Hunt for the Quark Gluon Plasma

QGP as a "Unicorn". Experimentalists as hunters, so (in *this* field), "All theorists are..."

ANTI POWERPOINT PARTY

http://www.anti-powerpoint-party.com

Theory vs Experiment

Theory:

Effective theory for deconfinement, near T_c. Today: only the "pure" glue theory (no dynamical quarks) Based upon *detailed* results from the lattice

Experiment:

Soon: including quarks Will provide competition to AdS/CFT

The standard plot

SU(3) gauge theory with*out* quarks, temperature T (Weakly) first order transition at $T_c \sim 290$ MeV

Another plot of the same

Plot conformal anomaly, (e-3p)/T⁴: large peak above T_c . ~ g^4 as $T \rightarrow \infty$

Strong vs weak coupling at T_c?

Resummed perturbation theory at 3-loop order works down to ~ 3 T_c. Intermediate coupling: $\alpha_s(T_c) \sim 0.3$. Not so big... So what happens below ~ 3 T_c?

Want effective theory; e.g.: chiral pert. theory: expand in m_{π}/f_{π} , exact as $m_{\pi} \rightarrow 0$.

But there is *no* small mass scale for SU(3) in "semi"-QGP, $T_c \rightarrow 3 T_c$.

What to expand in?

Consider SU(N) for *different* N. # perturbative gluons ~ N^2 - 1. Scaled by ideal gas values, e and p for N = 3, 4 and 6 look *very* similar Implicitly, expand about infinite N. Explicitly, assume classical expansion ok

Conformal anomaly \approx N independent

For SU(N), "peak" in e-3p/T⁴ just above T_c . Approximately uniform in N.

Not near T_c : transition 2nd order for N = 2, 1st order for all $N \ge 3$

N=3: weakly 1st order. N = ∞ : strongly 1st order (even for latent heat/N²)

Tail in the conformal anomaly

To study the tail in (e-3p)/T⁴, multiply by T²/(N²-1) T_c²: (e-3p)/((N²-1)T² T_c²) *approximately* constant, independent of N

Precise results for three colors

From WHOT:

$p(T) \approx \# \left(T^4 - c T^2 T_c^2 \right), T/T_c : 1.2 \to 2.0$ $c \approx 1.00 \pm 0.01$

How to get a term ~ T^2 in the pressure?

Expand pressure of ideal, massive gas in powers of mass m:

$$\int d^4p \operatorname{tr} \log(p^2 + m^2) = \# T^4 - \#' m^2 T^2 + \dots$$

Quasi-particle models: choose m(T) to fit pressure.

Need m(T) to increase *sharply* as $T \rightarrow T_c$ to suppress pressure. Inelegant...

A simple solution

Assume there is some potential, V(q). The vacuum, q_0 , is the minimum of V(q):

$$\left. \frac{dV(q)}{dq} \right|_{q=q_0} = 0$$

Pressure is the value of the potential at the minimum: $p(T) = -V(q_0)$

For T > 1.2 T_c, a *constant* \sim T² in the pressure, is due to a *constant* \sim T² in V(q):

$$V(q) = -\# (T^4 - T^2 T_c^2 + T^2 T_c^2 \widetilde{V}(q))$$

Above 1.2 T_c, $\langle q \rangle = 0$. Except near T_c, for *most* of the semi-QGP, the non-perturbative part of the pressure, $\sim T^2$, is due *just* to a constant Region where $\langle q \rangle \neq 0$, and V(q) matters, is *very* narrow: T: T_c $\rightarrow 1.2$ T_c

Unexpected consequence of *precise* lattice data. Large N: makes sense to speak of classical (q) instead of fluctuations. Generalization of Meisinger, Miller, Ogilvie ph/0108009 Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, arXiv:1011.3820 + 1112.? Also: Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.

Thursday, November 3, 11

Hidden Z(2) spins in SU(2)

Consider *constant* gauge transformation:

$$U_c = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right) = -\mathbf{1}$$

As $U_c \sim 1$, locally gluons *invariant*:

Nonlocally, Wilson *line* changes:

$$A_{\mu} \to U_c^{\dagger} A_{\mu} U_c = + A_{\mu}$$

$$\mathbf{L} = \mathcal{P} e^{ig \int_0^{1/T} A_0 d\tau} \to -\mathbf{L}$$

L ~ propagator for "test" quark.

