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What is a jet?
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What is a jet?

• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes
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What is a jet?

• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes

• LPHD: Hadronization does not affect exclusive 
observables (jet shape, energy distribution etc..)
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• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes

• LPHD: Hadronization does not affect exclusive 
observables (jet shape, energy distribution etc..)
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EXPERIMENTAL EVIDENCE
Lecture I (33/40)

Radiophysics of Colour

Parton Cascades
	
���������
��

10 100
1

2

3

4

5

CDF Data Fit:

Qeff=223   20  MeV+_

Mjj sin( c) GeV/c2
ξ 0

=
lo

g
(1

/x
0
)

CDF, c =0.28

CDF, c =0.47
CDF, c =0.36

ee Data, c =1.57
ep Data, c =1.57

In
co

he
re

nt
 F

ra
gm

en
ta

tio
n

Leading Log Approxim
atio

n

Position of the Hump as
a function of
Q = Mjj sinΘc

(hardness of the jet)

Position of maximum...

TASSO Collaboration, Z. Phys. C 47 (1990) 187
OPAL Collaboration, Phys. Lett. B 247 (1990) 617
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Intrajet distribution: 
“Humpbacked” plateau
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ANTENNA RADIATION IN VACUUM

The antenna is a laboratory to study 
coherence effects.
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ANGULAR ORDERING

Reason: emissions at large angles are sensitive to the 
total charge of the emitting system 

Q1: how will the coherent structure of the jet be 
altered when immersed in a deconfined medium?

Q2 (easier): how will the antenna radiation pattern 
look like in medium? 
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2 2 Experimental method

Figure 1: Example of an unbalanced dijet in a PbPb collision event at √sNN = 2.76 TeV. Plot-
ted is the summed transverse energy in the electromagnetic and hadron calorimeters vs. η
and φ, with the identified jets highlighted in red, and labeled with the corrected jet transverse
momentum.

The data provide information on the evolution of the dijet imbalance as a function of both
collision centrality (i.e., the degree of overlap of the two colliding nuclei) and the energy of
the leading jet. By correlating the dijets detected in the calorimeters with charged hadrons
reconstructed in the high-resolution tracker system, the modification of the jet fragmentation
pattern can be studied in detail, thus providing a deeper insight into the dynamics of the jet
quenching phenomenon.

The paper is organized as follows: the experimental setup, event triggering, selection and char-
acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and
a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method
The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic
coverage over a large range of pseudorapidity, |η| < 5.2, where η = −ln [ tan(θ/2)] and θ is
the polar angle relative to the particle beam. In this study, jets are identified primarily using
the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the
brass/scintillator hadron calorimeter (HCAL) covering |η| < 3. In addition, a steel/quartz-
fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|η| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are
grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by
∆η × ∆ϕ = 0.087× 0.087 at central rapidities, having a coarser segmentation at forward rapidi-
ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The
event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the
full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists
of pixel and silicon-strip layers covering |η| < 2.5, and provides track reconstruction down to
pT ≈ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set
of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the

3.3 Overall momentum balance of dijet events 21

for both centrality ranges and even for events with large observed dijet asymmetry, in both
data and simulation. This shows that the dijet momentum imbalance is not related to unde-
tected activity in the event due to instrumental (e.g. gaps or inefficiencies in the calorimeter) or
physics (e.g. neutrino production) effects.
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Figure 15: Average missing transverse momentum, 〈"p‖T〉, for tracks with pT > 0.5 GeV/c, pro-
jected onto the leading jet axis (solid circles). The 〈"p‖T〉 values are shown as a function of dijet
asymmetry AJ for 0–30% centrality, inside (∆R < 0.8) one of the leading or subleading jet cones
(left) and outside (∆R > 0.8) the leading and subleading jet cones (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
For the individual pT ranges, the statistical uncertainties are shown as vertical bars.

The figure also shows the contributions to 〈"p‖T〉 for five transverse momentum ranges from 0.5–
1 GeV/c to pT > 8 GeV/c. The vertical bars for each range denote statistical uncertainties. For
data and simulation, a large negative contribution to 〈"p‖T〉 (i.e., in the direction of the leading jet)

1) large energy loss of 
leading particle

RAA at 200 GeV

• Direct γ, π0 and η in Au+Au
– Direct γ RAA with measured p+p reference!

=> RAA of η and π0 consistent, both show suppression
=> RAA of γ is smaller than 1 at very high pT

0-10% central events

II) soft gluons at 
large angles
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MEDIUM-INDUCED RADIATION
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MEDIUM-INDUCED RADIATION
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transport parameter: q̂ = mD2 /λ
infrared & collinear safe spectrum
energy loss distribution: P(ΔE)
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MEDIUM-INDUCED RADIATION

emitted off a single emitter
gluon interaction ⇒ k⊥-broadening
transport parameter: q̂ = mD2 /λ
infrared & collinear safe spectrum
energy loss distribution: P(ΔE)
need more emitters to see coherence!
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J ≡ Jq + Jq̄

ANTENNA RADIATION IN MEDIUM

eikonal approximation for fixed 
opening angle of the pair
medium is modeled as a classical 
background field

g❋, γ❋

Mehtar-Tani, Salgado, KT PRL 106 (2011) 122002
Mehtar-Tani, Salgado, KT arXiv:1102.4317 [hep-ph]
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Jq(x) = g Up(x+, 0) δ(3)("x− "p

E
t)Θ(t) Qq

[Dµ, Fµν ] = Jν , [Dµ, Jµ] = 0Classical Yang-Mills eq:

Linear response:

Gelis, Mehtar-Tani (2005), Mehtar-Tani (2007)
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ANTENNA IN MEDIUM

J = Re

{∫ ∞

0
dy′+

∫ y′+

0
dy+

(
1−∆med(y+, 0)

)

×
∫

d2z exp
[
−iκ̄ · z − 1

2

∫ ∞

y′+
dξ n(ξ)σ(z) + i

k+

2
δn2y+

]

×
(
∂y − ik+ δn

)
· ∂z K(y′+,z ; y+,y |k+)

∣∣
y=δny+

}
+ sym. ,

Multiple scattering ⇒ effective propagators:

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph]
C.A. Salgado, Y. Mehtar-Tani, KT, in preparation
E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

|δn| ! θqq̄
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Multiple scattering ⇒ effective propagators:

Describes Brownian motion through medium potential...

σ(r) = 2αSCA
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The opacity expansion

12

K
(
y′+,z; y+,y|k+

)
=

∫
D[r] exp

[∫ y′+

y+
dξ

(
i
k+

2
ṙ2(ξ)− 1

2
n(ξ)σ(r)

)]Propagation and interaction is encoded in the path integral:

[Baier, Dokshitzer, Mueller, Peigne, Schiff, Wiedemann]



The opacity expansion
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2
n(ξ)σ(r)

)]

K(r, yl; r̄, ȳl) = K0(r, yl; r̄, ȳl)

−

z′∫

z

dξ n(ξ)

∫
dρK0(r, yl; ρ, ξ)

1

2
σ(ρ)K0(ρ, ξ; r̄, ȳl)

+

z′∫

z

dξ1 n(ξ1)

z′∫

ξ1

dξ2 n(ξ2)

∫
dρ1 dρ2 K0(r, yl; ρ1, ξ1)

×
1

2
σ(ρ1)K(ρ1, ξ1; ρ2, ξ2)

1

2
σ(ρ2)K0(ρ2, ξ2; r̄, ȳl) . (6.2)

Expansion in terms of n(ξ)σ(r) ⇒ the medium opacity:

Propagation and interaction is encoded in the path integral:

[Baier, Dokshitzer, Mueller, Peigne, Schiff, Wiedemann]



MODELING THE MEDIUM
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Figure 2: Medium-induced gluon radiation off a qq̄ pair (only the emission off the quark is
depicted). The wavy line of the left of the figures denote a virtual photon or gluon.

We assume that the pair is collimated in the +z direction while the medium
propagates in the opposite, −z, direction at nearly the speed of light. At the
end of the calculation we boost back to the lab rest frame, where the medium is
at rest. Therefore, this approximation is only valid as long as the pair opening
angle θqq̄ " 1 and E → ∞. This allows us to pick up the high energy limit.
The process under consideration in sketched in Fig. 2. We shall treat the pair
field as a perturbation around the strong medium field, denoted by Amed, thus,
the total field can express as

Aµ ≡ Aµ
med +Aµ

(0) +Aµ
(1), (3.26)

where the A(0), calculated in the previous section, is the gauge field of the pair
in the absence of the medium, and A(1) is the linear response of the medium to
the perturbation caused by the pair. The subscript (1) marks the response of
the field at first order in A−

med. In the asymptotic limit, the medium gauge field
is solution of the 2-dimensional Poisson equation

−∂2
⊥A

−
med(x

+,x) = ρmed(x
+,x) , Ai

med = A+
med = 0 . (3.27)

where ρmed(x+,x) describes the static distribution of medium color charges.
Thus, the only non-zero component reads, in Fourier space,

A−
med(q) = 2π δ(q+)

∫
dx+ Amed(x

+, q) eiq
−x+

, (3.28)

Thus, at leading order in the medium field, the CYM equations read

−∂+(∂ ·A(1)) = J+
(1) , (3.29)

!A−
(1) − 2ig[A−

med, ∂
+A−

(0)] = ∂−(∂ ·A(1)) + J−
(1) , (3.30)

!Ai
(1) − 2ig[A−

med, ∂
+Ai

(0)] = ∂i(∂ ·A(1)) + J i
(1) . (3.31)

Again, as for the vacuum case we can drop the redundant equation for the −
component of the field, then using the constraint (3.29) in Eq. (3.31) we obtain

!Ai
(1) − 2ig[A−

med, ∂
+Ai

(0)] = − ∂i

∂+
J+
(1) + J i

(1) , (3.32)
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After performing the integrations we find for the amplitude of the quark part

− k2Ai,a
(1),q(k) = 2 ig2

∫
d2q

(2π)2

∫ ∞

0
dx+

[
T · Amed(x

+, q)
]ab

Qb
q ei(k

−−v−)x+

×
{
νi

ν2

[
1− exp

(
i
ν2

2k+
x+

)]
+

κi

κ2
exp

(
i
ν2

2k+
x+

)}
, (3.42)

where νi = (k−q)i−x pi. Thus, the amplitude for gluon radiation off the quark
reads

Ma
(1)λ,q = 2 ig2

∫
d2q

(2π)2

∫ ∞

0
dx+

[
T · Amed(x

+, q)
]ab

Qb
q ei(k

−−v−)x+

×
[
ν

ν2
−L exp

(
i
ν2

2k+
x+

)]
· ελ , (3.43)

where
L =

ν

ν2
− κ

κ2
, (3.44)

is the well-known Lipatov vertex in LC gauge [33, 34], also called an emission
current in [14]. The amplitude for gluon radiation off the anti-quark, M(1),q̄, is
deduced from M(1),q by substituting the momentum p → p̄ and quark charge
q → q̄. Note that the phase in (3.43) (last term in the first line) is superfluous
since it cancels in the cross section.

Note that when the off-shell gluon becomes collinear to the quark, i.e., ν2 →
0, no singularity arises because of the phase structure. The same cancellation
does not takes when κ2 → 0, on the other hand. In particular, it diverges
in the infrared limit, i.e., when the energy of the gluon goes to zero, ω → 0.
[DIAGRAMMATICAL INTERPRETATION?]

