

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE

Jan Fiete Grosse-Oetringhaus CERN/PH for the ALICE Collaboration

Heavy Ions: Experiments Confront Theory Copenhagen, 8th November 2011

Motivation

- Ultrarelativistic heavy-ion collisions at LHC probe QCD matter at unprecedented energy densities
- High p_T partons are produced in the very early stage of the collisions and traverse the hot and dense medium (quark-gluon plasma) → jet tomography
- Experimental tools
 - Single-particle distributions
 - High p_T suppression (R_{AA})
 - Two-particle correlations
 - Collective effects, ridge at lower p_T
 - Suppression/quenching at higher \textbf{p}_{T} (\textbf{I}_{AA})
- Aim: understand medium properties and evolution, constrain energy-loss mechanisms

Analysis

- ~14M Pb-Pb MB events used
- Centrality determination with V0 (forward scintillators)
- Tracking with Time Projection Chamber and Inner Tracking System in |η| < 0.9
- Tracking efficiency ~ 85% and only weakly centrality dependent
- Two-track effects small
- - No mixed events needed for acceptance correction (in Δφ projection)

Nuclear Modification Factor R_{AA}

Nuclear Modification Factor

- Production cross section of hard probes in Pb-Pb collisions scale with the number of binary nucleusnucleus collisions (Pb-Pb is superposition of pp)
- Medium affects initially produced (colored) probes
- Departure from binary scaling expectation quantifies medium effects
- Study in-medium energy loss by measuring inclusive particle spectrum (dN_d/dp_T)
 - Compare Pb-Pb and pp collisions scaled with number of binary collisions (from Glauber calculation)

$$R_{AA} = \frac{d^2 N^{AA} / dp_T d\eta}{\langle N_{coll} \rangle d^2 N^{pp} / dp_T d\eta}$$
$$\langle N_{coll} \rangle = \langle T_{AA} \rangle \cdot \sigma_{pp}^{INEL}$$

dN_{ch}/dp_T Measurement

- pp reference distribution fitted with a modified Hagedorn function above 5 GeV/c
 - Used for extrapolation to higher p_T
- Pb-Pb distribution measured as function of centrality

- Pronounced centrality dependence observed
- Minimum (~0.12) reached at p₁ ≈ 6-7 GeV/c
- Strong rise above 6 GeV/c
- Models
 - pQCD production
 - Medium density profile
 - Energy loss model
 - Hydro evolution
- Trends of data reproduced
- More systematic assessment needed for distinguishing power

R_{AA} vs. Event Plane

- Assess path-length dependent quenching
- Significant effect, even at 20 GeV
- Further constraints to energy-loss models
 → Path-length dependence

Identified Particle R_{AA}

- K similar to π
- K/ Λ enhanced at low p_T
- Suppression becomes similar above 8 GeV/c

c and b Quenching at LHC

- Study parton mass and colour charge dependence of energy loss by looking at R_{AA} of charm and beauty mesons
- Substantial suppression of heavy flavour production at LHC
 - Including beauty

Modification of the Jet Particle Yield

 \mathbf{I}_{AA} and \mathbf{I}_{CP}

Triggered Correlations

- Choose a particle from one p_T region ("trigger particle") and correlate with particles from another p_T region ("associated particles") where p_{T,assoc} < p_{T,trig} in bins of p_{T,trig} and p_{T,assoc}
- Per-trigger yield (usually only as function of $\Delta \phi$) $Y(\Delta \varphi) = \frac{1}{N_{trig}} \frac{dN_{assoc}}{d\Delta \varphi}$

trigger particle associated particle

• Correlation function $C(\Delta\varphi,\Delta\eta) = \left(\frac{1}{N_{pair}} \frac{d^2 N_{assoc}}{d\Delta\varphi d\Delta\eta}\right)_{same} / \left(\frac{1}{N_{pair}} \frac{d^2 N_{assoc}}{d\Delta\varphi d\Delta\eta}\right)_{mixed}$

Jet Particle Yields

- Aim: Near and away-side jet yields from per-trigger yields
- Non-jet component (baseline) needs to be removed
 - No known assumption-free methods…
- 3 methods to determine pedestal
 - Flat pedestal around π/2 (ZYAM)
 - Pedestal with elliptic flow (v₂) contribution using ALICE flow result
 - Subtract |∆η| > 1 region (next slide)

arXiv:1110.0121

Baseline Determination

- On the near-side the jet peak is concentrated at $\Delta \eta = 0$
 - Estimate Δη-independent effects in long-range correlation region (|Δη| > 1)
 - Remove from short-range region ($|\Delta \eta| < 1$)
 - This corrects for all Δηindependent effects (including higher harmonics)

 Measure in a region where the signal dominates over pedestal and v₂ modulation (8 GeV/c < p_{T,trig} < 15 GeV/c)
 → Difference between three methods small

 I_{AA} and I_{CP}

- After baseline subtraction, integrate yields
- Compare Pb-Pb and pp $\rightarrow I_{AA} = \frac{I}{V^{pp}}$
- Compare <u>central</u> and <u>peripheral</u> collisions

arXiv:1110.0121

Near-side of central events slightly enhanced I_{AA} ~ 1.2 ... surprising?
 Away-side of central events suppressed: I_{AA} ~ 0.6 ... expected from in-medium energy loss

Peripheral events consistent with unity
Flow contribution small except in lowest bin

