 1)b
+ c t

Z
d4p tr log(p2 +m2

) = #T 4 �#

0 m2 T 2
+ . . .
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A simple solution

Generalization of Meisinger, Miller, Ogilvie ph/0108009
Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, arXiv:1011.3820 + 1112.?
Also: Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.

Assume there is some potential, V(q).
The vacuum, q0, is the minimum of V(q):

Pressure is the value of the potential at the minimum: 

For T > 1.2 Tc, a constant ~T2  in the pressure, is due to a constant ~T2 in V(q):

dV (q)

dq

����
q=q0

= 0

p(T ) = �V (q0)

Above 1.2 Tc , 〈q〉 = 0.  Except near Tc, for most of the semi-QGP, 
the non-perturbative part of the pressure,  ~T2, is due just to a constant
Region where 〈q〉 ≠ 0, and V(q) matters, is very narrow: T: Tc → 1.2 Tc

Unexpected consequence of precise lattice data.
Large N: makes sense to speak of classical 〈q〉 instead of fluctuations.

V (q) = �#(T 4 � T 2 T 2
c + T 2 T 2

c
eV (q))
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Hidden Z(2) spins in SU(2)
Consider constant gauge transformation:

As Uc ~ 1, locally gluons invariant:

Nonlocally, Wilson line changes:

L ~ propagator for “test” quark.  

SU(3): det Uc = 1 ⇒ 
            j = 0, 1, 2
SU(N): Uc = e2 π i j/N 1: Z(N) symmetry.

Z(N) spins of ‘t Hooft, without quarks

Quarks ~ background Z(N) field, break Z(N) sym.

N = 3

Aµ ! U†
c Aµ Uc = +Aµ

Uc =
✓
�1 0
0 �1

◆
= �1

L = P eig
R 1/T
0 A0 d⌧ ! �L

Uc = e2⇡ij/3 1

 ! Uc = � 
13Thursday, November 3, 11



Hidden Z(3) spins in SU(3)
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T >> Tc T ~ Tc T < Tc

Im l↑
Re l→

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  
Distribution of loop shows Z(3) symmetry:

zInterface tension: box long in z.  
Each end: distinct but degenerate vacua.
Interface forms, action ~ interface tension:

T > Tc: order-order interface = ‘t Hooft loop:
             measures response to magnetic charge
               Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

Also: if trans. 1st order, order-disorder interface at Tc .

Z ⇠ e��intVtr
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Usual spins vs Polyakov Loop

T→ Tc ↑ 

<l>↑

< � >⇠ e�Ftest qk/T

L = SU(N) matrix, Polyakov loop l ~ trace:

Confinement: Ftest qk = ∞ ⇒ 〈 l 〉 = 0

Above Tc, Ftest qk < ∞ ⇒ 〈 l 〉 ≠ 0

〈 l 〉 measures ionization of color:
partial ionization when 0 < 〈 l 〉 < 1 : “semi”-QGP

Svetitsky and Yaffe ’80: 
SU(3) 1st order because Z(3) allows cubic terms:

Does not apply for N > 3.  So why is deconfinement 1st order for all N ≥ 3?

Le↵ ⇠ `3 + (`⇤)3

` =
1
N

trL
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Polyakov Loop from Lattice: pure Glue, no Quarks
Lattice: (renormalized) Polyakov loop.  Strict order parameter
Three colors: Gupta, Hubner, Kaczmarek, 0711.2251.
Suggests wide transition region, like pressure, to ~ 4 Tc.
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r

T/Tc

-
direct renormalization

QQ renormalization

T → 

<loop>↑

↑ ~ 4 Tc 

←1.0

← ~ 0.4

↑ Tc↑T=0

←  Confined  →← SemiQGP→ ←  “Complete” QGP  →   
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Polyakov Loop from Lattice: Glue plus Quarks, “Tc”

Quarks ~ background Z(3) field.  Lattice: Bazavov et al, 0903.4379.
3 quark flavors: weak Z(3) field, does not wash out approximate Z(3) symmetry.
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8

↑“Tc”.8“Tc”↑ 2 “Tc”↑

← 0.2

←    Hadronic       →←            “Semi”-QGP               →←Complete QGP

<loop> ↑

↑T=0

←1.0

T → 
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Transition region narrow: for pressure, < 1.2 Tc!
                   For interface tensions, < 4 Tc...

Above 1.2 Tc, pressure dominated by constant term ~ T2 .

What does this term come from?    Gluon mass m(T)? But inelegant...