SU(3): det U_c = 1 \Rightarrow j = 0, 1, 2SU(N): U_c = $e^{2\pi i j/N}$ 1: Z(N) symmetry. $U_c = e^{2\pi i j/3}$ 1

Z(N) spins of 't Hooft, with*out* quarks

Quarks ~ background Z(N) field, *break* Z(N) sym.

$\psi \to U_c \psi = -\psi$

Hidden Z(3) spins in SU(3)

Lattice, A. Kurkela, unpub.'d: 3 colors, loop l complex. Distribution of loop shows Z(3) symmetry:

Interface tension: box long in z. Each end: distinct but *degenerate* vacua. Interface forms, action ~ interface tension:

T > T_c: order-order interface = 't Hooft loop: measures response to magnetic charge Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

 $Z \sim \mathrm{e}^{-\sigma_{int}V_{tr}}$

Also: *if* trans. 1st order, order-*dis*order interface *at* T_c.

Thursday, November 3, 11

Usual spins vs Polyakov Loop

L = SU(N) matrix, Polyakov loop $l \sim$ trace:

Confinement: $F_{\text{test } qk} = \infty \implies \langle l \rangle = 0$

Above T_c , $F_{test qk} < \infty \Longrightarrow \langle l \rangle \neq 0$

 $\langle l \rangle$ measures ionization of color: *partial* ionization when $0 < \langle l \rangle < 1$: "semi"-QGP

Svetitsky and Yaffe '80: SU(3) 1st order because Z(3) allows *cubic* terms:

 $\mathcal{L}_{\rm eff} \sim \ell^3 + (\ell^*)^3$

$$\ell = \frac{1}{N} \operatorname{tr} \mathbf{L}$$

$$<\ell>\sim \mathrm{e}^{-F_{\mathrm{test}\,\mathrm{qk}}/T}$$

Polyakov Loop from Lattice: pure Glue, no Quarks

Lattice: (*renormalized*) Polyakov loop. Strict order parameter Three colors: Gupta, Hubner, Kaczmarek, 0711.2251. Suggests *wide* transition region, like pressure, to ~ 4 T_c.

Polyakov Loop from Lattice: Glue plus Quarks, "Tc"

Quarks ~ background Z(3) field. Lattice: Bazavov et al, 0903.4379. 3 quark flavors: *weak* Z(3) field, does *not* wash out approximate Z(3) symmetry.

Skipping to the punchline

Transition region *narrow*: for pressure, < 1.2 T_c! For interface tensions, < 4 T_c...

Above 1.2 T_c, pressure dominated by *constant* term $\sim T^2$.

What does this term come from? Gluon mass m(T)? But inelegant...

SU(N) in 2+1 dimensions: ideal ~ T³. Caselle + ...: *also* T² term in pressure. But mass would be m² T, *not* m T².

T² term like free energy of massless fields in 2 dimensions: string? Above T_c?

Need to include quarks!

Can then compute temperature dependence of:

shear viscosity, energy loss of light quarks, damping of quarkonia...

Lattice: SU(N) in 2+1 dimensions

SU(N) in 2+1 dim's for N = 2, 3, 4, 5, & 6. Below plot of T_c/T , not T/T_c . Clear evidence for non-ideal terms ~ T^2 , not ~ T

With quarks: "T_c" moves down: *which* T_c?

Just glue: $T_c^{deconf} \sim 280$ MeV. Standard lore: with quarks, *one* " T_c ", decreases. Matrix model: T_c^{deconf} constant. With *light* quarks $T_c^{chiral} < T_c^{deconf}$.

Not two trans, 's, just $\langle loop \rangle$ small when T << T_c^{deconf}.

Shear viscosity changes with T

In semi-QGP, η *suppressed* from pert. value through function **R**(q). Not like kinetic theory Log sensitivity, through constant \varkappa

$$\eta = \frac{c_{\text{pert}} T^3}{g^4 \log(\kappa/g^2 N_c)} \mathbf{R}(q)$$

"Bleaching" of color near T_c.