Let us now turn to the evaluation of the cross-section. The gluon spectrum is
calculated by taking the square of the amplitude and averaging over the medium
field. To do so we assume the medium color charges to be uncorrelated and
having longitudinal support on the line element [0, L+] but infinite and uniform
in the transverse direction, thus, one can treat the medium charge density as a
Gaussian white noise defined by the two-point function

〈ρamed(x
+, q)ρ∗bmed(x

′+, q′)〉 = δabm2
D n(x+) δ(x+ − x′+) (2π)2δ(2)(q − q′) ,

(3.45)
which yields

〈Aa
med(x

+, q)A∗b
med(x

′+, q′)〉 = δabm2
D n(x+) δ(x+ − x′+)

× (2π)2δ(2)(q − q′)V2(q) . (3.46)

Following previous works, we define the potential V(q) to be a Yukawa-type,

V(q) =
1

q2 +m2
D

, (3.47)
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V(q) =
1

q2 +m2
D

, (3.47)

11

Poisson equation:

Gaussian approximation:

•Medium is a set of static potentials 
with screening length mD-1

•No recoil
•Mean free path: λ
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AMPLITUDE AT N=1

After performing the integrations we find for the amplitude of the quark part
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since it cancels in the cross section.
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0, no singularity arises because of the phase structure. The same cancellation
does not takes when κ2 → 0, on the other hand. In particular, it diverges
in the infrared limit, i.e., when the energy of the gluon goes to zero, ω → 0.
[DIAGRAMMATICAL INTERPRETATION?]

Let us now turn to the evaluation of the cross-section. The gluon spectrum is
calculated by taking the square of the amplitude and averaging over the medium
field. To do so we assume the medium color charges to be uncorrelated and
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(3.45)
which yields

〈Aa
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+, q)A∗b
med(x

′+, q′)〉 = δabm2
D n(x+) δ(x+ − x′+)

× (2π)2δ(2)(q − q′)V2(q) . (3.46)

Following previous works, we define the potential V(q) to be a Yukawa-type,

V(q) =
1

q2 +m2
D

, (3.47)
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νi = ki − qi − xpi

κi = ki − xpi

Describes two physical processes of a virtual parton traversing the medium:
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Following previous works, we define the potential V(q) to be a Yukawa-type,

V(q) =
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D
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νi = ki − qi − xpi

κi = ki − xpi

Describes two physical processes of a virtual parton traversing the medium:

Hard emission
with rescattering
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INDEPENDENT RADIATION
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Put differently, they simply correspond to redefining the potential as

V2(q) → V2(q)− (2π)2δ(2)(q)

∫
d2q′

(2π)2
V2(q′) , (3.53)

which insures that (3.49) is finite in the limit q → 0.
An interesting property of the Lipatov vertex (3.44) that will come in handy

below is that its square

L2 =
q2

k2(k − q)2
, (3.54)

is just the Gunion-Bertsch spectrum [35]. For small k # q it behaves as a hard
vacuum emission, L2 ∼ 1/k2, while in the opposite case, k % q, the spectrum
drops much faster, L2 ∼ 1/k4. This gives rise to a plateau form of the spectrum
with a finite 〈k2〉.

For consistency, we have also calculated the corresponding set of amplitudes
for the process under consideration using Feynman rules, c.f. (3.43), in Ap-
pendix A and cross sections in Appendix B. The medium-induced spectrum
(3.49) is then re-derived with the inclusion of the contact terms in (3.52).

Let us presently discuss the various terms of the spectrum (3.49) in detail.

3.1. The independent spectrum off the quark

We start off with the terms where the gluon is emitted and absorbed by
the same quark in amplitude and complex-conjugate amplitude, respectively.

In other words, the spectrum is proportional to
∣∣M(1),q

∣∣2 for the quark and∣∣M(1),q̄

∣∣2 for the antiquark, and reads
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for the quark. The inclusion of contact terms, or, in other words, the redefinition
of the potential as in (3.53) does not alter this result. In the special case when
the quark is traveling along the z-direction, |p| = 0, the spectrum (3.55) becomes
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=
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∫

V(q)
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(3.56)

This is the so-called GLV [20] or BDMPS-Z spectrum at first order in opac-
ity [18, 19] off a fast moving quark. The spectrum in (3.56) is infrared and
collinear safe [23]. The generalization to multiple scattering is also well known
[14, 15, 16, 17, 18, 19]. Integrating out the transverse momentum and energy,
the spectrum (3.56) leads to an average medium-induced energy loss propor-
tional to the squared of the length of the medium for short medium lengths,
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Put differently, they simply correspond to redefining the potential as

V2(q) → V2(q)− (2π)2δ(2)(q)

∫
d2q′

(2π)2
V2(q′) , (3.53)

which insures that (3.49) is finite in the limit q → 0.
An interesting property of the Lipatov vertex (3.44) that will come in handy

below is that its square

L2 =
q2

k2(k − q)2
, (3.54)

is just the Gunion-Bertsch spectrum [35]. For small k # q it behaves as a hard
vacuum emission, L2 ∼ 1/k2, while in the opposite case, k % q, the spectrum
drops much faster, L2 ∼ 1/k4. This gives rise to a plateau form of the spectrum
with a finite 〈k2〉.

For consistency, we have also calculated the corresponding set of amplitudes
for the process under consideration using Feynman rules, c.f. (3.43), in Ap-
pendix A and cross sections in Appendix B. The medium-induced spectrum
(3.49) is then re-derived with the inclusion of the contact terms in (3.52).

Let us presently discuss the various terms of the spectrum (3.49) in detail.

3.1. The independent spectrum off the quark

We start off with the terms where the gluon is emitted and absorbed by
the same quark in amplitude and complex-conjugate amplitude, respectively.

In other words, the spectrum is proportional to
∣∣M(1),q

∣∣2 for the quark and∣∣M(1),q̄

∣∣2 for the antiquark, and reads

ω
dN indep

q

d3k
=

8 αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

(
1− cos

ν2

2k+
x+

)[
1

ν2
− ν · κ

ν2κ2

]
,

(3.55)

for the quark. The inclusion of contact terms, or, in other words, the redefinition
of the potential as in (3.53) does not alter this result. In the special case when
the quark is traveling along the z-direction, |p| = 0, the spectrum (3.55) becomes
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This is the so-called GLV [20] or BDMPS-Z spectrum at first order in opac-
ity [18, 19] off a fast moving quark. The spectrum in (3.56) is infrared and
collinear safe [23]. The generalization to multiple scattering is also well known
[14, 15, 16, 17, 18, 19]. Integrating out the transverse momentum and energy,
the spectrum (3.56) leads to an average medium-induced energy loss propor-
tional to the squared of the length of the medium for short medium lengths,
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Incoherent limit:
(L→∞)

〈∆E〉 ∝ L2, due to formation time arguments. In case of multiple scattering,
coherence effects among individual scattering centers lead to destructive inter-
ference and is called the Landau-Pomeranchuk-Migdal (LPM) effect. The GLV
spectrum is the medium-induced analog of the independent spectrum off the
quark in the vacuum, and we thus denote it

ω
dN indep

q

d3k
=

αsCF

(2π)2 ω2
Rmed

q , (3.57)

and analogously for the antiquark.
The independent medium-induced spectrum off a parton (3.56) permits an

interesting probabilistic interpretation [19]. This can be most easily realized
in the incoherent limit, when L → ∞. In this case the scattering center sits
arbitrarily far away from the production point of the virtual particle and we
can drop the cosine factor responsible for the longitudinal interference effect.
Furthermore, the remaining momentum structure in (3.56) can be written as

q̂

∫

V(q)

k · q
k2(k − q)2

=
q̂

2

∫

V(q)

(
− 1

k2 +
1

(k − q)2
+L2

)
, (3.58)

where the latter term is simply the Gunion-Bertsch spectrum which describes
the medium-induced radiation off a real particle, i.e., propagating from t0 =
−∞, and the former two terms describe, on the other hand, typical hard gluon
emissions. While the first factor in (3.58) serves to reduce the probability of a
vacuum emission, see [19], the second factor is associated with the hard radi-
ation component which rescatters once in the medium. In this sense, it is the
Gunion-Bertsch spectrum that contains the purely medium-triggered mecha-
nism of inducing radiation. Note that the Gunion-Bertsch spectrum drops faster
(∝ 1/k4) at large transverse momenta than the hard component (∝ 1/k2). This
decomposition can be extended to arbitrary order in medium opacity and proves
the probability conservation of medium-induced radiation [19]. Later, we will
come back to how this interpretation is altered in the antenna case.

The spectrum in (3.56) and its extension to multiple scattering are the es-
tablished building blocks for calculating modifications of jets in medium. We
discuss some of the typical features of this spectrum in Appendix C and for a
comprehensive review see, e.g., [27, 29]. Since, by construction, the GLV spec-
trum off the quark does not incorporate effects of interference among emitters,
which are fundamental for building up of the shower picture in vacuum, there
is no a priori procedure of treating multiple emissions. In the literature, several
ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.
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Put differently, they simply correspond to redefining the potential as

V2(q) → V2(q)− (2π)2δ(2)(q)

∫
d2q′

(2π)2
V2(q′) , (3.53)

which insures that (3.49) is finite in the limit q → 0.
An interesting property of the Lipatov vertex (3.44) that will come in handy

below is that its square
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is just the Gunion-Bertsch spectrum [35]. For small k # q it behaves as a hard
vacuum emission, L2 ∼ 1/k2, while in the opposite case, k % q, the spectrum
drops much faster, L2 ∼ 1/k4. This gives rise to a plateau form of the spectrum
with a finite 〈k2〉.

For consistency, we have also calculated the corresponding set of amplitudes
for the process under consideration using Feynman rules, c.f. (3.43), in Ap-
pendix A and cross sections in Appendix B. The medium-induced spectrum
(3.49) is then re-derived with the inclusion of the contact terms in (3.52).

Let us presently discuss the various terms of the spectrum (3.49) in detail.

3.1. The independent spectrum off the quark

We start off with the terms where the gluon is emitted and absorbed by
the same quark in amplitude and complex-conjugate amplitude, respectively.

In other words, the spectrum is proportional to
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for the quark. The inclusion of contact terms, or, in other words, the redefinition
of the potential as in (3.53) does not alter this result. In the special case when
the quark is traveling along the z-direction, |p| = 0, the spectrum (3.55) becomes
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This is the so-called GLV [20] or BDMPS-Z spectrum at first order in opac-
ity [18, 19] off a fast moving quark. The spectrum in (3.56) is infrared and
collinear safe [23]. The generalization to multiple scattering is also well known
[14, 15, 16, 17, 18, 19]. Integrating out the transverse momentum and energy,
the spectrum (3.56) leads to an average medium-induced energy loss propor-
tional to the squared of the length of the medium for short medium lengths,
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〈∆E〉 ∝ L2, due to formation time arguments. In case of multiple scattering,
coherence effects among individual scattering centers lead to destructive inter-
ference and is called the Landau-Pomeranchuk-Migdal (LPM) effect. The GLV
spectrum is the medium-induced analog of the independent spectrum off the
quark in the vacuum, and we thus denote it
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and analogously for the antiquark.
The independent medium-induced spectrum off a parton (3.56) permits an

interesting probabilistic interpretation [19]. This can be most easily realized
in the incoherent limit, when L → ∞. In this case the scattering center sits
arbitrarily far away from the production point of the virtual particle and we
can drop the cosine factor responsible for the longitudinal interference effect.
Furthermore, the remaining momentum structure in (3.56) can be written as
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=
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(
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where the latter term is simply the Gunion-Bertsch spectrum which describes
the medium-induced radiation off a real particle, i.e., propagating from t0 =
−∞, and the former two terms describe, on the other hand, typical hard gluon
emissions. While the first factor in (3.58) serves to reduce the probability of a
vacuum emission, see [19], the second factor is associated with the hard radi-
ation component which rescatters once in the medium. In this sense, it is the
Gunion-Bertsch spectrum that contains the purely medium-triggered mecha-
nism of inducing radiation. Note that the Gunion-Bertsch spectrum drops faster
(∝ 1/k4) at large transverse momenta than the hard component (∝ 1/k2). This
decomposition can be extended to arbitrary order in medium opacity and proves
the probability conservation of medium-induced radiation [19]. Later, we will
come back to how this interpretation is altered in the antenna case.