SU(N) in 2+1 dimensions: ideal ~ T3. Caselle + ...: also T2 term in pressure.
             But mass would be m2 T, not m T2.    

T2 term like free energy of massless fields in 2 dimensions: string? Above Tc?

Need to include quarks! 

Can then compute temperature dependence of: 

              shear viscosity, energy loss of light quarks, damping of quarkonia...

Skipping to the punchline
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-dependence in the trace of the energy-momentum tensor

Lattice: SU(N) in 2+1 dimensions
SU(N) in 2+1 dim’s for N = 2, 3, 4, 5, & 6.   Below plot of Tc/T, not T/Tc.
Clear evidence for non-ideal terms ~ T2, not ~ T

1
N2 � 1

e� 2p

T 3
"

Tc/T→

↑10 Tc ↑1.1Tc

p(T ) ⇡ #(T 3 � c T 2 Tc) , c ⇡ 1.

↑ 2Tc

Caselle, Castagnini, 
Feo, Gliozzi, Gursoy, 
Panero, Schafer, 
1111.0580.
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T→↑ Tcdeconf

With quarks: “Tc” moves down: which Tc?
Just glue: Tcdeconf  ~ 280 MeV.  Standard lore: with quarks, one “Tc”, decreases.
Matrix model: Tcdeconf  constant.  With light quarks Tcchiral  < Tcdeconf .
Not two trans.’s, just 〈loop〉 small when T << Tcdeconf  .

↑ Tcchiral

Lattice: 
Bazavov and
Petreczky + 
HotQCD,
1110.2160

Ren’d 
loop ↑

With quarks
               ↓

←without
    quarks

↑
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Shear viscosity changes with T
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� = 8

� = 32

� = 64

In semi-QGP, η suppressed from pert. value 
through function R(q). Not like kinetic theory
Log sensitivity, through constant κ

R(q):
Y. Hidaka & RDP, 
0912.0940.

cpert: 
P. Arnold, G. Moore, 
and L. Yaffe, 
hep-ph/0010177, 
hep-ph/0302165

⌘ =

cpert T 3

g4 log(/g2Nc)
R(q)

T/Tc→

⌘

s
"
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“Bleaching” of color near Tc.

Roughly speaking, as 〈loop〉 → 0, all colored fields disappear.
Quarks, in fundamental rep. as 〈loop〉. Gluons, in adjoint rep., as 〈loop〉2.  

Bleaching of color as T → Tc: robust consequence of the confinement of color

QGP: quarks and gluons.  Semi-QGP: dominated by quarks, by ~ 〈loop〉

Why recombination works at RHIC but not at LHC?
                                                                  (v2 /# quarks vs kinetic energy/# quarks)

Suppression of color universal for all fields, independent of mass.

Why charm quarks flow the same as light quarks? (single charm vs pions)

An effective theory can provide a bridge from lattice simulations to experiment
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Matrix model: two colors

Simple approximation

Two colors: transition 2nd order, vs 1st for N ≥ 3

Using large N at N = 2                                             
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Matrix model: SU(2)
Simple approximation: constant A0 ~ σ3 , nonperturbative, ~ 1/g:

Point halfway in between: q = ½ , l = 0 .
Confined vacuum, Lc,  

Classically, A0cl has zero action: no potential for q.

Single dynamical field, q 
Loop l real.  Z(2) degenerate vacua q = 0 and 1:

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

⇥ = cos(�q)

Lc =
✓

i 0
0 �i

◆

L(q) =
✓

ei�q 0
0 e�i�q

◆
�3 =

✓
1 0
0 �1

◆
Acl

0 =
⇡T

g
q �3
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Potential for q, interface tension
Computing to one loop order about A0cl gives a potential for q: Gross, RDP, Yaffe, ‘81

Use Vpert(q) to compute σ: Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

) ⇥ =
4�2

3
p

6
T 2

p
g2

Balancing Scl ~ 1/g2 and Vpert ~ 1 gives σ ~ 1/√g2 (not 1/g2). 

Width interface ~ 1/g, justifies expansion about constant A0cl.  GKA ‘04: σ ~ ... + g2

V
tot

(q) =
2�2T 2

g2

✓
dq

dz

◆2

+ V
pert

(q)

q !