- *Roughly* speaking, as $\langle loop \rangle \rightarrow 0$, *all* colored fields disappear. Quarks, in fundamental rep. as $\langle loop \rangle$. Gluons, in adjoint rep., as $\langle loop \rangle^2$.
- Bleaching of color as $T \rightarrow T_c$: *robust* consequence of the confinement of color
- QGP: quarks and gluons. Semi-QGP: dominated by quarks, by $\sim \langle loop \rangle$
- Why recombination works at RHIC but not at LHC? (v_2 /# quarks vs kinetic energy/# quarks)
- Suppression of color universal for all fields, *independent* of mass.
- Why charm quarks flow the same as light quarks? (single charm vs pions)
- An effective theory can provide a bridge from lattice simulations to experiment

Matrix model: two colors

Simple approximation

Two colors: transition 2nd order, vs 1st for $N \ge 3$

Using large N at N = 2

Matrix model: SU(2)

Simple approximation: constant $A_0 \sim \sigma_3$, nonperturbative, ~ 1/g:

$$A_0^{cl} = \frac{\pi T}{g} q \sigma_3 \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \mathbf{L}(q) = \begin{pmatrix} e^{i\pi q} & 0 \\ 0 & e^{-i\pi q} \end{pmatrix}$$

Single dynamical field, q Loop *l* real. Z(2) degenerate vacua q = 0 and 1: $\ell = \cos(\pi q)$

Point *half* way in between: $q = \frac{1}{2}$, l = 0. Confined vacuum, L_{c} , $\mathbf{L}_c = \left(\begin{array}{cc} i & 0\\ 0 & -i \end{array}\right)$

Classically, A₀^{cl} has zero action: *no* potential for q.

Potential for q, interface tension

Computing to one loop order about A₀^{cl} gives a potential for q: Gross, RDP, Yaffe, '81

Use $V_{pert}(q)$ to compute σ : Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

$$V_{tot}(q) = \frac{2\pi^2 T^2}{g^2} \left(\frac{dq}{dz}\right)^2 + V_{pert}(q) \qquad \Rightarrow \sigma = \frac{4\pi^2}{3\sqrt{6}} \frac{T^2}{\sqrt{g^2}}$$

Balancing $S_{cl} \sim 1/g^2$ and $V_{pert} \sim 1$ gives $\sigma \sim 1/\sqrt{g^2}$ (not $1/g^2$).

Width interface ~ 1/g, justifies expansion about constant A₀^{cl}. GKA '04: $\sigma \sim ... + g^2$

Thursday, November 3, 11

Potentials for the q's

Add *non*-perturbative terms, by *hand*, to generate $\langle q \rangle \neq 0$: *By hand?* V_{non}(q) from: monopoles, vortices... Liao & Shuryak: ph/0611131, 0706.4465, 0804.0255, 0804.4890

 $V_{eff}(q) = V_{pert}(q) + V_{non}(q)$

$$T < T_c: \langle q \rangle = \frac{1}{2} \rightarrow$$

Three possible "phases"

Two phases are familiar:

 $\langle q \rangle = 0, 1: \langle l \rangle = \pm 1:$ "Complete" QGP: usual perturbation theory. T >> T_c.

 $\langle q \rangle = 1/2$: $\langle l \rangle = 0$: confined phase. T < T_c

Also a *third* phase, "partially" deconfined (adjoint Higgs phase)

 $0 < \langle q \rangle < 1/2$: $\langle l \rangle < 1$: "semi"-QGP. From some x T_c > T > T_c x?

Lattice: *one* transition, to confined phase, at T_c . *No* other transition above T_c . Still, there is an intermediate phase, the "semi"-QGP

Strongly constrains possible non-perturbative terms, $V_{non}(q)$.

Getting three "phases", one transition

1st order transition *directly* from complete QGP to confined phase, *not* 2nd Generic if $V_{non}(q) \sim q^2$ at $q \ll 1$.