The spectrum in (3.56) and its extension to multiple scattering are the es-
tablished building blocks for calculating modifications of jets in medium. We
discuss some of the typical features of this spectrum in Appendix C and for a
comprehensive review see, e.g., [27, 29]. Since, by construction, the GLV spec-
trum off the quark does not incorporate effects of interference among emitters,
which are fundamental for building up of the shower picture in vacuum, there
is no a priori procedure of treating multiple emissions. In the literature, several
ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.
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In the incoherent L → ∞ limit, the radiation cross sec-
tion (6.1) expanded up to first order in opacity, takes the
form

lim
L→∞

N=1∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

×

[
(1 − w1)H(k⊥) + n0 L

∫

q1

H(k⊥ + q1⊥)

+n0 L

∫

q1

R(k⊥,q1⊥)

]
. (6.10)

The three terms on the r.h.s. of (6.10) have a sim-
ple physical meaning: the first is the hard, medium-
independent radiation (6.6) reduced by the probability
w1 = n0 L Vtot that one interaction of the projectile oc-
curs in the medium. The second term describes the
hard radiation component which rescatters once in the
medium. The third term is the medium-induced Gunion-
Bertsch contribution associated with the rescattering. In
general, the L-dependence of (6.7) reflects the interfer-
ence pattern between the different contributions and can
be quite complicated. For the case N = 1, we have seen
that this interference pattern interpolates between simple
and physically intuitive limiting cases.

B. Coherent and Incoherent Limits for N = 2 and
N = 3

The general L-dependent expressions for the second
and third orders in the opacity expansion of (6.1) can eas-
ily be written down by using (6.4) and the corresponding
results tabulated in Appendix E. In the present section,
we focus entirely on the coherent and incoherent limiting
cases. For N = 2, they read

lim
L→0

d3σ(nas)(N = 2)

d(lnx) dk⊥
= 0 , (6.11)

lim
L→∞

d3σ(nas)(N = 2)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)2

2

×

∫

Σ2

[H(k⊥ + q1⊥ + q2⊥) + R(k⊥ + q1⊥,q2⊥)] . (6.12)

Adding this second order contribution to (6.10), a simple
systematic starts to emerge:

lim
L→∞

N=2∑

m=0

d3σ(nas)(m)

d(lnx) dk⊥
=

αs

π2
NC CF

× [(1 − w1 + w2)H(k⊥)

+(1− w1)n0 L

∫

q1

H(k⊥ + q1⊥)

+
(n0 L)2

2

∫

q1

∫

q2

H(k⊥ + q1⊥ + q2⊥)

]

+ lim
L→∞

[
d3σcl(2)

d(ln x) dk⊥
+ (1 − w1)

d3σcl(1)

d(lnx) dk⊥

]
. (6.13)

Both the m-fold rescattered hard term and the Gunion
Bertsch contribution for m-fold rescattering are weighted
with the expansion of the absorption factor up to order
(N − m). For N = 3, we find from the results in Ap-
pendix E

lim
L→0

d3σ(nas)(N = 3)

d(lnx) dk⊥
= 0 , (6.14)

lim
L→∞

d3σ(nas)(N = 3)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)3

3!

×

∫

Σ3

[H(k⊥ + q1⊥ + q2⊥ + q3⊥)

+R(k⊥ + q1⊥ + q2⊥,q3⊥)] . (6.15)

Adding this contribution to (6.13) confirms the indicated
systematics. Rather than spelling out the result, we ex-
trapolate in the following section our analytical findings
to arbitrary N .

C. Extrapolation of limiting cases to arbitrary N

The results of our explicit calculations up to third or-
der, combined with the physical arguments given above,
suggest results valid to arbitrary orders N . For the case
of a free incoming quark, these results are given in equa-
tions (5.2) - (5.4). For the case of an in-medium produced
quark, we write them in terms of the shorthand

H(m)(k⊥) ≡
αs

π2
Nc CF

(n0 L)m

m!

(
m∏

i=1

∫

qi

)

×H

(

k⊥ +
m∑

i=1

qi⊥

)

. (6.16)

This describes the hard radiation component which
rescatters on m well-separated scattering centers. For
the incoherent limit of (6.1), expanded up to N -th order,
we obtain by extrapolating the systematics observed up
to N = 3:

lim
L→∞

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

N∑

m=0

(−1)N−m wN−m H(m)(k⊥)

+
N∑

m=0

(−1)N−m wN−m lim
L→∞

d3σcl(m)

d(ln x) dk⊥
. (6.17)

In the coherent limit, we infer from (6.11) and (6.14):

lim
L→0

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

1

k2
⊥

. (6.18)

In this coherent limit, there is no medium modification to
the hard radiation (6.5), irrespective of the opacity of the
target: locating the medium at (and only at) the creation
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Put differently, they simply correspond to redefining the potential as

V2(q) → V2(q)− (2π)2δ(2)(q)

∫
d2q′

(2π)2
V2(q′) , (3.53)

which insures that (3.49) is finite in the limit q → 0.
An interesting property of the Lipatov vertex (3.44) that will come in handy

below is that its square

L2 =
q2

k2(k − q)2
, (3.54)

is just the Gunion-Bertsch spectrum [35]. For small k # q it behaves as a hard
vacuum emission, L2 ∼ 1/k2, while in the opposite case, k % q, the spectrum
drops much faster, L2 ∼ 1/k4. This gives rise to a plateau form of the spectrum
with a finite 〈k2〉.

For consistency, we have also calculated the corresponding set of amplitudes
for the process under consideration using Feynman rules, c.f. (3.43), in Ap-
pendix A and cross sections in Appendix B. The medium-induced spectrum
(3.49) is then re-derived with the inclusion of the contact terms in (3.52).

Let us presently discuss the various terms of the spectrum (3.49) in detail.

3.1. The independent spectrum off the quark

We start off with the terms where the gluon is emitted and absorbed by
the same quark in amplitude and complex-conjugate amplitude, respectively.

In other words, the spectrum is proportional to
∣∣M(1),q

∣∣2 for the quark and∣∣M(1),q̄

∣∣2 for the antiquark, and reads

ω
dN indep

q

d3k
=
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∫

V(q)

∫ L+

0
dx+

(
1− cos
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− ν · κ
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]
,

(3.55)

for the quark. The inclusion of contact terms, or, in other words, the redefinition
of the potential as in (3.53) does not alter this result. In the special case when
the quark is traveling along the z-direction, |p| = 0, the spectrum (3.55) becomes
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dN indep
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dω d2k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

(
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)
k · q
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.

(3.56)

This is the so-called GLV [20] or BDMPS-Z spectrum at first order in opac-
ity [18, 19] off a fast moving quark. The spectrum in (3.56) is infrared and
collinear safe [23]. The generalization to multiple scattering is also well known
[14, 15, 16, 17, 18, 19]. Integrating out the transverse momentum and energy,
the spectrum (3.56) leads to an average medium-induced energy loss propor-
tional to the squared of the length of the medium for short medium lengths,
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〈∆E〉 ∝ L2, due to formation time arguments. In case of multiple scattering,
coherence effects among individual scattering centers lead to destructive inter-
ference and is called the Landau-Pomeranchuk-Migdal (LPM) effect. The GLV
spectrum is the medium-induced analog of the independent spectrum off the
quark in the vacuum, and we thus denote it

ω
dN indep

q

d3k
=

αsCF

(2π)2 ω2
Rmed

q , (3.57)

and analogously for the antiquark.
The independent medium-induced spectrum off a parton (3.56) permits an

interesting probabilistic interpretation [19]. This can be most easily realized
in the incoherent limit, when L → ∞. In this case the scattering center sits
arbitrarily far away from the production point of the virtual particle and we
can drop the cosine factor responsible for the longitudinal interference effect.
Furthermore, the remaining momentum structure in (3.56) can be written as

q̂

∫

V(q)

k · q
k2(k − q)2

=
q̂

2

∫

V(q)
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1
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, (3.58)

where the latter term is simply the Gunion-Bertsch spectrum which describes
the medium-induced radiation off a real particle, i.e., propagating from t0 =
−∞, and the former two terms describe, on the other hand, typical hard gluon
emissions. While the first factor in (3.58) serves to reduce the probability of a
vacuum emission, see [19], the second factor is associated with the hard radi-
ation component which rescatters once in the medium. In this sense, it is the
Gunion-Bertsch spectrum that contains the purely medium-triggered mecha-
nism of inducing radiation. Note that the Gunion-Bertsch spectrum drops faster
(∝ 1/k4) at large transverse momenta than the hard component (∝ 1/k2). This
decomposition can be extended to arbitrary order in medium opacity and proves
the probability conservation of medium-induced radiation [19]. Later, we will
come back to how this interpretation is altered in the antenna case.

The spectrum in (3.56) and its extension to multiple scattering are the es-
tablished building blocks for calculating modifications of jets in medium. We
discuss some of the typical features of this spectrum in Appendix C and for a
comprehensive review see, e.g., [27, 29]. Since, by construction, the GLV spec-
trum off the quark does not incorporate effects of interference among emitters,
which are fundamental for building up of the shower picture in vacuum, there
is no a priori procedure of treating multiple emissions. In the literature, several
ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.
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In the incoherent L → ∞ limit, the radiation cross sec-
tion (6.1) expanded up to first order in opacity, takes the
form

lim
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N=1∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=
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×
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]
. (6.10)

The three terms on the r.h.s. of (6.10) have a sim-
ple physical meaning: the first is the hard, medium-
independent radiation (6.6) reduced by the probability
w1 = n0 L Vtot that one interaction of the projectile oc-
curs in the medium. The second term describes the
hard radiation component which rescatters once in the
medium. The third term is the medium-induced Gunion-
Bertsch contribution associated with the rescattering. In
general, the L-dependence of (6.7) reflects the interfer-
ence pattern between the different contributions and can
be quite complicated. For the case N = 1, we have seen
that this interference pattern interpolates between simple
and physically intuitive limiting cases.

