Backreaction of SUSY-breaking branes

Daniel Junghans

Institut für Theoretische Physik &
Centre for Quantum Engineering and Spacetime Research
Leibniz Universität Hannover

Collaboration with J. Blåbäck, U. H. Danielsson, T. Van Riet,
T. Wrase and M. Zagermann

arXiv: 1009.1877, 1105.4879, 1111.2605
Outline

Introduction

A simple non-BPS example

The problematic backreaction

Conclusion
Outline

Introduction

A simple non-BPS example

The problematic backreaction

Conclusion
Localised sources

- Localised sources (D-branes, O-planes) are important ingredients in string theory/supergravity compactifications:
 SUSY breaking, tadpole cancelation, dS uplifts, ...

 e.g. Kachru, Kallosh, Line, Trivedi 03; Douglas, Kallosh 10
Localised sources

- Localised sources (D-branes, O-planes) are important ingredients in string theory/supergravity compactifications: SUSY breaking, tadpole cancelation, dS uplifts, ...

 e.g. Kachru, Kallosh, Line, Trivedi 03; Douglas, Kallosh 10

![Diagram of D-branes and O-planes with a point indicating a localised source]

- Equations of motion (Einstein, dilaton, RR fields) include delta functions:

 \[S_{\text{loc}} = \mu_p e^{\frac{p-3}{4} \phi} \int d^{10}x \sqrt{g} \delta^{(9-p)}(x) - \mu_p \int C_{p+1} \wedge \delta^{(9-p)} \]
Introduction

Localised sources

- Localised sources (D-branes, O-planes) are important ingredients in string theory/supergravity compactifications: SUSY breaking, tadpole cancelation, dS uplifts, ...
 e.g. Kachru, Kallosh, Line, Trivedi 03; Douglas, Kallosh 10

- Equations of motion (Einstein, dilaton, RR fields) include delta functions:

\[
S_{\text{loc}} = \mu_p e^{\frac{p-3}{4} \phi} \int d^{10}x \sqrt{g} \delta^{(9-p)}(x) - \mu_p \int C_{p+1} \wedge \delta^{(9-p)}
\]

Usually hard to solve!
Smearing

- Common trick: take 'smeared limit' as approximation, i.e. simplify computations by assuming

\[\delta^{(9-p)} \rightarrow \text{const.} \]
Smearing

- Common trick: take 'smeared limit' as approximation, i.e. simplify computations by assuming

\[\delta^{(9-p)} \to \text{const.} \]
Smearing

- Common trick: take 'smeared limit' as approximation, i.e. simplify computations by assuming

\[\delta^{(9-p)} \rightarrow \text{const.} \]

- Now we only need to solve integrated eoms!
Smearing

- Common trick: take 'smeared limit' as approximation, i.e. simplify computations by assuming

\[\delta^{(9-p)} \rightarrow \text{const.} \]

- Now we only need to solve integrated eoms!

Easier!
Does this make any sense?

- Compare smeared and localised solutions to find out!
Does this make any sense?

- Compare smeared and localised solutions to find out!
- Localised solutions known for a few *BPS examples* (GKP & T-duals), effects of backreaction *explicitly computable*

 Giddings, Kachru, Polchinski 01
 Schulz 04; Graña, Minasian, Petrini, Tomasiello 07
 Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann 10
Does this make any sense?

- Compare smeared and localised solutions to find out!
- Localised solutions known for a few BPS examples (GKP & T-duals), effects of backreaction explicitly computable

 Giddings, Kachru, Polchinski 01
 Schulz 04; Graña, Minasian, Petrini, Tomasiello 07
 Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann 10

- BPS: objects that are mutually BPS do not exert any force on each other, since interactions cancel out
Does this make any sense?

