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Motivation

* D-brane compactifications provide a promising framework for model building

* They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.

* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy

signatures that can be observed at LHC.
& Antoniadis, Arkani-Hamed, Dimopoulos, Dvali

* There exists a class of amplitudes containing arbitrary number of gauge bosons and
maximal two chiral fermions that exhibit a universal behaviour independently of the

specifics of the compactification .
P P Lust, Stieberger, Taylor, et. al.

* Due to their universal behaviour they have predictive power.

* The observed poles correspond to the exchanges of Regge excitations of the standard
model gauge bosons, whose masses scale with the string mass M.

* Such poles might be observable at LHC if one has low string scale
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Motivation

* On the other hand there exist a tower of stringy excitations localized at the intersections
of two stacks of D-branes.

* Their masses depend on the string mass M and the intersection angle 6 and thus can
be significantly lighter than the Regge excitations of the gauge bosons.

*  As we will see those light stringy states show up as poles in the scattering amplitudes
containing four fermions.

* Such amplitudes are very model dependent, thus do not have the predictive power of
the universal amplitudes.

* However the poles corresponding to light stringy states should be observed primary to
Regge excitations for the universal amplitudes and thus may provide a first step
towards evidence for string theory.
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Intersecting D6-branes

For the sake of calculability we assume two intersectng Dé6-branes on 7% x T x T°, where
the D6-branes wrap in each torus a one-cycle

2 4 6
XA XA XA

A

* Supersymmetry translates into: 9, + 6, + 5 =0 mod 2

* We will take a closer look at the (massless and massive) states appearing at such an
intersection.
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(Quantization at angles

Xp-i—l
* Boundary conditions for strings between branes at angles: !
Oy XP(1,0) = XPT(1,0) =0
Oy XP (1, m) + tan (mh) O, XP T (r,m) =0
XPtH(r 1) — tan (70) XP(1,7) =0 \9
>
+ Mode expansion (77 = X7 + i XPT): x?
07'(z) = 3 ak_p, 2"+ 07'(2) =Y ol g, 2171
W)= Y Wl ozt W)= Y Pl 774

rel+v reZ+v

for v =0, 1/2 for R and NS respectively.

* The commutator/anticommutators:

[aéie’ a"IT/LZFQ] - (m j: 0) 5n+m 511/ {,lp?In_GI Y wfll—l—el} = 5m,n511/
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The vacuum

* Intersecting branes in 10D:

X2

A X
91
My
< L }1
+* NS sector (4D bosons):
- Positive angle
Um—g,101)Ns =0  m=>1
Um0, 01 )Ns =0 m 2> 0
- Negative angle
@m—91’91>NS:O m > 0
Umyor |0 )ns =0 m2>1

¢T—91’01>NS :O
wr—i—Ql‘ (9[ >NS =1

Vr—g, |01 )Ns =0
¢T+91‘ 01 >NS =0

r>1/2
r>1/2

r>1/2
r>1/2

# Recall:  GSO-projection requires odd number of fermionic excitations.
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Lightest string states

+ Recall the mass formula: —— ot —{;

M? = Mf Sj (S: : Ozl_mwjoz,,]n_gf D Z(m — () 5 wimwfwf;b—e[ : +€(€>

I mes mes

+ Concrete setup: 0° <0, 65° <0, 03* <0 with 67° + 05" + 03" = —2 (SUSY).

* The lowest fermionic excitations of this configuration:

1 a a a
Y_1 eab|9123> NS M2:§(‘91b_ZHJb)M82:<1+91b)M82
JAI
1
[1%-10p016853)ns M? = (14 (61 + 65" + 05")) M2 = 0
I
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Lightest string states

* Some additional light states (for small 0, ):

g, 1;[¢_%_9119??2,3>NS M? = (1+;§;91 — 01) M7 = -0, M;
(g, ) 1;[¢_%_91\ 0% 3 )N M?=(1+ % 2}: 01 — 201)M; = —20, M,
* These scalars are potentially very light, depending on the intersection angles.
* If the string scale is low, and the angles are small, such states have very low masses.