B. Coherent and Incoherent Limits for N = 2 and
N = 3

The general L-dependent expressions for the second
and third orders in the opacity expansion of (6.1) can eas-
ily be written down by using (6.4) and the corresponding
results tabulated in Appendix E. In the present section,
we focus entirely on the coherent and incoherent limiting
cases. For N = 2, they read

lim
L→0

d3σ(nas)(N = 2)

d(lnx) dk⊥
= 0 , (6.11)

lim
L→∞

d3σ(nas)(N = 2)

d(lnx) dk⊥
=
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π2
NC CF
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×

∫

Σ2

[H(k⊥ + q1⊥ + q2⊥) + R(k⊥ + q1⊥,q2⊥)] . (6.12)

Adding this second order contribution to (6.10), a simple
systematic starts to emerge:

lim
L→∞
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=
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+ (1 − w1)

d3σcl(1)

d(lnx) dk⊥

]
. (6.13)

Both the m-fold rescattered hard term and the Gunion
Bertsch contribution for m-fold rescattering are weighted
with the expansion of the absorption factor up to order
(N − m). For N = 3, we find from the results in Ap-
pendix E

lim
L→0

d3σ(nas)(N = 3)

d(lnx) dk⊥
= 0 , (6.14)

lim
L→∞

d3σ(nas)(N = 3)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)3

3!

×

∫

Σ3

[H(k⊥ + q1⊥ + q2⊥ + q3⊥)

+R(k⊥ + q1⊥ + q2⊥,q3⊥)] . (6.15)

Adding this contribution to (6.13) confirms the indicated
systematics. Rather than spelling out the result, we ex-
trapolate in the following section our analytical findings
to arbitrary N .

C. Extrapolation of limiting cases to arbitrary N

The results of our explicit calculations up to third or-
der, combined with the physical arguments given above,
suggest results valid to arbitrary orders N . For the case
of a free incoming quark, these results are given in equa-
tions (5.2) - (5.4). For the case of an in-medium produced
quark, we write them in terms of the shorthand

H(m)(k⊥) ≡
αs

π2
Nc CF

(n0 L)m

m!

(
m∏

i=1

∫

qi

)

×H

(

k⊥ +
m∑

i=1

qi⊥

)

. (6.16)

This describes the hard radiation component which
rescatters on m well-separated scattering centers. For
the incoherent limit of (6.1), expanded up to N -th order,
we obtain by extrapolating the systematics observed up
to N = 3:

lim
L→∞

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

N∑

m=0

(−1)N−m wN−m H(m)(k⊥)

+
N∑

m=0

(−1)N−m wN−m lim
L→∞

d3σcl(m)

d(ln x) dk⊥
. (6.17)

In the coherent limit, we infer from (6.11) and (6.14):

lim
L→0

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

1

k2
⊥

. (6.18)

In this coherent limit, there is no medium modification to
the hard radiation (6.5), irrespective of the opacity of the
target: locating the medium at (and only at) the creation
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Put differently, they simply correspond to redefining the potential as

V2(q) → V2(q)− (2π)2δ(2)(q)

∫
d2q′

(2π)2
V2(q′) , (3.53)

which insures that (3.49) is finite in the limit q → 0.
An interesting property of the Lipatov vertex (3.44) that will come in handy

below is that its square

L2 =
q2

k2(k − q)2
, (3.54)

is just the Gunion-Bertsch spectrum [35]. For small k # q it behaves as a hard
vacuum emission, L2 ∼ 1/k2, while in the opposite case, k % q, the spectrum
drops much faster, L2 ∼ 1/k4. This gives rise to a plateau form of the spectrum
with a finite 〈k2〉.

For consistency, we have also calculated the corresponding set of amplitudes
for the process under consideration using Feynman rules, c.f. (3.43), in Ap-
pendix A and cross sections in Appendix B. The medium-induced spectrum
(3.49) is then re-derived with the inclusion of the contact terms in (3.52).

Let us presently discuss the various terms of the spectrum (3.49) in detail.

3.1. The independent spectrum off the quark

We start off with the terms where the gluon is emitted and absorbed by
the same quark in amplitude and complex-conjugate amplitude, respectively.

In other words, the spectrum is proportional to
∣∣M(1),q

∣∣2 for the quark and∣∣M(1),q̄

∣∣2 for the antiquark, and reads

ω
dN indep

q

d3k
=

8 αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

(
1− cos

ν2

2k+
x+

)[
1

ν2
− ν · κ

ν2κ2

]
,

(3.55)

for the quark. The inclusion of contact terms, or, in other words, the redefinition
of the potential as in (3.53) does not alter this result. In the special case when
the quark is traveling along the z-direction, |p| = 0, the spectrum (3.55) becomes

ω
dN indep

q

dω d2k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

(
1− cos

(k − q)2

2k+
x+

)
k · q

k2(k − q)2
.

(3.56)

This is the so-called GLV [20] or BDMPS-Z spectrum at first order in opac-
ity [18, 19] off a fast moving quark. The spectrum in (3.56) is infrared and
collinear safe [23]. The generalization to multiple scattering is also well known
[14, 15, 16, 17, 18, 19]. Integrating out the transverse momentum and energy,
the spectrum (3.56) leads to an average medium-induced energy loss propor-
tional to the squared of the length of the medium for short medium lengths,
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〈∆E〉 ∝ L2, due to formation time arguments. In case of multiple scattering,
coherence effects among individual scattering centers lead to destructive inter-
ference and is called the Landau-Pomeranchuk-Migdal (LPM) effect. The GLV
spectrum is the medium-induced analog of the independent spectrum off the
quark in the vacuum, and we thus denote it

ω
dN indep

q

d3k
=

αsCF

(2π)2 ω2
Rmed

q , (3.57)

and analogously for the antiquark.
The independent medium-induced spectrum off a parton (3.56) permits an

interesting probabilistic interpretation [19]. This can be most easily realized
in the incoherent limit, when L → ∞. In this case the scattering center sits
arbitrarily far away from the production point of the virtual particle and we
can drop the cosine factor responsible for the longitudinal interference effect.
Furthermore, the remaining momentum structure in (3.56) can be written as

q̂

∫

V(q)

k · q
k2(k − q)2

=
q̂

2

∫

V(q)

(
− 1

k2 +
1

(k − q)2
+L2

)
, (3.58)

where the latter term is simply the Gunion-Bertsch spectrum which describes
the medium-induced radiation off a real particle, i.e., propagating from t0 =
−∞, and the former two terms describe, on the other hand, typical hard gluon
emissions. While the first factor in (3.58) serves to reduce the probability of a
vacuum emission, see [19], the second factor is associated with the hard radi-
ation component which rescatters once in the medium. In this sense, it is the
Gunion-Bertsch spectrum that contains the purely medium-triggered mecha-
nism of inducing radiation. Note that the Gunion-Bertsch spectrum drops faster
(∝ 1/k4) at large transverse momenta than the hard component (∝ 1/k2). This
decomposition can be extended to arbitrary order in medium opacity and proves
the probability conservation of medium-induced radiation [19]. Later, we will
come back to how this interpretation is altered in the antenna case.

The spectrum in (3.56) and its extension to multiple scattering are the es-
tablished building blocks for calculating modifications of jets in medium. We
discuss some of the typical features of this spectrum in Appendix C and for a
comprehensive review see, e.g., [27, 29]. Since, by construction, the GLV spec-
trum off the quark does not incorporate effects of interference among emitters,
which are fundamental for building up of the shower picture in vacuum, there
is no a priori procedure of treating multiple emissions. In the literature, several
ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.
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In the incoherent L → ∞ limit, the radiation cross sec-
tion (6.1) expanded up to first order in opacity, takes the
form

lim
L→∞

N=1∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

×

[
(1 − w1)H(k⊥) + n0 L

∫

q1

H(k⊥ + q1⊥)

+n0 L

∫

q1

R(k⊥,q1⊥)

]
. (6.10)

The three terms on the r.h.s. of (6.10) have a sim-
ple physical meaning: the first is the hard, medium-
independent radiation (6.6) reduced by the probability
w1 = n0 L Vtot that one interaction of the projectile oc-
curs in the medium. The second term describes the
hard radiation component which rescatters once in the
medium. The third term is the medium-induced Gunion-
Bertsch contribution associated with the rescattering. In
general, the L-dependence of (6.7) reflects the interfer-
ence pattern between the different contributions and can
be quite complicated. For the case N = 1, we have seen
that this interference pattern interpolates between simple
and physically intuitive limiting cases.

B. Coherent and Incoherent Limits for N = 2 and
N = 3

The general L-dependent expressions for the second
and third orders in the opacity expansion of (6.1) can eas-
ily be written down by using (6.4) and the corresponding
results tabulated in Appendix E. In the present section,
we focus entirely on the coherent and incoherent limiting
cases. For N = 2, they read

lim
L→0

d3σ(nas)(N = 2)

d(lnx) dk⊥
= 0 , (6.11)

lim
L→∞

d3σ(nas)(N = 2)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)2

2

×

∫

Σ2

[H(k⊥ + q1⊥ + q2⊥) + R(k⊥ + q1⊥,q2⊥)] . (6.12)

Adding this second order contribution to (6.10), a simple
systematic starts to emerge:

lim
L→∞

N=2∑

m=0

d3σ(nas)(m)

d(lnx) dk⊥
=

αs

π2
NC CF

× [(1 − w1 + w2)H(k⊥)

+(1− w1)n0 L

∫

q1

H(k⊥ + q1⊥)

+
(n0 L)2

2

∫

q1

∫

q2

H(k⊥ + q1⊥ + q2⊥)

]

+ lim
L→∞

[
d3σcl(2)

d(ln x) dk⊥
+ (1 − w1)

d3σcl(1)

d(lnx) dk⊥

]
. (6.13)

Both the m-fold rescattered hard term and the Gunion
Bertsch contribution for m-fold rescattering are weighted
with the expansion of the absorption factor up to order
(N − m). For N = 3, we find from the results in Ap-
pendix E

lim
L→0

d3σ(nas)(N = 3)

d(lnx) dk⊥
= 0 , (6.14)

lim
L→∞

d3σ(nas)(N = 3)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)3

3!

×

∫

Σ3

[H(k⊥ + q1⊥ + q2⊥ + q3⊥)

+R(k⊥ + q1⊥ + q2⊥,q3⊥)] . (6.15)

Adding this contribution to (6.13) confirms the indicated
systematics. Rather than spelling out the result, we ex-
trapolate in the following section our analytical findings
to arbitrary N .

C. Extrapolation of limiting cases to arbitrary N

The results of our explicit calculations up to third or-
der, combined with the physical arguments given above,
suggest results valid to arbitrary orders N . For the case
of a free incoming quark, these results are given in equa-
tions (5.2) - (5.4). For the case of an in-medium produced
quark, we write them in terms of the shorthand

H(m)(k⊥) ≡
αs

π2
Nc CF

(n0 L)m

m!

(
m∏

i=1

∫

qi

)

×H

(

k⊥ +
m∑

i=1

qi⊥

)

. (6.16)

This describes the hard radiation component which
rescatters on m well-separated scattering centers. For
the incoherent limit of (6.1), expanded up to N -th order,
we obtain by extrapolating the systematics observed up
to N = 3:

lim
L→∞

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

N∑

m=0

(−1)N−m wN−m H(m)(k⊥)

+
N∑

m=0

(−1)N−m wN−m lim
L→∞

d3σcl(m)

d(ln x) dk⊥
. (6.17)

In the coherent limit, we infer from (6.11) and (6.14):

lim
L→0

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

1

k2
⊥

. (6.18)

In this coherent limit, there is no medium modification to
the hard radiation (6.5), irrespective of the opacity of the
target: locating the medium at (and only at) the creation
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Put differently, they simply correspond to redefining the potential as

V2(q) → V2(q)− (2π)2δ(2)(q)

∫
d2q′

(2π)2
V2(q′) , (3.53)

which insures that (3.49) is finite in the limit q → 0.
An interesting property of the Lipatov vertex (3.44) that will come in handy

below is that its square

L2 =
q2

k2(k − q)2
, (3.54)

is just the Gunion-Bertsch spectrum [35]. For small k # q it behaves as a hard
vacuum emission, L2 ∼ 1/k2, while in the opposite case, k % q, the spectrum
drops much faster, L2 ∼ 1/k4. This gives rise to a plateau form of the spectrum
with a finite 〈k2〉.