CP

I_{AA}(0-5%) consistent with I_{CP}: Both indicate near-side enhancement and away-side suppression

arXiv:1110.0121

Near-Side Enhancement

- R_{AA} small (~0.2) for trigger p_T range considered and rising with p_T
 - Hadron-pair suppression factor $R_{AA}(p_{t,T}) I_{AA}(p_{t,T}, p_{t,A})$
 - If fragmentation unmodified, it depends only on $p_{t,T} + p_{t,A}$ and is approx. $R_{AA}(p_{t,T} + p_{t,A})$ on near side
 - → Rising R_{AA} leads to I_{AA} > 1, increasing with p_{t,A}
- Gluons couple stronger to the medium \rightarrow larger energy loss
 - Trigger particles predominantly from quarks
 - Quarks have a harder fragmentation (<z> larger) than gluons → smaller associated yield
 - Quantified with Pythia 8 (tune 4C)

arXiv:1110.0121

Theory Comparison

- AdS/CFT,ASW, Yajem(-D): •LO pQCD •WS matter dist. •Ideal 2+1d hydro •Different e-loss scenarios
- X N Wang: •Hard sphere matter dist.
- •NLO pQCD
- •Avg. e-loss
- 1D expansion

Near-side enhancement: - reproduced by AdS/CFT pQCD hybrid (L³ path length dependence) and ASW (L² dependence) - YaJEM(-D) too high

Away-side suppression:

- reproduced by AdS/CFT, ASW, YaJEM-D
- YaJEM too high (L dependence)
- X N Wang slightly too low

AdS/CFT,ASW,YaJEM(-D) simulations from T Renk [arXiv:1106.1740] X N Wang [private communication, following calculation in PRL98:212301 (2007)]

Comparison with RHIC

- Caveat: same trigger p_T
 probes different parton
 p_T at different √s_{NN}
- STAR and PHENIX subtract v₂ → compare with ALICE line
 - STAR I_{AA} w.r.t. to dAu reference
 - STAR has different centrality for peripheral events
 - Away side larger than at STAR
 - PHENIX has (slightly) different p_{T,trig} ranges
- No evidence for nearside I_A > 1 at RHIC, but not excluded

STAR: stat. unc. only

Decomposition of Long-Range Correlations

Long η-range Correlations

- Study correlation function in long-range correlation region (0.8 < |Δη| < 1.8) where collective effects are dominan
- "Ultra-central" events: dramatic shape evolution in a very narrow centrality range
- Double-hump structure ("Mach cone") on away-side appears on 1% most central
 - Visible without v₂ subtraction!

arXiv:1109.2501

Fourier Decomposition

- Fourier coefficients are calculated $V_{n\Delta} = \langle \cos n\Delta \varphi \rangle = \frac{\int d\Delta \varphi C(\Delta \varphi) \cos n\Delta \varphi}{\int d\Delta \varphi C(\Delta \varphi)}$
- Strong near-side ridge + doublepeaked structure (in very central events) on away side at low p₁
 - 5 coefficients describe correlation well at low p₁
- Away-side peak dominates at high p_T
 - Higher coefficients improve description

Fourier Coefficients

- Coefficients increase with increasing p₁
- First coefficient becomes negative at large p₁ (influence of away-side jet)
- From central to peripheral, $v_{2\Delta}$ rises most

Flow vs Non-Flow Correlations

• Flow-related effects imply correlation of two particles through a plane of symmetry ψ_n

- $V_{n\Delta}$ factorizes: $V_{n\Delta}(p_{T,trig}, p_{T,assoc}) = v_n(p_{T,trig}) \cdot v_n(p_{T,assoc})$

- Jets cause correlations of a few energetic particles by fragmentation
 - There can be indirect correlations: length-dependent quenching
 - Would be largest w.r.t. ψ_2 since it reflects the collision geometry
- Assess flow vs. non-flow by testing the factorization relation $V_{n\Delta}(p_{T,trig}, p_{T,assoc}) = v_n(p_{T,trig}) \cdot v_n(p_{T,assoc})$
 - Calculate $V_{n\Delta}$ in each $p_{T,assoc} \ge p_{T,trig}$ bin (N(N-1)/2=66 bins)
 - Allow only one v_n per p_T bin (12 parameters)

Flow vs. Non-Flow Correlations

- Compare single calculated values with global fit
 - Good agreement suggests flow-type correlations, while a poor fit implies non-flow effects
- $v_{2\Delta}$ to $v_{5\Delta}$ factorize until $p_T \sim 3-4$ GeV/c, then jet-like

Flow vs. Non-Flow Correlations (2)

- v₁ factorization problematic (influence of away-side jet)
 - $v_{1\Delta}$ magnitude of global fit strongly depends on included p_T range
- Collective effects may be present, but are not the dominant contribution

Summary

Summary

- Nuclear modification factor R_{AA} shows strong quenching in central collisions
 - Minimum (~0.12) at $p_T \approx 6-7$ GeV/c and strong rise after
- Jet Particle Yield modification factor I_{AA}
 - Away-side suppression (~0.6) and near-side enhancement (~1.2) is measured for central collisions
 - The effect of the medium on the near side is visible at LHC
- Fourier decomposition of long-range correlations $(0.8 < |\Delta \eta| < 1.8)$
 - The flow factorization $V_{n\Delta} = v_{N,trig} v_{N,assoc}$ holds at low to intermediate p_T (< 3-5 GeV/c)
 - Jet correlations break the factorization at higher $\boldsymbol{p}_{\scriptscriptstyle T}$