* Additional states, such as Higher Spin states, but even 0; — 0 massive.
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The vacuum

* Intersecting branes in 10D:

2
A X5

* R sector (4D fermions):

- Positive angle
Um—0;10)rR =0 m2>1
Ozm+@1’(9[>R:O mZO

- Negative angle

Oém_gI’9[>R:O mZO

&m+91’91>R:0 m 1

Sy
(92
y 4 \}3
w?“—ej‘ 9[ >R = 0

Vri0;101)r =0

Vr—_0;|01)r =0
Vri0:|0r)r =0
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Lightest string states

+ Recall the mass formula: / 0
M?* = M; (Z (Z O L sy Gty 3 F Z(m —01) 1 V. 0, Ym—sy 3) T 50)
1 mes mes

+ Concrete setup: 0{* <0, 05° <0, 05° <0 with 0 +65° 405" = 2

+ Massless state: the vaccum: \ 91 23 >

* Light states: ( 0, is small):

0401‘9123>R W = _HlMSQ
(0491> “91 2 3> = _291M32

* These states are the corresponding superpartners to the NS-scalars.

+ Question: Can they be observed?

Monday, February 20, 12



The Amplhitude
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Amplitude

* Consider three stacks of D-branes within a semi-realistic brane configuration:

0. >0, 02 >0, 9. <0 0, + 62, +62, =0
6. >0, 02, >0, 03, <0 — 0 +0. +8 =0
P . <8, .o, P.<t 0. +62 +0° = -2

* At the intersections live chiral fermions: v, 1, v, X.
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Amplitude

* We want to compute the scattering amplitudes of four chiral fermions:

<?E¢x>2>= =

s,

4

* The corresponding diagram contains different channels:

s-channel t-channel

W X \/

!
gauge boson + ... :
i

scalar + ...

W X _//\\_

* Two difficulties: 1. Vertex operators

2. Bosonic Twist field correlator

N

N
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Vertex Operators
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Vertex Operators

* To each state there is a corresponding vertex operator, whose form crucially depends on
the intersection angle

* challenging part is the internal part A bosonic and fermionic twist fields
+ Method: We determine the OPE’s of 97,07, ¥ and ¥ with vacuum and excitations of it

* Example: 01)Ns ~ s0,00,

00 0
0Z'(2)|0r)ns = D ok g, 27 O Ins = > ab g 270 )N

R=—00 ==
— 2%171g 91|91>N5—291_1 7'9_';(0)
9Z' (2)| 01 )ns = Z O iay, 2" 0y )n Z oo, 2" 0)ns
N=—=090 nN=—oo
- ¥ a£1+91]91>NS = 2791 N(;r (0)

* analogous for fermionic degrees of freedom and higher excitations

* OPE’s give us detailed knowledge of the conformal twist fields.
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Vertex Operators

* For the NS-sector apply the following dictionary

positive angle 0

10)ns e’ gy
04—9‘6)>NS 6i6H 7';—
(_9)*|0)ns et wy
¢—%—|—9‘ 0 >NS e7;(9—1)H
a—gt_1.9/0)Ns : . =1H
(0_0)” Y_1,4|0)nsg : €@DH

_|_
oy
_|_

* For the R-sector apply the following dictionary

positive angle 6

’9>R 6z’(0—1/2)H 0;

negative angle 0

eiHH

CANE o
a9\9>N5 el0H T—_G
(@0)?|0)ns e’ W,
Y_1_¢|0)Ns il
agh_1_gl0)ns T
()" 3010 s i+ g

negative angle 0

‘9>R : 6z’(0—|—1/2)H 0.:9
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An example