For consistency, we have also calculated the corresponding set of amplitudes
for the process under consideration using Feynman rules, c.f. (3.43), in Ap-
pendix A and cross sections in Appendix B. The medium-induced spectrum
(3.49) is then re-derived with the inclusion of the contact terms in (3.52).

Let us presently discuss the various terms of the spectrum (3.49) in detail.

3.1. The independent spectrum off the quark

We start off with the terms where the gluon is emitted and absorbed by
the same quark in amplitude and complex-conjugate amplitude, respectively.

In other words, the spectrum is proportional to
∣∣M(1),q

∣∣2 for the quark and∣∣M(1),q̄

∣∣2 for the antiquark, and reads

ω
dN indep

q

d3k
=

8 αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

(
1− cos

ν2

2k+
x+

)[
1

ν2
− ν · κ

ν2κ2

]
,

(3.55)

for the quark. The inclusion of contact terms, or, in other words, the redefinition
of the potential as in (3.53) does not alter this result. In the special case when
the quark is traveling along the z-direction, |p| = 0, the spectrum (3.55) becomes

ω
dN indep

q

dω d2k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

(
1− cos

(k − q)2

2k+
x+

)
k · q

k2(k − q)2
.

(3.56)

This is the so-called GLV [20] or BDMPS-Z spectrum at first order in opac-
ity [18, 19] off a fast moving quark. The spectrum in (3.56) is infrared and
collinear safe [23]. The generalization to multiple scattering is also well known
[14, 15, 16, 17, 18, 19]. Integrating out the transverse momentum and energy,
the spectrum (3.56) leads to an average medium-induced energy loss propor-
tional to the squared of the length of the medium for short medium lengths,
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〈∆E〉 ∝ L2, due to formation time arguments. In case of multiple scattering,
coherence effects among individual scattering centers lead to destructive inter-
ference and is called the Landau-Pomeranchuk-Migdal (LPM) effect. The GLV
spectrum is the medium-induced analog of the independent spectrum off the
quark in the vacuum, and we thus denote it

ω
dN indep

q

d3k
=

αsCF

(2π)2 ω2
Rmed

q , (3.57)

and analogously for the antiquark.
The independent medium-induced spectrum off a parton (3.56) permits an

interesting probabilistic interpretation [19]. This can be most easily realized
in the incoherent limit, when L → ∞. In this case the scattering center sits
arbitrarily far away from the production point of the virtual particle and we
can drop the cosine factor responsible for the longitudinal interference effect.
Furthermore, the remaining momentum structure in (3.56) can be written as

q̂

∫

V(q)

k · q
k2(k − q)2

=
q̂

2

∫

V(q)

(
− 1

k2 +
1

(k − q)2
+L2

)
, (3.58)

where the latter term is simply the Gunion-Bertsch spectrum which describes
the medium-induced radiation off a real particle, i.e., propagating from t0 =
−∞, and the former two terms describe, on the other hand, typical hard gluon
emissions. While the first factor in (3.58) serves to reduce the probability of a
vacuum emission, see [19], the second factor is associated with the hard radi-
ation component which rescatters once in the medium. In this sense, it is the
Gunion-Bertsch spectrum that contains the purely medium-triggered mecha-
nism of inducing radiation. Note that the Gunion-Bertsch spectrum drops faster
(∝ 1/k4) at large transverse momenta than the hard component (∝ 1/k2). This
decomposition can be extended to arbitrary order in medium opacity and proves
the probability conservation of medium-induced radiation [19]. Later, we will
come back to how this interpretation is altered in the antenna case.

The spectrum in (3.56) and its extension to multiple scattering are the es-
tablished building blocks for calculating modifications of jets in medium. We
discuss some of the typical features of this spectrum in Appendix C and for a
comprehensive review see, e.g., [27, 29]. Since, by construction, the GLV spec-
trum off the quark does not incorporate effects of interference among emitters,
which are fundamental for building up of the shower picture in vacuum, there
is no a priori procedure of treating multiple emissions. In the literature, several
ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.
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In the incoherent L → ∞ limit, the radiation cross sec-
tion (6.1) expanded up to first order in opacity, takes the
form

lim
L→∞

N=1∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

×

[
(1 − w1)H(k⊥) + n0 L

∫

q1

H(k⊥ + q1⊥)

+n0 L

∫

q1

R(k⊥,q1⊥)

]
. (6.10)

The three terms on the r.h.s. of (6.10) have a sim-
ple physical meaning: the first is the hard, medium-
independent radiation (6.6) reduced by the probability
w1 = n0 L Vtot that one interaction of the projectile oc-
curs in the medium. The second term describes the
hard radiation component which rescatters once in the
medium. The third term is the medium-induced Gunion-
Bertsch contribution associated with the rescattering. In
general, the L-dependence of (6.7) reflects the interfer-
ence pattern between the different contributions and can
be quite complicated. For the case N = 1, we have seen
that this interference pattern interpolates between simple
and physically intuitive limiting cases.

B. Coherent and Incoherent Limits for N = 2 and
N = 3

The general L-dependent expressions for the second
and third orders in the opacity expansion of (6.1) can eas-
ily be written down by using (6.4) and the corresponding
results tabulated in Appendix E. In the present section,
we focus entirely on the coherent and incoherent limiting
cases. For N = 2, they read

lim
L→0

d3σ(nas)(N = 2)

d(lnx) dk⊥
= 0 , (6.11)

lim
L→∞

d3σ(nas)(N = 2)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)2

2

×

∫

Σ2

[H(k⊥ + q1⊥ + q2⊥) + R(k⊥ + q1⊥,q2⊥)] . (6.12)

Adding this second order contribution to (6.10), a simple
systematic starts to emerge:

lim
L→∞

N=2∑

m=0

d3σ(nas)(m)

d(lnx) dk⊥
=

αs

π2
NC CF

× [(1 − w1 + w2)H(k⊥)

+(1− w1)n0 L

∫

q1

H(k⊥ + q1⊥)

+
(n0 L)2

2

∫

q1

∫

q2

H(k⊥ + q1⊥ + q2⊥)

]

+ lim
L→∞

[
d3σcl(2)

d(ln x) dk⊥
+ (1 − w1)

d3σcl(1)

d(lnx) dk⊥

]
. (6.13)

Both the m-fold rescattered hard term and the Gunion
Bertsch contribution for m-fold rescattering are weighted
with the expansion of the absorption factor up to order
(N − m). For N = 3, we find from the results in Ap-
pendix E

lim
L→0

d3σ(nas)(N = 3)

d(lnx) dk⊥
= 0 , (6.14)

lim
L→∞

d3σ(nas)(N = 3)

d(lnx) dk⊥
=

αs

π2
NC CF

(n0 L)3

3!

×

∫

Σ3

[H(k⊥ + q1⊥ + q2⊥ + q3⊥)

+R(k⊥ + q1⊥ + q2⊥,q3⊥)] . (6.15)

Adding this contribution to (6.13) confirms the indicated
systematics. Rather than spelling out the result, we ex-
trapolate in the following section our analytical findings
to arbitrary N .

C. Extrapolation of limiting cases to arbitrary N

The results of our explicit calculations up to third or-
der, combined with the physical arguments given above,
suggest results valid to arbitrary orders N . For the case
of a free incoming quark, these results are given in equa-
tions (5.2) - (5.4). For the case of an in-medium produced
quark, we write them in terms of the shorthand

H(m)(k⊥) ≡
αs

π2
Nc CF

(n0 L)m

m!

(
m∏

i=1

∫

qi

)

×H

(

k⊥ +
m∑

i=1

qi⊥

)

. (6.16)

This describes the hard radiation component which
rescatters on m well-separated scattering centers. For
the incoherent limit of (6.1), expanded up to N -th order,
we obtain by extrapolating the systematics observed up
to N = 3:

lim
L→∞

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

N∑

m=0

(−1)N−m wN−m H(m)(k⊥)

+
N∑

m=0

(−1)N−m wN−m lim
L→∞

d3σcl(m)

d(ln x) dk⊥
. (6.17)

In the coherent limit, we infer from (6.11) and (6.14):

lim
L→0

N∑

m=0

d3σ(nas)(m)

d(ln x) dk⊥
=

αs

π2
NC CF

1

k2
⊥

. (6.18)

In this coherent limit, there is no medium modification to
the hard radiation (6.5), irrespective of the opacity of the
target: locating the medium at (and only at) the creation
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withmD being an infrared cut-off identified with the in-medium Debye screening
mass. To simplify the discussion in what follows, we assume the medium to be
uniform in the longitudinal direction, such that the one-dimensional medium
density is constant, i.e., n(x+) = n0Θ(L+ − x+), where L = L+/

√
2 is the

medium size in the longitudinal direction. By convention, the medium density
is normalized by n0L+ ≡ Nscat = 1, which effectively translates the presence of
a single scattering center. Hereafter, we will also define the medium transport
parameter q̂ as

q̂ = αsCA n0m
2
D . (3.48)

Note that this definition differs slightly from the one used in [23].4

To keep the calculations as simple as possible, initially we will assume that
the qq̄ pair is created in a color singlet state. In other words, the pair originates
from the splitting of a time-like virtual photon, γ∗ → qq̄. After summing over
gluon polarizations the squared amplitude becomes

ω
dNmed

d3k
=

8αsCF q̂

π
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THE SOFT LIMIT

for the quark interference spectrum. A completely analogous expression holds
for the antiquark coherent spectrum Jmed

q̄ . The total medium-induced interfer-

ences are simply Jmed = Jmed
q + Jmed

q̄ .
Indeed, the decomposition described above is completely arbitrary seen from

the perspective of gauge invariance, but will prove helpful in analyzing the
spectrum, as we will show below. In fact, in Section 5.3 we show that Jmed

q

and Jmed
q̄ cancel in the collinear region close to the direction of either of the

constituents. This is analogous to the antenna spectrum in vacuum which is just
the superposition of two independent spectra inside the cone. [SOME MORE
EXPLANATION HERE?]

4. The soft limit

The general features of the medium-induced spectrum (3.49) simplify con-
siderably in the soft limit, i.e., for ω → 0, allowing us to access the main features
of the spectrum analytically. The discussion in this section parallels and extends
the one in [7]. The divergent contribution arises from the first term in Eq. (3.49)
where

lim
ω→0

L · L̄ =
κ · κ̄
κ2κ̄2 (4.63)

which is simply J /(4ω2) according to the definition in (2.18). Furthermore,
limω→0(ν + ν̄)/2 " q. The spectrum yields then

ω
dNmed

d3k
=

αsCF

π ω2
2J

∫ L+

0
dx+ q̂ σ

(
|δn|x+

)
(4.64)

where

σ(|δn|x+) =

∫

V(q)

(
1− cos δn · q x+

)

=
1

4πm2
D

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]
, (4.65)

and |r⊥| = |δn|L+ " θqq̄L. The quantity in (4.65) is the forward dipole–medium
amplitude.

