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Introduction

* Many systems in nature exhibit critical points with
non-relativistic scale invariance. Such systems
typically have Lifshitz symmetries:

D, : r — AT t— N\t
H t — t+c,

P; = +a,
M. : = Rijxj.

* Lifshitz algebra (only nonzero commutators shown, left
out M;; and z # 1):

D, H|=z:H, [D,P]=P,.
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* An example of a symmetry group that also displays
non-relativistic scale invariance but which is larger than
Lifshitz is the Schroedinger group.

* Additional symmetries are Galilean boosts V;
(z* — x* + v't) and a particle number symmetry V.

* Schroedinger algebra (only nonzero commutators
shown, left out M;; and z # 1, 2):
[DzaH]:ZHv [Dzapz]:Pz [DZ7N]:(2_Z)N7

* When z = 2 there is an additional special conformal
symmetry C.
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* Aim: to construct holographic techniques for (strongly
coupled) systems with NR symmetries.

* From a different perspective, Schroedinger
space-times form interesting examples of non-AdS
space-times for which it appears to be possible to
construct explicit holographic techniques.

* Schroedinger holography initiated by: [son, 2008]

[Balasubramanian, McGreevy, 2008].
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Outline Talk

* Geometric definition of z = 2 Schroedinger
space-times

* Causal structure

* The Schroedinger boundary

* Asymptotically Schroedinger (ASch) space-times:
° The model

° From AAdS to ASch
° The FG expansions: what we know so far
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Schroedinger space-time

* A (d + 3)-dimensional Schroedinger space-time:

2

1
ds® = —L_d¢? = > (—2dtd¢ + dr® + d7?) .

7“2

* ¢ = cst slices are Lifshitz space-times.

&< preserves Lifshitz symmetries.

e Extra symmetries: N (¢ — & + ¢) and Galilean boost
invariance V; (z* — 2’ +v't, & — &+ 3047 7).

* sch,(d+ 3) C so(2,d + 2): the deformation term breaks
all the symmetries of AdS that are not in sch,(d + 3).

* For z = 2 all tidal forces are bounded and the
space-time is completely regular.
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Geometric Definition

* The metric of a z = 2 Schroedinger space-time can be
written as

giﬁh — gﬁgs o A,uAl/
where A, is any AdS null Killing vector [puval, Hassaine,

Horvathy, 2008].

* The isometries of ¢>2" are all AdS Killing vectors that
commute with A*.

* All AdS null Killing vectors are hypersurface
orthogonal.

* A* Is also hypersurface orthogonal with respect to gﬁﬁh.
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Causal structure for g7 = g0° — A, A,

e All points inside I=(P) can be
connected to P via timelike curves
(both for AdS and Sch).

* On AdS points outside /=(P) can be
P connected to P via null and spacelike
geodesics. These correspond to
curves on Sch with tangent u* s.t.
I-(P) gt = k =k — (Py)? with

uwA, = —Py.

I'(P)

* On AdS the geodesic parameter P, # (0 can be
boosted without affecting the geodesic curve s.t. x < 0.
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Causal structure

* Hence on Sch the only points that cannot be
connected by a timelike curve are separated by null
and spacelike geodesics with P, = 0, i.e. the lightlike
hypersurfaces generated by A*.

* All points on such a lightlike hypersurface have the
same chronological past and future: Sch is a
non-distinguishing space-time with a Galilean-like
causal structure.

* On Sch the only achronal sets are the lightlike
hypersurfaces generated by A*.
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The Sch boundary (barred: Sch, unbarred: AdS)

* Let () be a defining function for the AdS space, i.e.
(2 > 0 in the bulk and €2 = 0 at the boundary and

(9(2(’9(2’
g" R Qﬂo—

* The Riemann tensor of a Sch space-time (metric
g/u/ — Juv — A,uAl/) satisfies

RMVPUAG — (_g,upgl/a -+ g,uagz/p) A% .

 Conformally rescaling g,,, = 272, using that

Ripe = = G770:90:Q (940900 — GuoGvp) + - - -

,0,£00,02

contracting with A7 we get  g""=c-= o0 =1.
|
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The Sch boundary

,0,£00,0 ,0,£00,0 0,1
g Q Q’Q()g Q Q’QO_<AMQ>‘Q—0:1_1:O

since g = g + ArA”.

* We thus find that the Sch boundary is at {2 = 0 and that
() satisfies the same conditions as on AdS with the
additional condition that

89
AL —
Q\Qo 0.

* A* Is tangential to the boundary. Since furthermore A*
IS a null Killing vector in the bulk of AdS it is also a null
Killing vector of the AdS boundary metric.
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* The fact that A* Is tangent to the Sch boundary
suggests that the Sch boundary inherits the
non-relativistic causal structure of the Sch space-time.

* Since the only achronal sets are the lightlike
hypersurface generated by A* expanding away from
the boundary along a normal achronal curve, so that
radial and time dependence do not mix, is only
possible when A* Is tangential to the boundary.

* We have not defined a Sch boundary metric. This will
not be needed for the construction of FG expansions.
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Asymptotically Schroedinger space-times

* For simplicity consider ASch solutions of the massive
vector model

§ = /d‘”%\/—? (R _lpe_ (d+2)A* + (d+1)(d + 2))

S

* |n string theory ASch space-times are solutions to
such Lagrangians that also have scalars. Setting these
scalars to constants typically enforces two constraints

* Goal: to solve the equations of motion of the massive
vector model subject to these two constraints such that
the solutions are ASch.
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From AAdS to ASch

* We write again g, = g,, — 4,4, where g,,, IS now
ASch and g,, an AAdS space admitting a defining
function satisfying the same conditons as for a pure

Sch space-time.

* The equations of motion for A* and g,, are

Ry + (d+ 2)9uy
V,5"

Vv, A"

A, A"

Il e

where 5, =V, ,A, +V, A, and F, =V, A, -V, A,

(LASMV o Supspv) ;

)

S O O

)

—2(AMV, A,) APV A"
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Fefferman—Graham expansions

dr? 1
gudatda” = % + —Qhabda:ada:b, A*9, =1A"0, + A0, ,
r r
hab — J(0)adb T
Aa — A?O) —|— cee
A" = 0+....

* The expansion for A, Is iIdentical to the AAdS case
(without matter) as long as £45,, — S5,,,5”, = 0. (This
IS a generalization of FG expansions for ASch spaces
that can be obtained via TsT where S, = 0.)

* For a pure Sch space Ag’o) IS a boundary hypersurface
orthogonal (HSO) null Killing vector. For ASch spaces
this is relaxed to AE‘O) being tangent to a HSO,
expansion and shear free, null geodesic congruence.
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Conclusions and future work

* We have defined Sch spaces in terms of AdS
guantities.

* This allowed for a definition of the Sch boundary In
terms of a defining function.

* This sets the boundary conditions for the FG
construction for ASch spaces.

* |n progress: working out the details of the FG
expansion.

* Potential applications:
o Holographic renormalization
° The asymptotic symmetry group
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