Lattice QCD at non zero chemial potential - status and challenges

Kim Splittorff

Niels Bohr Institute / DFF - Sapere Aude

Heavy ions: Experiments Confront Theory, the Discovery Center, November 8, 2011

Lattice QCD at non zero chemial potential - status and challenges -p. 1/23

Alternative motivation !

Snowballs

 $A \rightarrow B \rightarrow A =$ Snowball

 $C \to D \to C = \mathsf{Fluff}$

Scott A. Sandford NASA Ames Research Center

http://www.astrosociety.org/pubs/mercury/9801/snowball.html

Lattice QCD at non zero chemial potential - status and challenges - p. 3/23

 $A \rightarrow B \rightarrow A =$ Jets gets eaten $C \rightarrow D \rightarrow C =$ Fluff Can lattice QCD help understand the phase diagram ?

- **9** Success story $\mu = 0$
- Solution 1 and the sign problem
 Item 1 and the sign problem
- $\checkmark \ \mu \neq 0$ status, challenges and progress

The baryon/anti-baryon symmetric world

```
T
Chirally symmetric
Quarks Gluons
T<sub>c</sub> 2nd order ?
1st order ?
Chiral symmetry broken
Pions Protons Neutrons ...
```

Landau theory: $N_f \ge 2$ 1st order ($m_f = 0$)

Answer depends on values of m_f and $U_A(1)$ anomaly

Lattice: @ physical quark masses crossover

Pisarski, Wilczek, PRD29 (1984) 338 Aoki, Endrodi, Fodor, Katz, Szabo, Nature 443 (2006) 675

de Forcrand, Philipsen JHEP 0701 (2007) 077

 $(\mu = 0)$

Matter antimatter asymmetry

N > 0

Here: Fact which we adopt into QCD

Grand canonical approach: Fix μ determine N

$$N = \frac{1}{V} \partial_{\mu} \log Z(\mu)$$

Lattice QCD at non zero chemial potential - status and challenges - p. 7/23

 $(\mu \neq 0)$

How to include μ in Z

 μ is conjugate variable to N

$$\mu N = \mu \langle q^{\dagger} q \rangle = \mu \langle \bar{q} \gamma_0 q \rangle$$

$$\mathcal{L}_{\text{QCD}} = \bar{q}(D_{\eta}\gamma_{\eta} + \mu\gamma_0 + m)q + \text{Gluons}$$

How to include μ in Z

 μ is conjugate variable to N

$$\mu N = \mu \langle q^{\dagger} q \rangle = \mu \langle \bar{q} \gamma_0 q \rangle$$

$$\mathcal{L}_{\text{QCD}} = \bar{q}(D_{\eta}\gamma_{\eta} + \mu\gamma_0 + m)q + \text{Gluons}$$

 $\mu\,$ enters as the 0th component of the gauge field

$$\mathcal{L}_{\text{Lattice QCD}} = \dots + e^{a\mu} \bar{q}_x \gamma_0 U_{x,x+\hat{0}} q_{x+\hat{0}} + e^{-a\mu} \bar{q}_{x+\hat{0}} \gamma_0 U_{x,x+\hat{0}}^{\dagger} q_x + \dots$$

How to include μ in Z

 μ is conjugate variable to N

$$\mu N = \mu \langle q^{\dagger} q \rangle = \mu \langle \bar{q} \gamma_0 q \rangle$$

$$\mathcal{L}_{\text{QCD}} = \bar{q}(D_{\eta}\gamma_{\eta} + \mu\gamma_0 + m)q + \text{Gluons}$$

 μ enters as the 0th component of the gauge field

$$\mathcal{L}_{\text{Lattice QCD}} = \dots + e^{a\mu} \bar{q}_x \gamma_0 U_{x,x+\hat{0}} q_{x+\hat{0}} + e^{-a\mu} \bar{q}_{x+\hat{0}} \gamma_0 U_{x,x+\hat{0}}^{\dagger} q_x + \dots$$

Works fine for free quarks

Hasenfratz, Karsch, PLB 125 (1983) 308

The sign problem

$$Z_{N_f=2} = \int dA \, \det^2(D + \mu \gamma_0 + m) \, e^{-S_{\rm YM}}$$

Anti Hermitian Hermitian

$$\det^{2}(D + \mu\gamma_{0} + m) = |\det(D + \mu\gamma_{0} + m)|^{2}e^{2i\theta}$$

The measure is not real and positive

The sign problem

$$Z_{N_f=2} = \int dA \, \det^2(D + \mu \gamma_0 + m) \, e^{-S_{\rm YM}}$$

Anti Hermitian Hermitian

$$\det^{2}(D + \mu\gamma_{0} + m) = |\det(D + \mu\gamma_{0} + m)|^{2}e^{2i\theta}$$

The measure is not real and positive

No Monte Carlo sampling of A_{η} at $\mu \neq 0$

$$Z_{N_f=2} = \int dA \, \det^2(D + \mu \gamma_0 + m) \, e^{-S_{\rm YM}}$$

Anti Hermitian Hermitian

$$\det^{2}(D + \mu\gamma_{0} + m) = |\det(D + \mu\gamma_{0} + m)|^{2}e^{2i\theta}$$

What if we simply ignore $e^{2i\theta}$?