- Compare smeared and localised solutions to find out!
- Localised solutions known for a few BPS examples (GKP & T-duals), effects of backreaction explicitly computable

 Giddings, Kachru, Polchinski 01
 Schulz 04; Graña, Minasian, Petrini, Tomasiello 07
 Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann 10

- BPS: objects that are mutually BPS do not exert any force on each other, since interactions cancel out
- Example: compactifications down to $p+1$ dimensions with spacetime-filling (anti-) O_p-planes, fluxes and Ricci-flat internal space
Setup has smeared solution with

\[\phi, F_{6-p} = \text{const.}, \quad H = \pm e^{\frac{p+1}{4} \phi} \star_{9-p} F_{6-p} \]
Setup has smeared solution with

\[\phi, F_{6-p} = \text{const.}, \quad H = \pm e^{\frac{p+1}{4} \phi} \star_{9-p} F_{6-p} \]

Localisation recipe: introduce warping, a varying dilaton and \(F_{8-p} \) to compensate for backreaction effects
Setup has smeared solution with

\[\phi, F_{6-p} = \text{const.}, \quad H = \pm e^{\frac{p+1}{4}\phi} \star_{9-p} F_{6-p} \]

Localisation recipe: introduce warping, a varying dilaton and \(F_{8-p} \) to compensate for backreaction effects

Find that incorporating backreaction does not change relevant properties of solution (moduli, curvature, ...)

Smearing is good approximation in GKP-like setups. Naive argument: no force between sources and flux that are mutually BPS!
Smearing seems to make sense...
Setup has smeared solution with

\[\phi, F_{6-p} = \text{const.}, \quad H = \pm e^{\frac{p+1}{4}\phi} \star_{9-p} F_{6-p} \]

Localisation recipe: introduce warping, a varying dilaton and \(F_{8-p} \) to compensate for backreaction effects

Find that incorporating backreaction does not change relevant properties of solution (moduli, curvature, ...)

Smearing is good approximation in GKP-like setups. Naive argument: no force between sources and flux that are mutually BPS!
Setup has smeared solution with

$$\phi, F_{6-p} = \text{const.}, \quad H = \pm e^{\frac{p+1}{4} \phi} \star_{9-p} F_{6-p}$$

Localisation recipe: introduce warping, a varying dilaton and F_{8-p} to compensate for backreaction effects.

Find that incorporating backreaction does not change relevant properties of solution (moduli, curvature, ...)

Smearing is good approximation in GKP-like setups. Naive argument: no force between sources and flux that are mutually BPS!

Smearing seems to make sense...
However...

- Does a smeared solution always approximate a localised solution? And if so, how good is the approximation?
However...

- Does a smeared solution always approximate a localised solution? And if so, how good is the approximation?
- Smearing ok in BPS case, but what about non-BPS setups? Balance of forces between sources and flux could be due to smearing!
However…

- Does a smeared solution always approximate a localised solution? And if so, how good is the approximation?
- Smearing ok in BPS case, but what about non-BPS setups? Balance of forces between sources and flux could be due to smearing!
- Most constructions relevant for phenomenology/cosmology only obtained in the smeared limit, effects of backreaction poorly understood!
However...

- Does a smeared solution always approximate a localised solution? And if so, how good is the approximation?
- Smearing ok in BPS case, but what about non-BPS setups? Balance of forces between sources and flux could be due to smearing!
- Most constructions relevant for phenomenology/cosmology only obtained in the smeared limit, effects of backreaction poorly understood!

Smearing justified in non-BPS setups?
Outline

Introduction

A simple non-BPS example

The problematic backreaction

Conclusion
Setup

- Idea: explicitly address this question in a simple setup!

Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann 11
Setup

- Idea: explicitly address this question in a simple setup!
 Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann 11

- Consider type IIA supergravity on $AdS_7 \times S^3$ with fluxes and spacetime-filling, extremal (anti-) D6-branes
Setup

- Idea: explicitly address this question in a simple setup!