Vpert(q) "

10x x

x Vpert(q) =
4⇡2

3
T 4 q2(1� q)2
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Potentials for the q’s
Add non-perturbative terms, by hand, to generate <q> ≠ 0 :
By hand?  Vnon(q) from: monopoles, vortices...
Liao & Shuryak: ph/0611131, 0706.4465, 0804.0255, 0804.4890

T < Tc:  〈q〉 = ½ →
1q !0x x

xVeff (q) "

q ! 1

T >> Tc:  〈q〉 = 0,1 →

0x x

xVeff (q) "

V
eff

(q) = V
pert

(q) + V
non

(q)
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Three possible “phases” 

Two phases are familiar:

     〈q〉 = 0, 1:  〈l〉 = ± 1: “Complete” QGP: usual perturbation theory. T >> Tc .

     〈q〉 = 1/2: 〈l〉 = 0 : confined phase.  T < Tc

Also a third phase, “partially” deconfined (adjoint Higgs phase)

     0 < 〈q〉 < 1/2: 〈l〉 < 1: “semi”-QGP.  From some x Tc > T > Tc  x?

Lattice: one transition, to confined phase, at Tc.  No other transition above Tc.
Still, there is an intermediate phase, the “semi”-QGP

Strongly constrains possible non-perturbative terms, Vnon(q).
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V
non

(q) ⇠ q(1� q)

Getting three “phases”, one transition

Simple guess: Vnon ~ loop2,

1st order transition directly from complete QGP to confined phase, not 2nd 
Generic if Vnon(q) ~ q2 at q << 1.  

Easy to avoid, if  Vnon(q) ~ q for small q.  Then 〈q〉  ≠  0 at all T > Tc.
Imposing the symmetry of q ↔ 1 - q, Vnon(q) must include

0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

x xx

Veff "

q !

Veff ⇠
a

⇡2
(`2 � 1) + q2(1� q)2

⇠ q2(1� a)� 2q3 + . . .

Term ~ q at small q avoids transition from pert. QGP to adjoint Higgs phase
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Cartoons of deconfinement
Consider:
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-0.015

-0.010

-0.005

⇓ a = ¼: semi QGP

xx

Veff "
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q !

q !

0.2 0.4 0.6 0.8 1.0
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a = ½:                       Tc=>
Stable vacuum at q = ½
Transition second order

x

q !

Veff = q2(1� q)2 � a q(1� q) , a ⇠ T 2
c /T 2
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Meisinger, Miller, Ogilvie ph/0108009, MMO: 
take Vnon ~ T2

0-parameter matrix model, N = 2

Two conditions: transition occurs at Tc, pressure(Tc) = 0
Fixes c1 and c3, no free parameters.  But not close to lattice data (from ’89!)

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T→

e� 3p

3 T 4
"

 ⇐ 0-parameter model

 ⇐ Lattice

V
non

(q) =
4�2

3
T 2 T 2

c

⇣
� c1

5
q(1� q) +

c3

15

⌘

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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1-parameter matrix model, N = 2
Dumitru, Guo, Hidaka, Korthals-Altes, RDP ‘10:  to usual perturbative potential,

Add - by hand - a non-pert. potential Vnon ~ T2 Tc2.  Also add a term like Vpert:

Vpert(q) =
4�2

3
T 4

✓
� 1

20
+ q2(1� q)2

◆

Now just like any other mean field theory.  〈q〉  given by minimum of Veff:

〈q〉 depends nontrivially on temperature.

Pressure value of potential at minimum:

V
non

(q) =
4⇡2

3
T 2 T 2

c

⇣
� c1

5
q(1� q)� c2 q2(1� q)2 +

c3

15

⌘

V
eff

(q) = V
pert

(q) + V
non

(q)

p(T ) = �Veff (hqi)

d

dq
Veff (q)

����
q=hqi

= 0
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Lattice vs matrix models, N = 2
Choose c2 to fit e-3p/T4: optimal choice

Reasonable fit to e-3p/T4; also to p/T4, e/T4.

N.B.: c2 ~ 1.  At Tc, terms ~ q2(1-q)2 almost cancel.  

↑ Tc 3 Tc ↑T→

e� 3p

3 T 4
"

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4
 ⇐ Lattice  

 ⇐ 0-parameter 

 ⇐ 1-parameter 

c1 = 0.23 , c2 = .91 , c3 = 1.11

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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Width of transition region, 0- vs 1-parameter
1-parameter model: get sharper e-3p/T4 because 〈q〉 -> 0 much quicker above Tc.
Physically: sharp e-3p/T4 implies region where 〈q〉 is significant is narrow

N.B.: 〈q〉 ≠ 0 at all T, but numerically, negligible above ~ 1.2 Tc; p ~ 〈q〉2.
Above ~1.2 Tc, the T2 term in the pressure is due entirely to the constant term, c3!