+ Consider 69° <0, 02° <0, 6° <0 with 69° +63° 4+ 93 = —2

* A massless state in the NS-sector and the corresponding VO:
3

ab
H V_1/2_gev |07 3)Ns VED = Ay, @ e [ ' +1)HIU_Hab6 ik X
]
Conformal dimension World-sheet charge
1 % L2 3 b
i=2==% P+ =1+ ULws=> (62 +1) =1
2213 —I_Q _|_2 (Dws IZl(I—I—)

* A massless state in the R-sector and the corresponding VO:

gk ! P ab _ i
05%2)n V= AuvaS®e “’/QH e
Conformal dimension World-sheet charge
3 ey 2 k2 : 1 1
AN g R ST i s L) 7o\ (il o en
S Rt (Dws Z(I+2) >
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Amplitude

* For this configuration, the amplitude is <@E 0

th
0, >0, 02, >0, 03, <0
0. >0, 9 >0, 07, <0
1 2 3
0. <D, g, <0, 0., <0 2o
4
Vlﬁ
with the corresponding vertex operators:
2
1 . v/ 1 . 3 1 ;
ab : Vw . - Aabwa e—go/QSa HO_g—I ez(eab—i)HI 0_:93 ez(eab+§)H3 esz
ab ab
I=1
-4 T —p/2 o - — i(-0L,+Y)H, _+ i(-02,—3)Hs _ikX
ba : V&QZAbawde‘p S Haefe odd L el AP ab = 3 ) ¥
ab ab
I=1
—3 a —p/2 - + z'(HI —l)H — 1(93 —|—l)H 1k X
be : Vi * = Mg P ™" SaHJQIe TR @ o £ VT 3TN
bc bc
I=1
-3 Y T - — (=0 +3)Hr + i(-05.—1)Hs _ikX
cb : VXQ:AcbXdew S H%Ie T g e be™2)73 ¢
bc bc
I=1

X

)

N

N
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Amplitude

* Computing: A = <@E(O) Y(x) x(1) X(oo)>

which takes the form:
A = Tr (Aba Aab Abc Acb) @Zo} wa XIB 5(5
1
/ dx<e—so/2<o>e—so/2<x>e—so/2<1>e—so/2<oo>>
0
% <Sd (0) S, (CE‘) SB(I)SB(OO) ><eik:1X(0) eing(ac) 61ll<:3X(1) eik4X(oo)>

x (0t g (0)074 (1) 04 (1) 0%, (0))

< I (o5 003 (@)% () (o0))

x <€fz(—92b—%)H3<o>ez‘(eib+%)ﬂ3<x> ei(0het+3) H? (1) ei(—ei’c—%)H3<oo>>

2
<] <€i(—9£b+%)Hf<o>ei(eib—%)H%x) ei(05.—3)H' (1) ei(—eéc+%)Hf<oo>>

=3

Monday, February 20, 12



Amplitude

* Computing: A = <@Z(O) Y(x) x(1) X(oo)>

which takes the form: .
1 —
N - 4 4
A = Tr(Apa Ao Avc Acy) Y ¥ X7 X3 21— 2)] % 2o
1
/ da( /200 2@ /2D /2()
0

€af €43 (1 . 3;)_% Tog? X <5d(0> S, () SB(I)SB(OO> ><eik1X(0) pik2 X (2) Hiks X (1) eik4X(oo)>

x (0t g (0)0 74 (1) 04 (1) 0%, (0))

mkrkz (1 - x)/@'ks x’;é(kl—l-kz—i-l%)
(5, 0 1 01 o)

w { ot (=0as—3)H?(0) ,i(05,+5 ) H? (2) ,i(05.+3)H? (1) Li( -6} ——)H3(oo)>

bie ™ 2
2
H< (=02,+3)H'(0),i(05,— 3 )H' (2) ,i(05.—3)H (1) ei(—9£c+%)HI(oo)>

x(—Hib 3)(03,+3 )(1_33)(9354‘ ) (03 %) ( O =2 M((=02, = 3 )+ (02, + 3 )+ (80 +3))
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The correlator: ¢

_|_
01_¢

oooooooooooooooooooo



Recipe A

* Extend via the “doubling trick” the upper half plane to the whole complex plane.