- Consider type IIA supergravity on $AdS_7 \times S^3$ with fluxes and spacetime-filling, extremal (anti-) D6-branes

- Setup has smeared solution

which is stable and satisfies all eoms with

$$\phi, F_0 = \text{const.}, \quad H = \pm \frac{5}{2} F_0 e^{7/4\phi} \star_3 1$$
Setup

- Idea: explicitly address this question in a simple setup!

Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann

- Consider type IIA supergravity on $AdS_7 \times S^3$ with fluxes and spacetime-filling, extremal (anti-) D6-branes

- Setup has smeared solution

which is stable and satisfies all eoms with

$$\phi, F_0 = \text{const.}, \quad H = \pm \frac{5}{2} F_0 e^{7/4 \phi} \star_3 1$$

Is there also a localised solution?
Ansatz

- Now consider our setup with **localised sources**

\[ds^2 = e^{2A} ds^2_{7} + e^{2B} ds^2_{3} , \]

and (a priori) arbitrary ϕ, F_0, F_2, H.

Daniel Junghans
Backreaction of SUSY-breaking branes
Ansatz

- Now consider our setup with localised sources

- Localisation prescription that worked for BPS setups leads to contradiction! If solution exists at all, it must be more general...

Blåbäck, Danielsson, DJ, Van Riet, Wrase, Zagermann 10
Ansatz

- Now consider our setup with localised sources

- Localisation prescription that worked for BPS setups leads to contradiction! If solution exists at all, it must be more general...

- Most general ansatz compatible with symmetries: warped AdS times a conformal sphere, i.e.

\[ds^2 = e^{2A} ds_7^2 + e^{2B} ds_3^2, \]

and (a priori) arbitrary

\[\phi, F_0, F_2, H \]
Further simplify problem: form eoms demand F_0 to be constant and determine F_2 and H up to an unknown function α, spherical symmetry demands eoms to only depend on 1 angle θ
Further simplify problem: form eoms demand F_0 to be constant and determine F_2 and H up to an unknown function α, spherical symmetry demands eoms to only depend on 1 angle θ.

Problem reduced to solving 4 ODEs for 4 functions A, B, ϕ, α!
Further simplify problem: form eoms demand F_0 to be constant and determine F_2 and H up to an unknown function α, spherical symmetry demands eoms to only depend on 1 angle θ

Problem reduced to solving 4 ODEs for 4 functions A, B, ϕ, α!

Seems tractable...
Outline

Introduction

A simple non-BPS example

The problematic backreaction

Conclusion
Warmup: regularised sources

- Assume *smooth* source profile of any shape:

 Can approximate delta source profile with arbitrary precision!
Warmup: regularised sources

- Assume **smooth** source profile of any shape:

 Can approximate delta source profile with arbitrary precision!

- **Solve eoms locally** using a Taylor expansion of A, B, ϕ, α around some arbitrary point on the 3-sphere
Warmup: regularised sources

- Assume **smooth** source profile of any shape:

 ![Profile](image)

 Can approximate delta source profile with arbitrary precision!

- **Solve eoms locally** using a Taylor expansion of A, B, ϕ, α around some arbitrary point on the 3-sphere

- Surprisingly strong constraints: smeared profile is the **only profile** allowed (up to coordinate transformations)!
Warmup: regularised sources

- Assume **smooth** source profile of any shape:

- Can approximate delta source profile with arbitrary precision!

- **Solve eoms locally** using a Taylor expansion of A, B, ϕ, α around some arbitrary point on the 3-sphere

- Surprisingly strong constraints: smeared profile is the **only profile** allowed (up to coordinate transformations)!

Last resort: genuine delta profiles...
Fully localised solution?

- Finally: check whether is there a **fully localised** solution!
Fully localised solution?

- Finally: check whether is there a **fully localised solution**!

- Need to solve bulk eoms, but what are the correct **boundary conditions** for A, B, ϕ, α in the near-source region?
Fully localised solution?