1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

 ⇐ 0-parameter

 ⇓ 1-parameter

hqi "

↑ Tc 2 Tc ↑T→
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Polyakov loop: 1-parameter matrix model ≠ lattice
Lattice: renormalized Polyakov loop.  0-parameter model: close to lattice
1-parameter model: sharp disagreement. 〈l〉 rises to ~ 1 much faster - ?
Sharp rise also found using Functional Renormalization Group (FRG):
                Braun, Gies, Pawlowski, 0708.2413; Marhauser, Pawlowski, 0812.1144

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 ⇐ lattice

 ⇐ 0-parameter

 ⇓ 1-parameter

h`i "

↑ Tc T→ 2 Tc ↑

Lattice:
Cardoso, Cardoso,
Bicudo, 1104.5432

Can reconcile by (arbitrary) 
shift in zero point energy

h`i ! e�E0/T h`i
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Interface tension, N = 2
σ vanishes as T→Tc , σ ~ (t-1)2ν .
Ising 2ν ~ 1.26; Lattice: ~ 1.32.
Matrix model: ~ 1.5: c2 important.

Semi-class.: GKA ’04.  Include corr.’s ~ g2 in matrix σ(T) (ok when T > 1.2 Tc)
N.B.: width of interface diverges as T→Tc, ~ √(t2 - c2)/(t2-1).

⇥(T ) =
4�2T 2

3
p

6g2

(t2 � 1)3/2

t (t2 � c2)
, t =

T

Tc
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�
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Latt. data SU(2)
model, SU(2)

GKA

↑ Tc 2.8 Tc ↑T→

 ⇐ matrix model 
Semi-classical⇒

 ⇐ lattice

�

T 2
"

 ⇐ lattice

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
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Lattice: A0 mass as T → Tc - up or down?

Kaczmarek, Karsch, Laermann, Lutgemeier lat/9908010

μ/T goes down as T → Tc

htrL†(x) trL(0)i ⇠ e�µx

/x

d

mD/T goes up as T → Tc
Cucchieri, Karsch, Petreczky lat/0103009, 
Kaczmarek, Zantow lat/0503017
Tuesday: Tereza Mendes

Which way do masses go as T → Tc?
Both are constant above ~ 1.5 Tc.

T→

T→

Gauge invariant: 2 pt function of loops:

Gauge dependent: singlet potential

htr
�
L†(x)L(0)

�
i ⇠ e�mDx

/x

↑ Tc ↑ 2Tc

mD

T
"

µ

T
"

↑ 2Tc↑ Tc
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Adjoint Higgs phase, N = 2
 A0cl ~ q σ3, so 〈q〉 ≠ 0 generates an (adjoint) Higgs phase:
RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, A = A0cl + Aqu : D0cl Aqu = ∂0 Aqu + i g [A0cl , Aqu]
Fluctuations ~ σ3 not Higgsed, ~ σ1,2 Higgsed, get mass ~ 2 π T 〈q〉
Hence when 〈q〉 ≠ 0, for T < 1.2 Tc, splitting of masses:

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8

1.0

↑ Tc

T→
1.5 Tc ↑

 ⇐ diagonal A0 mode

⇐ off-diagonal A0 modesmeff

mpert
"

At Tc: mdiag = 0,
moff ~ 2 mpert.

1 →

↑ 1.2 Tc

 mpert = √2/3 g T:

        m/mpert ~ .56
at 1.5 Tc, from Vnon.
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Matrix model: N ≥ 3

Why the transition is always 1st order

One parameter model
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Path to Z(3), three colors

SU(3): two diagonal λ’s, so two q’s:

�3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A ; �8 =

0

@
1 0 0
0 1 0
0 0 �2

1

A

Z(3) paths: move along  λ8, not λ3: q8 ≠ 0, q3 = 0.  

L = 1 L = e2⇡i/3 1
q8 = 1q8 = 0 q8 = 3/8

L = e2⇡iq8�8/3

A0 =
2⇡T

3 g
(q3 �3 + q8 �8)
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Path to confinement, three colors

L = e2⇥iq3�3/3Now move along λ3:

In particular, consider q3 = 1: 
Elements of e2π i/3 Lc same as those of Lc.  
Hence tr Lc = tr Lc2 = 0: Lc confining vacuum

Path to confinement: along  λ3, not λ8, q3 ≠ 0, q8 = 0.  