Most importantly, (4.64) contains a soft divergency and vanishes if the gluon
is collinear to either the quark or the antiquark, cf. (2.20). A further remarkable
property of (4.64) is the factorisation of the radiation process, described entirely
by 2J , and the medium interaction, which is fully contained in σ(|δn|x+).

Writing the phase space out in detail, we obtain

dNmed
∣∣
ω→0

=
αsCF

π
∆med(θqq̄, L) 2J

dω

ω

dΩ

4π
, (4.66)

where

∆med(θqq̄, L) ≡
q̂

m2
D

∫ L+

0
dx+

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]
, (4.67)
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the 3-dimensional density of scattering centers. In this case, we easily find that

1

N2
c − 1

〈TrUp(L, 0)U
†
p̄(L, 0)〉 = exp

[
− 1

2

∫ L

0
dx+n(x+) σ(|δn|x+)

]
, (18)

where

σ(|δn|x+) = 2αsCA

∫
d2q

(2π)2
V2(q)

[
1− cos(δn · q x+)

]
(19)

The transverse vector δn = p/p+ − p̄/p̄+, introduced above, scales like |δn| $
θqq̄. Expanding Eq. (18) to first order in the medium field, we recover our
previous result in the soft limit [19]. In the harmonic oscillator approximation
n(x+)σ(r) ≈ 1

2 q̂ r
2 [22], we can define the transport coefficient above which

decoherence is achieved q̂coh = (θ2qq̄ L
3)−1, i.e., ∆med $ 1 for q̂ & q̂coh.

The generalization of the above results to the octet case follows closely the
discussion above and reads

(2π)2 ω
dN tot

g∗

d3k
=

αs

ω2

[
CF (Rsing + 2∆med J ) + CA(1−∆med)J

]
, (20)

where the second term describes emissions by the total charge of the pair, i.e.,
the parent gluon. The former, singlet term was already discussed above. Note
that in the totally opaque medium, the latter contribution vanishes, decorre-
lating the quarks from their parent. This implies a memory loss effect in the
medium, so that

dN tot
g∗

∣∣∣
opaque

= dN tot
γ∗

∣∣∣
opaque

, (21)

i.e., the antenna radiation is independent of the total color charge.
The latter result completes the picture of medium-induced decoherence: it

is consistent with the breakdown of angular ordering found for the singlet spec-
trum and the properties summarized in Eqs. (16) and (21) fully define the
universal property of independent soft radiation off emitters traversing a very
dense environment.

3. Conclusions

The spectra in Eqs. (13) and (20) suggest that the probabilistic nature of the
fragmentation process for soft radiation survives. While the complete descrip-
tion of jet fragmentation in the presence of a medium still is missing, our results
provide a starting point for further studies and contain key features that have
to be incorporated, e.g., in calculations of jet observables and high-pT Monte-
Carlo generators for heavy-ion collisions. We note that different attempts at
phenomenological implementations of color decoherence in Monte-Carlo shower
codes were recently considered in [23, 24].

Although a direct comparison to the experimental findings is not possible at
this stage, we would like to mention some qualitative features which render our
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N2
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†
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∫ L
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1− cos(δn · q x+)

]
(19)

The transverse vector δn = p/p+ − p̄/p̄+, introduced above, scales like |δn| $
θqq̄. Expanding Eq. (18) to first order in the medium field, we recover our
previous result in the soft limit [19]. In the harmonic oscillator approximation
n(x+)σ(r) ≈ 1

2 q̂ r
2 [22], we can define the transport coefficient above which

decoherence is achieved q̂coh = (θ2qq̄ L
3)−1, i.e., ∆med $ 1 for q̂ & q̂coh.

The generalization of the above results to the octet case follows closely the
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=

αs

ω2
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CF (Rsing + 2∆med J ) + CA(1−∆med)J

]
, (20)

where the second term describes emissions by the total charge of the pair, i.e.,
the parent gluon. The former, singlet term was already discussed above. Note
that in the totally opaque medium, the latter contribution vanishes, decorre-
lating the quarks from their parent. This implies a memory loss effect in the
medium, so that

dN tot
g∗

∣∣∣
opaque

= dN tot
γ∗

∣∣∣
opaque

, (21)

i.e., the antenna radiation is independent of the total color charge.
The latter result completes the picture of medium-induced decoherence: it

is consistent with the breakdown of angular ordering found for the singlet spec-
trum and the properties summarized in Eqs. (16) and (21) fully define the
universal property of independent soft radiation off emitters traversing a very
dense environment.

3. Conclusions

The spectra in Eqs. (13) and (20) suggest that the probabilistic nature of the
fragmentation process for soft radiation survives. While the complete descrip-
tion of jet fragmentation in the presence of a medium still is missing, our results
provide a starting point for further studies and contain key features that have
to be incorporated, e.g., in calculations of jet observables and high-pT Monte-
Carlo generators for heavy-ion collisions. We note that different attempts at
phenomenological implementations of color decoherence in Monte-Carlo shower
codes were recently considered in [23, 24].
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Consider a qq̄ pair with momenta p ≡ (E, !p) and p̄ ≡ (Ē, !̄p), respectively,
created in the splitting of a virtual photon or gluon moving in the +z di-
rection. In the absence of the medium, the classical eikonalized current that
describes the pair created at time t0 = 0 reads Jµ

(0) = Jµ
q (0) + Jµ

q̄ (0), where

Jµ,a
q (0) = g pµ

E δ(3)(!x − !p
E t)Θ(t)Qa

q . Here, Qq denotes the color charge vector of

the quark (and, analogously, Qq̄ for the antiquark). The sum of quark and an-
tiquark charges gives the color charge of the whole system, i.e., the charge of
the parent projectile, Qq +Qq̄ = QI , where I denote the color representation of
the pair (I ≡ γ∗, g∗). In the case of a highly virtual g∗ → qq̄ splitting, the third
component of the current, ensuring color conservation, is implicit and will not
contribute in the forward region thanks to the gauge choice.

Concerning the singlet configuration, γ∗ → qq̄, the color charge of the an-
tenna is vanishing, Qγ∗ = 0, thus Qq = −Qq̄. In the octet case, on the other
hand, it is given by Qg∗ , namely the color vector of the parent gluon. Then, by
taking the square of the total color charge, we get that 2Qq ·Qq̄ = CA − 2CF ,
since Q2

q = CF ≡ (N2
c −1)/2Nc and Q2

g = CA ≡ Nc. Other color configurations,
e.g., g∗ → gg, can be considered in a similar fashion.

We use light-cone variables defined by k = (k+, k−,k), where k± ≡ (ω ±
k3)/

√
2 and k ≡ (k1, k2), and similarly for any vector in what follows. At

leading order in the coupling, g, the linearized CYM equations yield, together
with Eq. (1),

Ma
(0)λ(k) = −ig

[
κ · ελ

x (p · k) Qa
q +

κ̄ · ελ
x̄ (p̄ · k) Qa

q̄

]
, (2)

where we have introduced the following transverse vectors κi ≡ ki − x pi and
κ̄i ≡ ki− x̄ p̄i (i = 1, 2), along with the momentum fractions x ≡ k+/p+ ≈ ω/E
and x̄ ≡ k+/p̄+ ≈ ω/Ē (which are implicit in the rest of the paper). Summing
over the gluon polarization vectors, it can be easily checked that the well known
cross section for the color octet case reads [21]

(2π)2 ω
dNvac

g∗

d3k
=

αs

ω2
[CFRsing + CAJ ] , (3)

where Rsing ≡ Rq + Rq̄ − 2J with Rq = 2/(nq · n), and analogously for the
antiquark, and J = κ · κ̄/[ω2(nq ·n)(nq̄ ·n)], where nµ

q = pµ/E and nµ = kµ/ω.
Let us briefly recall some key features of this spectrum. In the singlet case,

when we only are left with the first term in Eq. (3), the two collinear poles in
Rsing can be split into two terms, Pq = Rq−J for the quark and analogously for
the antiquark, which comprise the quark and the antiquark collinear divergences,
respectively. Averaging Pq over the azimuthal angle leads to gluon emissions
confined to a cone defined by the opening half-angle of the qq̄ pair, θqq̄, so that
the spectrum reads

dNvac
q,γ∗ =

αsCF

π

dω

ω

sin θ dθ

1− cos θ
Θ(cos θ − cos θqq̄), (4)

where θ is the angle between the quark and the emitted gluon. In the octet
case, the additional term, coming with the adjoint color factor, CA, gives rise to

3
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SATURATION

r⊥-1 ≫ mD

“dipole” regime

r⊥-1 ≪ mD

“saturation” regime

for the quark interference spectrum. A completely analogous expression holds
for the antiquark coherent spectrum Jmed

q̄ . The total medium-induced interfer-

ences are simply Jmed = Jmed
q + Jmed

q̄ .
Indeed, the decomposition described above is completely arbitrary seen from

the perspective of gauge invariance, but will prove helpful in analyzing the
spectrum, as we will show below. In fact, in Section 5.3 we show that Jmed

q

and Jmed
q̄ cancel in the collinear region close to the direction of either of the

constituents. This is analogous to the antenna spectrum in vacuum which is just
the superposition of two independent spectra inside the cone. [SOME MORE
EXPLANATION HERE?]

4. The soft limit

The general features of the medium-induced spectrum (3.49) simplify con-
siderably in the soft limit, i.e., for ω → 0, allowing us to access the main features
of the spectrum analytically. The discussion in this section parallels and extends
the one in [7]. The divergent contribution arises from the first term in Eq. (3.49)
where

lim
ω→0

L · L̄ =
κ · κ̄
κ2κ̄2 (4.63)

which is simply J /(4ω2) according to the definition in (2.18). Furthermore,
limω→0(ν + ν̄)/2 " q. The spectrum yields then

ω
dNmed

d3k
=

αsCF

π ω2
2J

∫ L+

0
dx+ q̂ σ

(
|δn|x+

)
(4.64)

where

σ(|δn|x+) =

∫

V(q)

(
1− cos δn · q x+

)

=
1

4πm2
D

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]
, (4.65)

and |r⊥| = |δn|L+ " θqq̄L. The quantity in (4.65) is the forward dipole–medium
amplitude.

Most importantly, (4.64) contains a soft divergency and vanishes if the gluon
is collinear to either the quark or the antiquark, cf. (2.20). A further remarkable
property of (4.64) is the factorisation of the radiation process, described entirely
by 2J , and the medium interaction, which is fully contained in σ(|δn|x+).

Writing the phase space out in detail, we obtain

dNmed
∣∣
ω→0

=
αsCF

π
∆med(θqq̄, L) 2J

dω

ω

dΩ

4π
, (4.66)

where

∆med(θqq̄, L) ≡
q̂

m2
D

∫ L+

0
dx+

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]
, (4.67)
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Medium decoherence parameter
➙ controls the cancellation of interferences

and dΩ = d cos θ dϕ. The quantity in (4.67) can be interpreted as a decoherence
parameter, as we shall see below. Proceeding as for the calculation of the spec-
trum in vacuum, see Section 2, the medium-induced angular radiation pattern
off the quark is simply given by Pq = J , and analogously for the antiquark,
since the medium-induced independent spectra are vanishing in the soft limit.
Thus, after integrating out the azimuthal angle ϕ, we obtain

dNmed
q

∣∣
ω→0

=
αsCF

π
∆med(θqq̄, L)

dω

ω

sin θ dθ

1− cos θ
Θ(cos θqq̄ − cos θ) . (4.68)

demonstrating that the medium-induced soft gluon radiation off the quark is
completely suppressed inside the cone of opening angle θqq̄, as opposed to the
standard angular structure obtained in vacuum, see (2.24). The medium pa-
rameters only enter in the decoherence parameter ∆med, which does not depend
on θ, such that the functional form of the spectrum remains vacuum-like and
antiangular ordered, see (2.25) [7].