If we ignore $e^{2i\theta}$: phase quenched QCD

Kogut, Sinclair Phys.Rev.D77:114503,2008

$$Z_{N_f=2} = \int dA \, \det^2(D + \mu \gamma_0 + m) \, e^{-S_{\rm YM}}$$

Anti Hermitian Hermitian

$$\det^{2}(D + \mu\gamma_{0} + m) = |\det(D + \mu\gamma_{0} + m)|^{2}e^{2i\theta}$$

What if we simply ignore $e^{2i\theta}$?

$$Z_{N_f=2} = \int dA \, \det^2(D + \mu \gamma_0 + m) \, e^{-S_{\rm YM}}$$

Anti Hermitian Hermitian

$$\det^{2}(D + \mu\gamma_{0} + m) = |\det(D + \mu\gamma_{0} + m)|^{2}e^{2i\theta}$$

What if we simply ignore $e^{2i\theta}$?

 $|\det(D + \mu\gamma_0 + m)|^2 = \det(D + \mu\gamma_0 + m)\det(D - \mu\gamma_0 + m)$

ISOSPIN CHEMICAL POTENTIAL

Alford Kapustin Wilczek PRD 59 (1999) 054502

The QCD Phase Diagram at nonzero isospin chemical potential

The pions have nonzero isospin \Rightarrow BEC of pions

The QCD Phase Diagram at nonzero isospin chemical potential

The pions have nonzero isospin \Rightarrow BEC of pions

The QCD Phase Diagram at nonzero isospin chemical potential

The pions have nonzero isospin \Rightarrow BEC of pions

Conclude: The phase $e^{2i\theta}$ is *highly* relevant for the phase diagram

Son, Stephanov Phys.Rev.Lett. 86 (2001) 592

Kogut, Sinclair Phys.Rev.D77:114503,2008

So include the phase factor in Lattice QCD

Method	Idea	Challenge	
Reweighting	Absorb the sign in the observable	Exponential cancellations	
Taylor expansion	Expand at $\mu = 0$	Higher order terms	
Imaginary μ	Determine the analytic function	Control the extrapolation	
Density of states	Use the distribution of the phase	Determine the distribution	
Canonical ensemble	Work at fixed baryon number	Fix the baryon number	

review Lombardo, Splittorff, Verbaarschot arXiv:0912.4410

The curvature and the average sign

de Forcrand Philipsen JHEP PoS LAT2005 (2005) 016

Progress: Karsch B-J Schaefer Wagner Wambach arXiv:1110.6038

Particular challenging for $\mu > m_{\pi}/2$

1)
$$\langle e^{2i\theta} \rangle \sim e^{-V(1-m_{\pi}^2/4\mu^2)^2\mu^2 F_{\pi}^2}$$

2) New Banks Casher relation (essential for SB χ S)

3) $\bar{\psi}\psi$ and n_B fluctuate wildly (Lorentzian dist)

reviews

Splittorff Verbaarschot arXiv:0809.4503

Lombardo, Splittorff, Verbaarschot arXiv:0912.4410

Lattice measurement of endpoint (Reweighting)

Fodor Katz JHEP 0203:014,2002; JHEP 0404:050,2004

Lattice measurement of endpoint (Rewieghting)

- Scale the axis by T_C and $m_{\pi}/2$

Fodor Katz JHEP 0203:014,2002; JHEP 0404:050,2004 Splittorff, hep-lat/0505001, PoS LAT2006:023,2006

Philipsen 0710.1217

Lattice QCD at non zero chemial potential - status and challenges - p. 19/23

Progress: Subset method

Progress: Subset method

Method	Idea	Challenge
Subset method	Sum over subset of configs	Apply it work for QCD

Bloch, PRL.107:132002,2011

Method	Idea	Challenge
Complex Langevin	Stochastic flow in complex plane	Optimization

Problems for CL are 'orthogonal' to $\langle e^{2i\theta} \rangle \ll 1$

Parisi, Phys. Lett. 131 B (1983) 393 Aarts, Splittorff, JHEP 1008:017,2010

Aarts, Seiler, Stamatescu Phys.Rev.D81:054508,2010

Illustration by Philippe de Forcrand

Illustration by Philippe de Forcrand

1) shift by $\mathcal{O}(V)$ in imaginary direction

2) Amplitude: real axis $\mathcal{O}(\exp(V))$; complex plane $\mathcal{O}(1)$

Aarts personal correspondence (2009) de Forcrand PoS (LAT2009), 10_

Lombardo Splittorff Verbaarschot arXiv:0910.5482

Conclusions

Interplay between lattice QCD and analytic QCD has

- 1) allowed us to understand the sign problem
- 2) understand lattice results
- 3) solid progress towards a solution

Conclusions

Interplay between lattice QCD and analytic QCD has

- 1) allowed us to understand the sign problem
- 2) understand lattice results
- 3) solid progress towards a solution

Conclusions

Interplay between lattice QCD and analytic QCD has

- 1) allowed us to understand the sign problem
- 2) understand lattice results
- 3) solid progress towards a solution