Lc =

0

@
e2⇡i/3 0 0

0 e�2⇡i/3 0
0 0 1

1

A

q3 = 0 q3 = 3/8 q3 = 1
` = 0` ⇡ .8` = 1
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General potential for any SU(N)

For SU(N), Σj=1...N qj = 0.  Hence N-1 independent qj’s, = # diagonal generators.

At 1-loop order, the perturbative potential for the qj’s is

As before, assume a non-perturbative potential ~ T2 Tc2:

V
non

(q) =
2�2

3
T 2T 2

c

0

@� c1

5

X

i,j

q
ij

(1� q
ij

)� c2

X

i,j

q2
ij

(1� q
ij

)2 +
4
15

c3

1

A

Vpert(q) =
2�2

3
T 4

0

@� 4
15

(N2 � 1) +
X

i,j

q2
ij(1� qij)2

1

A , qij = |qi � qj |

Aij
0 =

2⇡T

g
qi �ij Lij = e2⇡i qj �ij

Ansatz: constant, diagonal matrix
              i, j = 1...N
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Path to confinement, four colors
Move to the confining vacuum along one direction,  qjc:
(For general interfaces, need all N-1 directions in qj space)

Perturbative vacuum: q = 0. 
Confining vacuum: q = 1.
Four colors:

qc
j =

✓
2j �N � 1

2N

◆
q , j = 1 . . . N

q = 0

General N: confining vacuum = uniform distribution for eigenvalues of L
        For infinite N, distribution flat.

q = 1/2
` = 1 ` ⇡ .65 ` = 0

q = 1
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Cubic term for all N ≥ 3, so transition first order

No term linear in φ.  Cubic term in φ for all N ≥ 3.
Along qc, about φ = 0 there is no symmetry of φ → - φ for any N  ≥ 3.  

Hence terms ~ φ3, and so a first order transition, are ubiquitous.
Special to matrix model, with the qi’s elements of Lie algebra.

Svetitsky and Yaffe ’80: Veff(loop) ⇒ 1st order only for N=3; loop in Lie group

Also 1st order for N  ≥ 3 with FRG: Braun, Eichhorn, Gies, Pawlowski, 1007.2619.

Define φ = 1 - q,
Confining point φ = 0

m2
� = 1 +

6
N2

� c1

t2 � c2

V
tot

=
�2(N2 � 1)

45
T 4

c

t2 (t2 � 1) eV (⇥, t) , t =
T

T
c

eV (�, t) = �m2
� �

2 � 2

✓
N2 � 4

N2

◆
�3 +

✓
2� 3

N2

◆
�4
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Cubic term for four colors
Construct Veff either from q’s, or equivalently, loops: tr L, tr L2, tr L3....
N = 4: |tr L|2 and |tr L3|2  not symmetric about q = 1, so cubic terms, ~ (q - 1)3.
           (|tr L2|2 symmetric, residual Z(2) symmetry)
Cubic terms special to moving along qc in a matrix model.  Not true in loop model

0.40 0.45 0.50 0.55 0.60
0.00

0.02

0.04

0.06

0.08

0.10

x
⇐ |tr L|2

⇐ |tr L3|2

⇑ q = 1

qc ⇒

 ⇑ .8  ⇑ 1.2
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0.400.450.500.550.60
0.00

0.02

0.04

0.06

0.08

0.10

x
⇐ |tr L|2

|tr L3|2 ⇒

⇑ q =1
qc ⇒

 ⇑ .8 ⇑ 1.2

Cubic term for four colors

Asymmetric in reflection about q = 1

         ⇔
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Lattice vs 0- and 1- parameter matrix models, N = 3
Results for N=3 similar to N=2.
0-parameter model way off.
Good fit e-3p/T4 for 1-parameter model, 

Again, c2 ~ 1, so at Tc, terms ~ q2(1-q)2 almost cancel.  

c1 = 0.32 , c2 = 0.83 , c3 = 1.13

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T→

 ⇐ 1-parameter 

 ⇐ 0-parameter 

 ⇐ Points: lattice  Lattice:
Bielefeld, lat/9602007
Datta & Gupta, 1006.0938

e� 3p

8 T 4
"
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Polyakov loop: matrix models ≠ lattice

1.0 1.2 1.4 1.6 1.8 2.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Renormalized Polyakov loop from lattice does not agree with either matrix model
〈l〉 - 1 ~ 〈q〉2: By 1.2 Tc,  〈q〉 ~ .05, negligible.
Again, for T > 1.2 Tc, the T2 term in pressure due entirely to the constant term, c3!
Rapid rise of 〈l〉 as with FRG:  Braun, Gies, Pawlowski, 0708.2413