The spectrum found above has some similarities with the radiation off a
color octet antenna in the vacuum, c.f. (??), in which a large angle term, corre-
sponding to the total charge of the pair, also appears. Several differences exist,
however, with (4.68), most importantly, (i) the disappearance of the medium-
induced radiation in the limit of vanishing opening angles, θqq̄ → 0, and (ii)
the relevant color factor, CF , in the medium case, indicating the radiation off
a quark in the fundamental representation. The latter point is, in fact, further
clarified by taking into account multiple scattering with the medium. Then the
adjoint color CA contained in q̂ exponentiates [8].

From the functional analysis of the decoherence parameter we identify two
regimes.

• The dipole regime: is defined by |r⊥| # m−1
D , which translates the fact that

the maximum transverse separation between the quark and the antiquark
is smaller than the Debye screening. In other words, the qq̄-dipole is
probed coherently by the medium. Eq. (4.67) can then be expanded
for small dipole sizes r⊥. The integral in Eq. (4.67) is straightforward,
yielding

∆med ≈ 1

6
q̂L+ r2⊥

[
ln

1

r⊥mD
+ const.

]
. (4.69)

• The saturation regime: when the dipole size becomes larger than the in-
medium correlation length,i.e., |r⊥| % m−1

D , the dipole cross-section satu-
rates to a universal value that does not depend on the dipole parameters

∆med ≈ q̂L+

m2
D

. (4.70)

Neglecting the color factor and the coupling constant in (3.48) (which can
be absorbed in the redefinition of the mean free path), we can rewrite
(4.70) as ∆med ≈ L/λ‖. This is nothing but the effective number of
scattering centers which in this limit has to be smaller than one not to
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∆med ≈ n0L
+ ≡ Nscat
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MULTIPLE SCATTERING

Up(x+, 0) = P+ exp

{
ig

∫ x+

0
dz+

[
T · A−med(z

+, z+p⊥/p+)
]
}Wilson line along the trajectory:

20

large-angle gluon emissions, 〈J 〉azimuth = 2Θ(cos θqq̄ − cos θ)/(1− cos θ), which
can be interpreted as the radiation off the total charge of the pair, namely that of
the parent gluon [21]. Thus, the well-known feature of angular ordering applies
to both color configurations.

We now turn to calculating medium interactions in the approximation of
small opening angle of the pair, θqq̄ $ 1, and for asymptotic energies of the
quark and antiquark, respectively. In the following we will only consider soft
gluon emissions and treat the pair field as a perturbation around the strong
background field Amed. In the asymptotic limit, the medium gauge field can
be described by A−

med(x
+,x), while Ai

med = A+
med = 0 [20]. In Fourier space it

reads

A−
med(q) = 2π δ(q+)

∫ ∞

0
dx+ Amed(x

+, q) eiq
− x+

. (5)

The continuity relation, given by ∂µJµ = ig[A−
med, J

+], can be solved recursively
with

Jµ
q(m) = ig

pµ

p · ∂ [A−
med, J

+
q(m−1)] . (6)

Here, the subscript m stands for the order of the expansion in the medium field.
For m > 0, in momentum space we get

Jµ,a
q(m)(k) = −(ig)m+1 pµ

p · k

[
m∏

i=1

∫
d2qi

(2π)2

∫ x+
i+1

0
dx+

i

× e
i
p·qi
p+

x+
i T · Amed(x

+
i , qi)

]ab
Qb

q e
i p·k
p+

x+
m , (7)

where x+
m+1 = L is the total medium length and T the generators of SU(3)

in the adjoint representation. Summing over all possible interactions, Jµ,a
q =∑∞

m=0 J
µ,a
q(m), yields

Jµ,a
q (k) = −ig

pµ

p · k

[
δab +

∫ L

0
dx+ e

i p·k
p+

x+

∂−Uab
p (x+, 0)

]
Qb

q , (8)

where the Wilson line along the trajectory of the quark in the adjoint represen-
tation, Up, is given by

Up(x
+, 0) = P+ exp

[
ig

∫ x+

0
dz+T ·A−

med

(
z+,

z+p

p+

)]
. (9)

In the strictly soft limit, i.e., ω → 0, Eq. (8) simplifies to

Jµ,a
q (k) = −ig

pµ

p · kU
ab
p (L, 0)Qb

q . (10)

4
∆med = 1 − 1

N2
c − 1

〈TrUp(x+, 0)U †
p̄(x+, 0)〉

Only the quarks are 
rotated in color:
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∆med ≈ 1− e−
1
12 q̂ θ2

qq̄ L3

Multiple soft scattering approximation

q̂: medium transport coefficient

θqq

L0

Only the quarks are 
rotated in color:
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DECOHERENCE

k⊥ ⇔ max(Qs, r⊥-1)

- a two scale problem!

Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

∆med ≈ 1− exp[− 1
12

Q2
s r2
⊥]

Q2
s = q̂ L

r⊥ = θqq̄ L

•                       (Dipole regime)r⊥ < Q−1
s •                       (Decoh. regime)r⊥ > Q−1

s

r⊥Θqq̄ Q−1
s

r⊥Θqq̄ Q−1
s

• Hard scale:                                    andQ ≡max (r−1
⊥ , Qs) k⊥ < Q

screening
 length∆med ≈

1
12

Q2
s r2
⊥ ∆med ≈ 1

Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

∆med ≈ 1− exp[− 1
12

Q2
s r2
⊥]

Q2
s = q̂ L

r⊥ = θqq̄ L

•                       (Dipole regime)r⊥ < Q−1
s •                       (Decoh. regime)r⊥ > Q−1

s

r⊥Θqq̄ Q−1
s

r⊥Θqq̄ Q−1
s

• Hard scale:                                    andQ ≡max (r−1
⊥ , Qs) k⊥ < Q

screening
 length∆med ≈

1
12

Q2
s r2
⊥ ∆med ≈ 1

Decoherence a high gluon energies
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• The decoherence parameter 

∆med ≈ 1− exp[− 1
12
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screening
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1
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s r2
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DECOMPOSITION

independent: 
BDMPS/GLV
novel interferences

Rmed
q = 32πq̂

∫

V(q)

∫ L+

0
dx+

[
1− cos

(
ν2

2k+
x+

)]
ν

ν2
·L

Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read

ω
dN interf

d3k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

{[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L −
[
1− cos

(
ν̄2

2k+
x+

)]
ν

ν2
· L̄

}
.

(3.59)

Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely

dNmed = dNmed
q + dNmed

q̄ (3.60)

where

ω
dNmed

q

d3k
=

αsCF

(2π)2 ω2

(
Rmed

q − Jmed
q

)
. (3.61)

The independent spectrum Rmed
q was already discussed in the previous subsec-

tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives

Jmed
q = −32π q̂

∫

V(q)

∫ L+

0
dx+

{
1

2

[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L
}

, (3.62)
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely
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as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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Following the vacuum decomposition, we can divide the spectrum into an inco-
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The independent spectrum Rmed
q was already discussed in the previous subsec-

tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely
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The independent spectrum Rmed
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tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives

Jmed
q = −32π q̂

∫

V(q)

∫ L+

0
dx+

{
1

2

[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L
}

, (3.62)

15

1/θ

antiangular
ordering

large angles

C.A. Salgado, Y. Mehtar-Tani, KT, in preparation

25



0.01 0.1 1

0

0.3

0.6

ω
 d

N
/d
ω

 d
θ

0.01 0.1

1/r⊥ = 0.7 GeV

mD = 0.5 GeV
L = 6 fm

ω = 1 GeV

0.01 0.1 1

0

0.3

0.6

1
ω = 10 GeV

0.01 0.1 1
θ

0

1

2

3

ω
 d

N
/d
ω

 d
θ

0.1 1
ω = 5 GeV

mD = 2 GeV
L = 10 fm

1/r⊥ = 0.1 GeV

0.1 1
θ

0

1

2

3
1 10

Coh.
Indep.
1/θ

ω = 20 GeV
0.01 0.1 1

-0.2

0

0.2

0.4

0.6

0.8
ω

 d
N

/d
ω

 d
θ

1/r⊥ = 0.7 GeV

mD = 0.5 GeV
L = 6 fm

ω = 1 GeV

0.01 0.1 1

-0.2

0

0.2

0.4

0.6

0.8
ω = 10 GeV

0.01 0.1 1
θ

0

0.5

1

1.5

2

ω
 d

N
/d
ω

 d
θ

ω = 5 GeV

mD = 2 GeV
L = 10 fm

1/r⊥ = 0.1 GeV

0.1 1
θ

0

0.5

1

1.5

2 ω = 20 GeV

Rmed
q = 32πq̂

∫

V(q)

∫ L+

0
dx+

[
1− cos

(
ν2

2k+
x+

)]
ν

ν2
·L

Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read

ω
dN interf

d3k
=

8αsCF q̂

π

∫
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0
dx+
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· δnx+

)]
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1− cos
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ν2

2k+
x+

)]
ν̄

ν̄2 ·L −
[
1− cos

(
ν̄2

2k+
x+

)]
ν

ν2
· L̄

}
.

(3.59)

Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely

dNmed = dNmed
q + dNmed

q̄ (3.60)

where

ω
dNmed

q

d3k
=

αsCF

(2π)2 ω2

(
Rmed

q − Jmed
q

)
. (3.61)

The independent spectrum Rmed
q was already discussed in the previous subsec-

tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives
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This nothing but the result obtained in the soft limit, where we have integrated
q⊥ up to r−1

⊥ . Now going at larger angles than the opening angle of the pair,κ ∼
k, we get,

ω
dNmed

d3k
" 4αsCF q̂L+

3π

∫

V(q)
((k − q) · r⊥)2

q2

(k − q)2k2 (5.75)

" αsCF q̂L+

3π2

r2⊥
k2

(
ln

1

r⊥mD
+ const.

)
(5.76)

Without going further we see the persisting log enhancement which show again
that the relevant scale is r−1

⊥ . For k⊥ > r−1
⊥ , the cosine oscillates a lot and thus

we get the the Gunion-Bertsch spectrum that is suppressed as k−4
⊥ .