* Quantum part is then computed by employing conformal field theory techniques

(energy momentum tensor method) A~> analogous to the closed string derivation:

% he®(w) N 0w @ (w)

T(z)P(w) Gz —w) s + ...
lim (<T(Z)0a(2’1)06(22)Uv(23)06(24)> 3 ho )
Z=>%2 <Ja(2’1)05(22)07(2’3) 05(24)> (Z m 22>2

= 0,, In(0,(21) 05(22) 07(753) 05(24))

* The classical part is given by the sum over all quadrangles connecting the four chiral
fields e~ > %ra’ .

* The final result is then given in the so-called Lagrangian Form.
Cvetic, Papadimitriou, Abel, Owen
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Recipe A

* One independent angle:
[z(1 — )] 0"
VF(@)F(1 - x)

220~ (01-0(0) 00(x) 01-9(1) 04(00)) = +/sin(m0)

x 3 exp {al sin(70) F(z)F(1 — z) (( = gL_“ @)2 + (

PEAp,GEA]
* Two independent angles: —-6(1-6)(1 — £)=0—) [gin(r6)
vy T -— P SIN( 7T
2217 (o1 _9(0) 0(x) 01-1,(1) 0,(0)) = 0,1 -1, 1, 2] \/ t(z)

t(x) o P 7Tsin(7r9) o L2 1

5 Zexp [_ﬂsin(w@) L2 . ) RY R2 2] |
p,q

with: (@) — S (F(e) T(1—v)oFy[0,1 — 1,1+ 60— ;1 -z

27 I'1+60—v) o F110,1 — v, 1; 2]

I'v)I'(1—-0)F1-60,v,1 —0+v;1— z]

*Tlire-0) o Y R

)

Monday, February 20, 12



Recipe B

* A generic closed twisted-field correlator takes the form:

a’p% a/p%{

Aclosed = ‘K(Z)P ZCEEUJ(Z) < U_J(Z) ‘

¥
k.,v

where w(2) is holomorphic, k, 7€ A* and

2% 2 -\ 2
3 I, ¥ s g ¥
= (F ) = (-3

* The open twisted-field correlator will look like (Hamiltonian Form):

where for the simple case of a Di-brane we have:

1 1 Ri{R;
2 = 2 1*%2 2
popen ey ﬁp +* &/2 [2 q

* Qur task is to bring the closed correlator to the above form and get the open one.
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Correlator: One angle £ A—

* The closed string result has the form: % () 714(0)

,Zw‘ze(l—é)) <01_g(0) o9(2,2)o1_¢(1) JQ(OO)> b b

C |z2(1 = z)|~20(1-9) . ae2y _, dik_ )
=¥ ‘\(F[G 1)‘_ gaE X o el-2mifys k] w(e) it a(z)i-d
A 241V, ) EEA* vi €A

e

. . F1[9 1—61—2]
d = =41 |
and 7(z) =71 + it =1 Fi01-0.2

Dixon, Friedan, Martinec, Shenker

where w(z) = exp [

* The open string result has the form:

Lq [2(1 - 2)]~**-9)
Q(/ 2F1[(9,1—(9;33]

Qfgél—e) <0’1_9(0) o) (33) 0'1_9(1) 0'9<QQ)> —

where w(x) = exp [— SZ((:;)] and t(z) = % (r{z) — 7(z)) = 22127[; If’ 91 ;]:1:] :

after Poisson resummation the same result as via recipe A.
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Correlator: Two angles "~ »
* Following the same recipe, we get (original closed <o e
result is far too complicated to display here): \ b/

Burwick, Kaiser, Muller

a:ggl—l/) <01_9(O) ogg(x)o1_,(1) ay(oo)> L

\/a 33_9(1_9)(1 o CC)_Q(l_V)
L. 2 F110,1 — v, 1; x]

Psq
: N mt(x)
with the w(z) = exp [ sin(we)] and
Ha) = sin(wf) (T'(O)T(1 —v) o F1[0,1 —v,14+60 —v;1 — 1]
— 2T I'1460—v) 2 F1[0,1 — v, 1; x]
_|_F(V)F(1 -0) 2 Fy[1-0,1,1 -0+ v;1 - 3]
[(1l+v-0) o F1[1—0,v,1; x|

* Again after Poisson resummation the same result as obtained via recipe A.