Easy to avoid, *if* $V_{non}(q) \sim q$ for small q. Then $\langle q \rangle \neq 0$ at all T > T_c. Imposing the symmetry of $q \leftrightarrow 1 - q$, $V_{non}(q)$ *must* include

 $V_{non}(q) \sim q(1-q)$

Term ~ q at small q avoids transition from pert. QGP to adjoint Higgs phase

Cartoons of deconfinement

Consider:

$$V_{eff} = q^2 (1-q)^2 - a q(1-q), \ a \sim T_c^2 / T^2$$

0-parameter matrix model, N = 2

Meisinger, Miller, Ogilvie ph/0108009, MMO: take $V_{non} \sim T^2$ $4\pi^2$

$$V_{non}(q) = \frac{4\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} q(1-q) + \frac{c_3}{15}\right)$$

Two conditions: transition occurs at T_c , pressure(T_c) = 0 Fixes c_1 and c_3 , *no* free parameters. But *not* close to lattice data (*from '89!*)

1-parameter matrix model, N = 2

Dumitru, Guo, Hidaka, Korthals-Altes, RDP '10: to usual perturbative potential,

$$V_{pert}(q) = \frac{4\pi^2}{3} T^4 \left(-\frac{1}{20} + q^2 (1-q)^2 \right)$$

Add - *by hand* - a non-pert. potential $V_{non} \sim T^2 T_c^2$. Also add a term like V_{pert} :

$$V_{non}(q) = \frac{4\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} q(1-q) - c_2 q^2 (1-q)^2 + \frac{c_3}{15} \right)$$

Now just like any other mean field theory. $\langle q \rangle$ given by minimum of V_{eff}:

$$V_{eff}(q) = V_{pert}(q) + V_{non}(q) \qquad \frac{d}{dq} V_{eff}(q) \bigg|_{q = \langle q \rangle} = 0$$

 $\langle q \rangle$ depends nontrivially on temperature.

Pressure value of potential at minimum:

Thursday, November 3, 11

 $p(T) = -V_{eff}(\langle q \rangle)$

Lattice vs matrix models, N = 2

Choose c_2 to fit e-3p/T⁴: optimal choice

$$c_1 = 0.23, c_2 = .91, c_3 = 1.11$$

Reasonable fit to $e-3p/T^4$; also to p/T^4 , e/T^4 .

N.B.: $c_2 \sim 1$. At T_c , terms $\sim q^2(1-q)^2$ almost cancel.

Width of transition region, 0- vs 1-parameter

1-parameter model: get sharper e-3p/T⁴ because $\langle q \rangle \rightarrow 0$ *much* quicker above T_c. Physically: sharp e-3p/T⁴ implies region where $\langle q \rangle$ is significant is *narrow*

N.B.: $\langle q \rangle \neq 0$ at all T, but numerically, *negligible* above ~ 1.2 T_c; p ~ $\langle q \rangle^2$. Above ~1.2 T_c, the T² term in the pressure is due *entirely* to the *constant* term, c₃!

Polyakov loop: 1-parameter matrix model ≠ lattice

Lattice: *renormalized* Polyakov loop. 0-parameter model: close to lattice 1-parameter model: *sharp* disagreement. (*l*) rises to ~ 1 *much* faster - ? Sharp rise also found using Functional Renormalization Group (FRG): Braun, Gies, Pawlowski, 0708.2413; Marhauser, Pawlowski, 0812.1144

Interface tension, N = 2

σ vanishes as T→T_c, $σ ~ (t-1)^{2ν}$. Ising 2ν ~ 1.26; Lattice: ~ 1.32. Matrix model: ~ 1.5: c₂ important.

$$\sigma(T) = \frac{4\pi^2 T^2}{3\sqrt{6g^2}} \, \frac{(t^2 - 1)^{3/2}}{t \left(t^2 - c_2\right)} \, , \, t = \frac{T}{T_c}$$

Semi-class.: GKA '04. *Include* corr.'s ~ g^2 in matrix $\sigma(T)$ (ok when T > 1.2 T_c) N.B.: width of interface *diverges* as T \rightarrow T_c, ~ $\sqrt{(t^2 - c_2)/(t^2 - 1)}$.