ω
dNmed

d3k
" 8αsCF q̂L+

π

∫

V(q)

q2

(k − q)2k2

" 8αsCF q̂L+

π

1

k4 ln
k2

m2
D

. (5.77)

5.2. The “saturation” regime

In this regime there is no kinematic window to expand the cosines, we simply
get then

ω
dNmed

d3k
=

8αsCF q̂L+

π

∫

V(q)

{[ ν

ν2
− κ

κ2

]
·
[
ν̄

ν̄2 − κ̄

κ̄2

]

+

[
ν

ν2
− ν̄

ν̄2

]
·
[ ν

ν2
− κ

κ2

]
−
[
ν

ν2
− ν̄

ν̄2

]
·
[
ν̄

ν̄2 − κ̄

κ̄2

]}
. (5.78)

Again we assume that θqq̄ $ mD/ω so that one can drop the two last terms.
Now k⊥ $ q⊥ ∼ mD, we obtain

ω
dNmed

d3k
=

8αsCF q̂L+

π

κ · κ̄
κ2κ̄2

∫

V(q)
. (5.79)

which is again the vacuum-like spectrum. For large angles. θ % θqq̄ now we can
drop all dependence on the opening angle and we get

ω
dNmed

d3k
=

8αsCF q̂L+

π

∫

V(q)

q2

k2 (k − q)2
, (5.80)

which is again the Gunion-Bertsch spectrum.
To conclude, in the saturation regime the Gunion-Bertsch regimes sets in for

k⊥ > mD, where as in the dipole regime it sets in for k⊥ > r−1
⊥ .
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withmD being an infrared cut-off identified with the in-medium Debye screening
mass. To simplify the discussion in what follows, we assume the medium to be
uniform in the longitudinal direction, such that the one-dimensional medium
density is constant, i.e., n(x+) = n0Θ(L+ − x+), where L = L+/

√
2 is the

medium size in the longitudinal direction. By convention, the medium density
is normalized by n0L+ ≡ Nscat = 1, which effectively translates the presence of
a single scattering center. Hereafter, we will also define the medium transport
parameter q̂ as

q̂ = αsCA n0m
2
D . (3.48)

Note that this definition differs slightly from the one used in [23].4

To keep the calculations as simple as possible, initially we will assume that
the qq̄ pair is created in a color singlet state. In other words, the pair originates
from the splitting of a time-like virtual photon, γ∗ → qq̄. After summing over
gluon polarizations the squared amplitude becomes

ω
dNmed

d3k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

{[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

+

[
1− cos

(
ν2

2k+
x+

)][
ν

ν2
− ν̄

ν̄2

]
·L

+

[
1− cos

(
ν̄2

2k+
x+

)][
ν̄

ν̄2 − ν

ν2

]
· L̄

}
, (3.49)

where the integration measure is defined as

∫

V(q)
≡

∫
d2q

(2π)2
V2(q) , (3.50)

and we have used

ν2

2k+
− ν̄2

2k+
=

ν + ν̄

2
· δn , (3.51)

where δn ≡ (κ− κ̄)/k+. Note that this vector is simply related to the opening
angle of the pair |δn| ∼ sin θqq̄. To obtain Eq. (3.49), virtual corrections, often
called contact terms [14, 15, 19] have been added to the square of the amplitude
(3.43) for unitarity and read

ω
dNmed

d3k

∣∣∣∣
C.T.

= −2αsCF

π

p · p̄
(p · k)(p̄ · k) q̂L

+

∫
d2q

(2π)2
V2(q) . (3.52)

4The standard definition of q̂ refers to a different approximation scheme, the multiple soft
scattering approximation. Here, it is meant as a shorthand.
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INSIDE THE CONE

r⊥-1 ≫ mD

this implies that ω ≫ ω ̄c, spectrum is suppressed
only for hard gluons in the “dipole” regime

r⊥-1 ≪ mD

LPM phase is working
independent BDMPS/GLV spectrum close to 
the quark and antiquark
important in the “saturation” regime

5.3. Radiation inside the cone

The radiation inside the cone shouldn’t be affected by interference effects,
as is the case for the vacuum component. Assuming that the opening angle
is larger than any other scale in the problem, k+δn ! k⊥, q⊥, the spectrum
simplifies to

ω
dNmed

d3k
=

8αsCF q̂L+

π

∫

V(q)

(
1− sinΩqL+

ΩqL+

)[
ν

ν2
− k+δn

(k+δn)2

]
·
[ ν

ν2
− κ

κ2

]
,

(5.81)
where we have expanded around the quark contribution. For large opening
angles this tends to the independent radiation spectrum off the quark in (3.55).
Therefore, similarly to the case in vacuum, interferences are absent deeply inside
the pair cone, i.e., close to either of the constituents. Note that this conclusion
holds for both the “dipole” and “saturation” regimes described above.

5.4. Probabilistic interpretation: medium induces new out-of-cone radiation

It is interesting to contrast the probabilistic interpretation of the indepen-
dent radiation spectrum (3.55), as sketched in (3.58) [19], to the results obtained
above for the antenna. In particular, the independent spectrum off a single emit-
ter is proven to conserve probability at any fixed order in opacity [19]. For the
antenna spectrum, we have a more complicated situation due to the presence of
the interferences. Let us therefore initially separate the discussion for radiation
inside and outside the cone.

Deep inside the cone, discussed in Section 5.3, we are naturally close to either
one of the constituents. As shown below, the total medium-induced spectrum
simplifies simply to the independent one, i.e., all interference effects vanish. The
same happens, of course, for the vacuum spectrum. Therefore, we recover the
standard probabilistic interpretation which conserves the total probability of
emission. In other words, the medium-induced radiation generates simultane-
ously a reduction of the probability for vacuum emission and two new compo-
nents: the hard gluon emission and the Gunion-Bertsch component. Ultimately,
it is only the latter which represents a pure medium-induced radiation off an
on-shell propagating particle.

The results in Sections 5.1 and 5.2, which are confirmed by the numerics
below, suggests a similarly straightforward interpretation. Namely, outside of
the cone the Gunion-Bertsch spectrum, arising from the L · L̄ structures, is the
sole component that survives. The only subtlety one has to keep in mind is
that the typical scale of the spectrum is 〈q2〉 ∼ r−2

⊥ in the “dipole” regime and
〈q2〉 ∼ m2

D in the “saturation” regime. To summarize, it drops roughly like
1/k2 for k2 & 〈q2〉 and 1/k4 in the opposite case.

In other words, there is no hard gluon emission spectrum, cf. two first terms
on the right hand side of (3.58). But there is also no vacuum radiation spectrum
at θ > θqq̄ due to angular ordering and thus the probability of emissions is not
conserved in this case. Therefore the Gunion-Bertsch component is the only
natural gauge-invariant spectrum we could expect describing medium-induced
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PROBABILISTIC 
INTERPRETATION

Incoherent limit (L→∞)

〈∆E〉 ∝ L2, due to formation time arguments. In case of multiple scattering,
coherence effects among individual scattering centers lead to destructive inter-
ference and is called the Landau-Pomeranchuk-Migdal (LPM) effect. The GLV
spectrum is the medium-induced analog of the independent spectrum off the
quark in the vacuum, and we thus denote it

ω
dN indep

q

d3k
=

αsCF

(2π)2 ω2
Rmed

q , (3.57)

and analogously for the antiquark.
The independent medium-induced spectrum off a parton (3.56) permits an

interesting probabilistic interpretation [19]. This can be most easily realized
in the incoherent limit, when L → ∞. In this case the scattering center sits
arbitrarily far away from the production point of the virtual particle and we
can drop the cosine factor responsible for the longitudinal interference effect.
Furthermore, the remaining momentum structure in (3.56) can be written as

q̂

∫

V(q)

k · q
k2(k − q)2

=
q̂

2

∫

V(q)

(
− 1

k2 +
1

(k − q)2
+L2

)
, (3.58)

where the latter term is simply the Gunion-Bertsch spectrum which describes
the medium-induced radiation off a real particle, i.e., propagating from t0 =
−∞, and the former two terms describe, on the other hand, typical hard gluon
emissions. While the first factor in (3.58) serves to reduce the probability of a
vacuum emission, see [19], the second factor is associated with the hard radi-
ation component which rescatters once in the medium. In this sense, it is the
Gunion-Bertsch spectrum that contains the purely medium-triggered mecha-
nism of inducing radiation. Note that the Gunion-Bertsch spectrum drops faster
(∝ 1/k4) at large transverse momenta than the hard component (∝ 1/k2). This
decomposition can be extended to arbitrary order in medium opacity and proves
the probability conservation of medium-induced radiation [19]. Later, we will
come back to how this interpretation is altered in the antenna case.

The spectrum in (3.56) and its extension to multiple scattering are the es-
tablished building blocks for calculating modifications of jets in medium. We
discuss some of the typical features of this spectrum in Appendix C and for a
comprehensive review see, e.g., [27, 29]. Since, by construction, the GLV spec-
trum off the quark does not incorporate effects of interference among emitters,
which are fundamental for building up of the shower picture in vacuum, there
is no a priori procedure of treating multiple emissions. In the literature, several
ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.

14

Inside the cone: 
same probabilistic picture as before
conservation of probability
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ad hoc approaches have been suggested [28]. Here, we briefly mention two of
the most typical approaches. On one hand, one can assume the multiple emis-
sions to be independent [22, 23] which implies a Poisson distribution of multiple
medium-induced gluon emissions, called quenching weights. On the other hand,
one can incorporate the medium-induced spectrum (3.56) as a modification of
the standard Altarelli-Parisi splitting function in vacuum [30, 31, 32]. This im-
plicitly assumes the same resummation properties and ordering variables for the
medium-induced radiation as for the vacuum one.
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Inside the cone: 
same probabilistic picture as before
conservation of probability

withmD being an infrared cut-off identified with the in-medium Debye screening
mass. To simplify the discussion in what follows, we assume the medium to be
uniform in the longitudinal direction, such that the one-dimensional medium
density is constant, i.e., n(x+) = n0Θ(L+ − x+), where L = L+/

√
2 is the

medium size in the longitudinal direction. By convention, the medium density
is normalized by n0L+ ≡ Nscat = 1, which effectively translates the presence of
a single scattering center. Hereafter, we will also define the medium transport
parameter q̂ as

q̂ = αsCA n0m
2
D . (3.48)

Note that this definition differs slightly from the one used in [23].4

To keep the calculations as simple as possible, initially we will assume that
the qq̄ pair is created in a color singlet state. In other words, the pair originates
from the splitting of a time-like virtual photon, γ∗ → qq̄. After summing over
gluon polarizations the squared amplitude becomes

ω
dNmed

d3k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

{[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

+

[
1− cos

(
ν2

2k+
x+

)][
ν

ν2
− ν̄

ν̄2

]
·L

+

[
1− cos

(
ν̄2

2k+
x+

)][
ν̄

ν̄2 − ν

ν2

]
· L̄

}
, (3.49)

where the integration measure is defined as

∫

V(q)
≡

∫
d2q

(2π)2
V2(q) , (3.50)

and we have used

ν2

2k+
− ν̄2

2k+
=

ν + ν̄

2
· δn , (3.51)

where δn ≡ (κ− κ̄)/k+. Note that this vector is simply related to the opening
angle of the pair |δn| ∼ sin θqq̄. To obtain Eq. (3.49), virtual corrections, often
called contact terms [14, 15, 19] have been added to the square of the amplitude
(3.43) for unitarity and read

ω
dNmed

d3k

∣∣∣∣
C.T.

= −2αsCF

π

p · p̄
(p · k)(p̄ · k) q̂L

+

∫
d2q

(2π)2
V2(q) . (3.52)

4The standard definition of q̂ refers to a different approximation scheme, the multiple soft
scattering approximation. Here, it is meant as a shorthand.
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L2

Outside the cone: 
medium induces new radiation!
only Gunion-Bertsch, no hard component
because no corresponding vacuum radiation!
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CONCLUSIONS

copious jets in heavy-ion collisions at the LHC
medium induces soft radiation at large angles 
⇒ onset of decoherence

a two scale problem: r⊥-1 vs. Qs

⇒ jet probes medium, and vice versa
the radiation pattern off an antenna 
⇒ building block for jet calculus in medium 
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