- Finally: check whether is there a fully localised solution!

- Need to solve bulk eoms, but what are the correct boundary conditions for A, B, ϕ, α in the near-source region?

- Expand (possibly divergent) functions around the source and solve eoms locally to find strong restriction:

 1. standard 'flat space' bc: flux/source are BPS near source

 cf. Janssen, Meessen, Ortín 99

 2. 'unusual' bc: flux/source not BPS, H has divergent energy density
A topological no-go

- Do these bc allow a **global solution**? Use **topological constraints** from eoms to decide!
A topological no-go

- Do these bc allow a global solution? Use topological constraints from eoms to decide!
- \(F_2 \) Bianchi and \(H \) eom yield strong constraint for global behavior of \(\alpha \):
 \[\text{sgn} \, \alpha = \text{sgn} \, \alpha'' \text{ at every extremum } \alpha' = 0 \]
A topological no-go

- Do these bc allow a global solution? Use topological constraints from eoms to decide!
- F_2 Bianchi and H eom yield strong constraint for global behavior of α:
 \[\text{sgn } \alpha = \text{sgn } \alpha'' \text{ at every extremum } \alpha' = 0 \]
- We also need to satisfy the tadpole condition for (anti-) D6-branes:
 \[\int F_0 H = F_0^2 \int \alpha e^{\phi - 7A} \star_3 1 \overset{\leq}{\gtrless} 0 \]
A topological no-go

- Do these bc allow a global solution? Use topological constraints from eoms to decide!
- F_2 Bianchi and H eom yield strong constraint for global behavior of α:
 $$\text{sgn } \alpha = \text{sgn } \alpha'' \text{ at every extremum } \alpha' = 0$$
- We also need to satisfy the tadpole condition for (anti-) D6-branes:
 $$\int F_0 H = F_0^2 \int \alpha e^{\phi - 7A} \star 3 1 \begin{cases} < 0 \end{cases}$$
- Topological no-go rules out 'flat space' bc:
 - 'flat space' bc: $\alpha = 0, \alpha' \begin{cases} < 0 \end{cases}$
 - 'unusual' bc: α finite, $\alpha' \begin{cases} > 0 \end{cases}$
A topological no-go

- Do these bc allow a **global solution**? Use **topological constraints** from eoms to decide!

- F_2 Bianchi and H eom yield strong constraint for global behavior of α:

 $$\text{sgn } \alpha = \text{sgn } \alpha'' \text{ at every extremum } \alpha' = 0$$

- We also need to satisfy the **tadpole condition** for (anti-) D6-branes:

 $$\int F_0 H = F_0^2 \int \alpha \, e^{\phi - 7A} \star 3 \, 1_{(\leq)} 0$$

- **Topological no-go** rules out 'flat space' bc:

 ![Diagram](image)

 - 'flat space' bc: $\alpha = 0$, $\alpha'_{(\geq)} 0$
 - 'unusual' bc: α finite, $\alpha'_{(\leq)} 0$
What about the second bc?

- 'Unusual' bc is *not ruled out* by topological argument, global solution may exist
What about the second bc?

- ’Unusual’ bc is not ruled out by topological argument, global solution may exist
- However: no obvious interpretation of H-singularity! Can this be resolved in full string theory? Or is solution unphysical?
What about the second bc?

- ‘Unusual’ bc is **not ruled out** by topological argument, global solution may exist
- However: no obvious **interpretation** of H-singularity! Can this be resolved in full string theory? Or is solution **unphysical**?
- Closely related problem debated in the literature: put anti-D3-branes into Klebanov-Strassler throats (KKLT!), **same singularity** will show up

Klebanov, Strassler 00; Kachru, Pearson, Verlinde 02
Kachru, Kallosh, Line, Trivedi 03
Bena, Graña, Halmagyi 09
Bena, Giecold, Graña, Halmagyi, Massai 11
Several suggestions...