Lattice: A₀ mass as $T \rightarrow T_c$ - up or down?

Thursday, November 3, 11

Adjoint Higgs phase, N = 2

 $A_0^{cl} \sim q \sigma_3$, so $\langle q \rangle \neq 0$ generates an (adjoint) Higgs phase: RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, $A = A_0^{cl} + A^{qu}$: $D_0^{cl} A^{qu} = \partial_0 A^{qu} + i g [A_0^{cl}, A^{qu}]$ Fluctuations ~ σ_3 not Higgsed, ~ $\sigma_{1,2}$ Higgsed, get mass ~ $2 \pi T \langle q \rangle$ Hence when $\langle q \rangle \neq 0$, for T < 1.2 T_c, *splitting* of masses:

Matrix model: $N \ge 3$

Why the transition is *always* 1st order

One parameter model

Path to Z(3), three colors

SU(3): *two* diagonal λ 's, so *two* q's:

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} ; \ \lambda_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$A_0 = \frac{2\pi T}{3g} \left(q_3 \lambda_3 + q_8 \lambda_8 \right)$$

Z(3) paths: move along λ_8 , not λ_3 : $q_8 \neq 0$, $q_3 = 0$. $\mathbf{L} = e^{2\pi i q_8 \lambda_8/3}$

Path to confinement, three colors

Now move along λ_3 : $\mathbf{L} = e^{2\pi i q_3 \lambda_3/3}$

In particular, consider $q_3 = 1$: Elements of $e^{2\pi i/3} L_c$ same as those of L_c . Hence tr $L_c = tr L_c^2 = 0$: L_c confining vacuum

$$\mathbf{L}_{c} = \begin{pmatrix} \mathbf{e}^{2\pi i/3} & 0 & 0\\ 0 & \mathbf{e}^{-2\pi i/3} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Path to confinement: along λ_3 , not λ_8 , $q_3 \neq 0$, $q_8 = 0$.

General potential for any SU(N)

Ansatz: constant, diagonal matrix i, j = 1...N $A_0^{ij} = \frac{2\pi T}{g} q_i \delta^{ij}$ $\mathbf{L}_{ij} = e^{2\pi i q_j} \delta_{ij}$

For SU(N), $\Sigma_{j=1...N} q_j = 0$. Hence N-1 independent q_j 's, = # diagonal generators.

At 1-loop order, the perturbative potential for the q_j 's is

$$V_{pert}(q) = \frac{2\pi^2}{3} T^4 \left(-\frac{4}{15} (N^2 - 1) + \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 \right) , \ q_{ij} = |q_i - q_j|$$

As before, *assume* a non-perturbative potential $\sim T^2 T_c^2$:

$$V_{non}(q) = \frac{2\pi^2}{3} T^2 T_c^2 \left(-\frac{c_1}{5} \sum_{i,j} q_{ij} (1 - q_{ij}) - c_2 \sum_{i,j} q_{ij}^2 (1 - q_{ij})^2 + \frac{4}{15} c_3 \right)$$

Path to confinement, four colors

Move to the confining vacuum along *one* direction, q_j^c : (For general interfaces, need *all* N-1 directions in q_j space)

$$q_j^c = \left(\frac{2j - N - 1}{2N}\right) q, \ j = 1 \dots N$$

q = 0 $\ell = 1$ q = 1/2 q = 1/2 $\ell \approx .65$ q = 1

General N: confining vacuum = *uniform* distribution for eigenvalues of L For infinite N, distribution flat.

Cubic term for *all* $N \ge 3$, so transition first order

Define $\phi = 1 - q$, Confining point $\phi = 0$ $V_{tot} = \frac{\pi^2 (N^2 - 1)}{45} T_c^4 t^2 (t^2 - 1) \widetilde{V}(\phi, t), t = \frac{T}{T_c}$

$$\begin{split} \widetilde{V}(\phi,t) &= -m_{\phi}^2 \, \phi^2 - 2 \left(\frac{N^2 - 4}{N^2}\right) \phi^3 + \left(2 - \frac{3}{N^2}\right) \phi^4 \\ m_{\phi}^2 &= 1 + \frac{6}{N^2} - \frac{c_1}{t^2 - c_2} \end{split}$$

No term linear in ϕ . Cubic term in ϕ for all $N \ge 3$. Along q^c, about $\phi = 0$ there is *no* symmetry of $\phi \rightarrow -\phi$ for any $N \ge 3$.