)
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Amplitude (Back)

* Computing: A = <@Z(O) Y(x) x(1) X(OO)>

which takes the form:

3

1
B _ 4 4
A = Tr(hehmhehe)fav®x®y; BOBIE e

1
/ dx<e—<ﬁ/2(0)6—90/2(%’)6—90/2(1)6—<P/2(00)>
0

~1 -1 <Sé‘(0) S, (x) SB(I)SB(OO) ><eik1X(0) k2 X (@) Liks X (1) ez’k4X(oo)>

+ ~ - +
X <O‘_92b(0) U_Qib(flf) (7_9:;,0(1) (7_9:;0(00)> xkl‘kz (1 - x)kz.kg xl;é(kl+k2+k3)

(732,074, (@) 75, ©) 7 (09))
w { e(=050=3)H?(0) ,i(05,+3 ) H® () (i(05.+3)H (1) i~ 0SC—§)H3<oo>>

2
H < (=02,+3)H'(0),i(05,— 3 )H' (2) ,i(05.—3)H (1) ei(—9£c+%)HI(oo)>

:E(—inb 3) (65, +3 )(1—3;)(9313"‘ ) (05.+2 ) ( O0p.—3)((—02, —3)+(02,+1)+(65.+3))
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Amplitude (Back)

* Computing: A = <@E(O) Y(x) x(1) X(oo)>

which takes the form:
A = T (Aba Aab Abc Acb) Q;d woz XIB 5(5
1
/ dw<e—cﬁ/2(0)6—90/2(26)6—90/2(1)6—@/2(00)>
0

~1 -1 <Sé‘(0) S, (x) Sﬁ(l)SB(OO) ><6z‘k1X(0) k2 X (@) Liks X (1) ez’k4X(oo)>

3

2(1—2)] 7% 25"

€a EdB (1—23) L oo
X <0'—|__92b(0) U:ggb(fv) 0':9120(1) O'fgigc(oo)> xkl‘kQ (1 - x)kQ.kS leléé(kl+k2+k3)
2
< T1 o, 0 o1 017, )
=]
/ ><< i(—05,—3 ) H*(0) ,i(05,+5 ) H® (2) ,i(65.+3)H* (1) i~ eé”c—a)H3<oo>>

2
H< (=02,+3)H'(0),i(05,— 3 )H' (2) ,i(05.—3)H (1) ei(—9£c+%)HI(oo)>

x(—9§b 1) (02,+3 )(1 )(93b+ ) (05,.+1 ) ( 0. —3)((—=02,—3)+(02,+1)+(65.+3))
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Amplitude

* Combining all together we get:

- Zg;@T Aba Aab Abc cb) ’Qb w 27T 5(4 <Z ki )

1 p—1+k1-k2 (1 . $) 3+k2ks —Scl(elb 1-6,.) e—Scz(Qib,l—Hﬁc) e_SCZ(]‘—'_QZb’_Qgc)
X dx
0 |

I(Hcltlﬁ _6%07 ) (9627,1)7 _9507 ) (1—|_(9ab7 ch,f)]

N[ =

where
1 (I'@)I'(1 — v
I1(0,v,x) = 27_‘_{F((1)+(9_V))2F1[1—9,V,1;£C]2F1[9,1—V,l—l—@—V;l—CL’]
I'(v)I'(1—46
- F((1)+(V—(9)) 2F1[(9,1—V,1;ZE]2F1[1—(9,V,1—9—|—V;1—£E]}