↑ Tc T→ 2 Tc ↑

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

h`i "
Cannot reconcile by shift 

in zero point energy

h`i ! e�E0/T h`i

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.
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Interface tension, N = 2 and 3
Order-order interface tension, σ, from matrix model close to lattice.
For T > 1.2 Tc, path along λ8; for T < 1.2 Tc, along both λ8 and λ3.

σ(Tc)/Tc2 nonzero but small, ~ .02.  Results for N =2 and N = 3 similar - ?

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

�
/T

2  / 
(N

-1
)

T / TC

Lattice data
GKA

model, SU(2)
model, SU(3)

�

(N � 1)T 2
"

Semi-classical⇒

 ⇐ matrix model,
             N = 2 

 ⇐ matrix model,
             N = 3 

↑ Tc 5 Tc ↑T→

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
de Forcrand, Noth
lat/0506005

lattice, N=3 ⇒
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Adjoint Higgs phase, N = 3

For SU(3), deconfinement along A0cl ~ q λ3.  Masses ~ [λ3, λi]: two off-diagonal.
Splitting of masses only for T < 1.2 Tc:
Measureable from singlet potential,  〈tr L†(x) L(0)〉, over all x.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1  1.2  1.4  1.6  1.8  2

m
 / 

gT

T / TC

a=b
|a-b|=1
|a-b|=2

T/Tc→

meff

mpert
"

⇐ 4 off-diagonal, K’s

⇐ 2 off-diagonal, π’s

⇐ 2 diagonal modes

At Tc: mdiag 
small, but ≠ 0

mpert = g T,
m/mpert ~ .8 at 1.5 Tc, from Vnon.
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Matrix model: N ≥ 3

To get the latent heat right, two parameter model.

Thermodynamics, interface tensions improve
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Latent heat, and a 2-parameter model
Latent heat, e(Tc)/Tc4:  1-parameter model too small:
1-para.: 0.33.  BPK: 1.40 ± .1; DG: 1.67 ± .1.  

2-parameter model, c3(T). Like MIT bag constant
WHOT: c3(∞) ~ 1.  Fit c3(1) to DG latent heat
Fits lattice for T < 1.2 Tc, overshoots above.

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

e� 3p

8 T 4
"

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

 ⇐ 1-parameter 

Latttice latent heat:
Beinlich, Peikert, 
Karsch (BPK)
lat/9608141
Datta, Gupta (DG)
1006.0938

c1 = .833 , c2 = .552

Bag const ~ (262 MeV)4

c2 not near 1, vs 1-para.

c3(1) = 1.33 , c3(1) = .95

c3(T ) = c3(1) +
c3(1)� c3(1)

t2
, t =

T

Tc
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2-parameter model, N = 4
Assume c3(∞) = 0.95, like N=3.  Fit c3(1) to latent heat, Datta & Gupta, 1006.0938
Order-disorder  σ(Tc)/Tc2 ~ .08, vs lattice, .12, Lucini, Teper, Wenger, lat/0502003

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. �/3

�/3 T/Tc→

c3(1) = 1.38 , c3(1) = .95 , c1 = 1.025 , c2 = 0.39

 ⇑ p/T4, lattice

 ⇑ p/T4, model

  ⇓ e/T4, lattice
  ⇓

 ⇓ e/T4, model

 ⇐ e-3p/T2Tc2, lattice
 ⇓e-3p/T2Tc2, model
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2-parameter model, N = 6

 ⇑ p/T4, lattice

Order-disorder  σ(Tc)/Tc2 ~ .25, vs lattice, .39, Lucini, Teper, Wenger, lat/0502003

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1  1.5  2  2.5  3
T / TC

Latt. p/T4

p/T4
Latt. e/3T4

e/3T4
Latt. �/3

�/3 T/Tc→

 ⇑ p/T4, model

  ⇓ e/T4, lattice
  ⇓

 ⇓ e/T4, model

 ⇐ e-3p/T2Tc2, lattice

 ⇓e-3p/T2Tc2, model

c3(1) = 1.42 , c3(1) = .95 , c1 = 1.21 , c2 = 0.23
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