- Singularity is due to *partial smearing* of the branes (excluded in our analysis!)

Bena, Graña, Halmagyi 09
Several suggestions...

- Singularity is due to *partial smearing* of the branes (excluded in our analysis!)

 \[\text{Bena, Graña, Halmagyi 09} \]

- Singularity is due to *linear perturbation* around BPS background (excluded in our analysis!)

 \[\text{Dymarsky 11} \]
Several suggestions...

- Singularity is due to **partial smearing** of the branes (excluded in our analysis!)

 Bena, Graña, Halmagyi 09

- Singularity is due to **linear perturbation** around BPS background (excluded in our analysis!)

 Dymarsky 11

- Solution does not exist, true solution is **time-dependent**

 Blåbäck, Danielsson, Van Riet 12
Several suggestions...

- Singularity is due to **partial smearing** of the branes
 (excluded in our analysis!)

 Bena, Graña, Halmagyi 09

- Singularity is due to **linear perturbation** around BPS background
 (excluded in our analysis!)

 Dymarsky 11

- Solution does not exist, true solution is **time-dependent**

 Blåbäck, Danielsson, Van Riet 12

- **Myers effect**: in presence of fluxes, branes clump together into
 higher-dimensional brane

 Myers 99; Kachru, Pearson, Verlinde 02
 DJ, Wrase, Zagermann (in progress)
Several suggestions...

- Singularity is due to **partial smearing** of the branes (excluded in our analysis!)

 Bena, Graña, Halmagyi 09

- Singularity is due to **linear perturbation** around BPS background (excluded in our analysis!)

 Dymarsky 11

- Solution does not exist, true solution is **time-dependent**

 Blåbäck, Danielsson, Van Riet 12

- **Myers effect**: in presence of fluxes, branes clump together into higher-dimensional brane

 Myers 99; Kachru, Pearson, Verlinde 02
 DJ, Wrase, Zagermann (in progress)

Fate of backreacted solution unclear...
Outline

Introduction

A simple non-BPS example

The problematic backreaction

Conclusion
Conclusion

- Understanding **backreaction effects** is important for string phenomenology/cosmology
Conclusion

- Understanding **backreaction effects** is important for string phenomenology/cosmology
- Possibility of promoting smeared solutions to localised ones appears to depend on whether solutions are **BPS or not**
Conclusion

- Understanding **backreaction effects** is important for string phenomenology/cosmology.
- Possibility of promoting smeared solutions to localised ones appears to depend on whether solutions are **BPS or not**.
- Warping effects cancel out in BPS setups so that smeared solution stays a solution when localised.

Thank you!

Daniel Junghans
Conclusion

- Understanding backreaction effects is important for string phenomenology/cosmology.
- Possibility of promoting smeared solutions to localised ones appears to depend on whether solutions are BPS or not.
- Warping effects cancel out in BPS setups so that smeared solution stays a solution when localised.
- Backreaction in non-BPS setups is problematic! No physical solutions?
Conclusion

- Understanding backreaction effects is important for string phenomenology/cosmology.
- Possibility of promoting smeared solutions to localised ones appears to depend on whether solutions are BPS or not.
- Warping effects cancel out in BPS setups so that smeared solution stays a solution when localised.
- Backreaction in non-BPS setups is problematic! No physical solutions?
- Future work: Can we elaborate on these insights to better understand dS model building (KKLT, classical dS vacua, etc.)?

Thank you!
Conclusion

- Understanding backreaction effects is important for string phenomenology/cosmology
- Possibility of promoting smeared solutions to localised ones appears to depend on whether solutions are BPS or not
- Warping effects cancel out in BPS setups so that smeared solution stays a solution when localised
- Backreaction in non-BPS setups is problematic! No physical solutions?
- Future work: Can we elaborate on these insights to better understand dS model building (KKLT, classical dS vacua, etc.)?

Thank you!