Hence terms ~ ϕ^3 , and so a first order transition, are *ubiquitous*. Special to matrix model, with the q_i's elements of Lie *algebra*.

Svetitsky and Yaffe '80: $V_{eff}(loop) \Rightarrow 1st order only for N=3; loop in Lie group$

Also 1st order for $N \ge 3$ with FRG: Braun, Eichhorn, Gies, Pawlowski, 1007.2619.

Cubic term for four colors

Construct V_{eff} either from q's, or equivalently, loops: tr L, tr L², tr L³....
N = 4: ltr Ll² and ltr L³l² not symmetric about q = 1, so cubic terms, ~ (q - 1)³. (ltr L²l² symmetric, residual Z(2) symmetry)
Cubic terms *special* to moving along q_c in a *matrix* model. Not true in loop model

Cubic term for four colors

Lattice vs 0- and 1- parameter matrix models, N = 3

Polyakov loop: matrix models ≠ lattice

Renormalized Polyakov loop from lattice does *not* agree with *either* matrix model $\langle l \rangle - 1 \sim \langle q \rangle^2$: By 1.2 T_c, $\langle q \rangle \sim .05$, negligible.

Again, for T > 1.2 T_c, the T² term in pressure due *entirely* to the *constant* term, c₃! Rapid rise of $\langle l \rangle$ as with FRG: Braun, Gies, Pawlowski, 0708.2413

Interface tension, N = 2 and 3

Order-order interface tension, σ , from matrix model close to lattice. For T > 1.2 T_c, path along λ_8 ; for T < 1.2 T_c, along *both* λ_8 and λ_3 .

 $\sigma(T_c)/T_c^2$ nonzero but *small*, ~ .02. Results for N =2 and N = 3 similar - ?

Adjoint Higgs phase, N = 3

For SU(3), deconfinement along $A_0^{cl} \sim q \lambda_3$. Masses $\sim [\lambda_3, \lambda_i]$: two off-diagonal. Splitting of masses only for T < 1.2 T_c:

Measureable from singlet potential, $\langle tr L^{\dagger}(x) L(0) \rangle$, over *all* x.

Matrix model: $N \ge 3$

To get the latent heat right, two parameter model. Thermodynamics, interface tensions improve

Latent heat, and a 2-parameter model

Latent heat, $e(T_c)/T_c^4$: 1-parameter model too small: 1-para.: 0.33. BPK: 1.40 ± .1; DG: 1.67 ± .1.

$$c_3(T) = c_3(\infty) + \frac{c_3(1) - c_3(\infty)}{t^2}, t = \frac{T}{T_c}$$

2-parameter model, $c_3(T)$. Like MIT bag constant WHOT: $c_3(\infty) \sim 1$. *Fit* $c_3(1)$ to DG latent heat Fits lattice for T < 1.2 T_c, overshoots above.

$$c_1 = .833, c_2 = .552$$

2-parameter model, N = 4

Assume $c_3(\infty) = 0.95$, like N=3. Fit $c_3(1)$ to latent heat, Datta & Gupta, 1006.0938 Order-disorder $\sigma(T_c)/T_c^2 \sim .08$, vs lattice, .12, Lucini, Teper, Wenger, lat/0502003

 $c_3(1) = 1.38, c_3(\infty) = .95, c_1 = 1.025, c_2 = 0.39$

Thursday, November 3, 11

2-parameter model, N = 6

Order-disorder $\sigma(T_c)/T_c^2 \sim .25$, vs lattice, .39, Lucini, Teper, Wenger, lat/0502003

 $c_3(1) = 1.42, c_3(\infty) = .95, c_1 = 1.21, c_2 = 0.23$

Thursday, November 3, 11