: 2 R2 R2
Sl ’: sin(mw@) Ly, 5 t(l,v,x) Hy, I, .
R Z .4 { 7T75(«9, v,x) o Tk sin(nf) o'L7, 4

ﬁ’i)qi

* Finally, we need to normalize the amplitude.
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Amplitude at the s-channel (x — 0

* At the limit 2z — 0 the amplitude factorizes on the exchange of a gauge boson:

4 X
:( - >WW<
T 7 7

* that allows to normalize the amplitude ( p; = ¢; =0 )

l\?h—A
l\')lr—l

l\')I»—A

dtkdik Y, A9 (k1 ko, k) AP (k3 ka, K )0W (k — k)
(2m)4 k? — ie

A (klak27k37k4) /

with - dDe,

ol3/2 g
AZ(kl, kQ, kg) =} \/(27T)4Hi1 QiLb 45(4) (Z k; ) O"uw Tr Aba AabAbb)

* Comparing the two results we normalize the amplitude to: C = 2.
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Amplitude at the s-channel (x — 0

* At the limit © — 0 there are other (higher order) poles corresponding to other massive

W 4
W X
* Other poles that arise from p; # 0 # ¢;, they correspond to KK and winding states
exchanges.

exchanges:

N[
=~
N~

Vy

%
Vs

* Additional poles from higher order poles of the “quantum part” corresponding to
Regge excitations.

* Similar pole structure than the behavior of amplitudes containing at most two chiral
fermions. Thus “universal behavior” dressed with poles arising from KK and winding
states.
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Amplitude at the t-channel (z — 1)

* In the limit © — 1 the amplitude factorizes on the exchange of scalar particles

4 4

Ry 1
- |

V)Z_E = //\ a

Vx

N[

4 X
* In this limit the amplitude takes the form () T(5)T(y)
(SUSY preserved, ignore WS-instantons): etc.../ Loty = FE—a) T = BT =)
1
A = % dz (1 — )~ Theks P2 I I
= Y-YU-yx ke r(l—x) 1-01 1-01 0% +61 T 1-02 1-62 92 102 ' _93 93 2403 43

—

|

X

F 1l 1 i
chtb’gbc’Q_eab_gbc

¥ 2 2 a3 2

1-62..,1-82 .6° 487 _ 9%, _p2

(1 | ab be?Vab %% (1 le)2(1 8. ch))
eib’egc72_0§b_egc

I 93 93 2493 3 s
— ") ) +0a +0 c = 3 = 3 ==
X MJF ab’ __he M (1_5,;)2( o= 1))]
Fives, 140,02, 03,

I'i_a 3 gl .gd
1-01, 1-61 01 +6) L T
(1\ ab be?%ab % (1 x)2(1 e, Hbc))

N

massless scalar exchange
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Subdominant poles

* Assuming that 1 — 0}, — 0. = —0. is small, the amplitude becomes:

1
7 ?E'Xlﬁ'X/ do (1 — )~ LHhaks v2 (1+cl(1—az)2(1 02 —0%) 4 )
1=¢

* Thus we have the exchange of:
- amassless scalar ®: H V_1/2-01 |07% 3)Ns
- a massive scalar <I> (v H¢ 1/2—01 | 07% 3)Ns with M? = —20} M?Z.
+ Note that there is no coupling to the lightest massive field with mass //* = —0' M~

+ This is can be traced back to the fact that the two bosonic twist fields o, and o3 do not
couple to the excited twist field 7., s, but only to an even excited twist field.

oa(w)op(2) ~ Co(z — w)_aﬁaan% + Cp(z - w)_a5+2_2a_2510a+5
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Further poles

* The exchange particle is a scalar field, thus the signatures induced by the
tower (ag: )" | [¥_1/2-4: |0) resembles signatures of KK states in extra-dimensional

. I
theories.

*  Above just the first sub-dominant poles, but there are many more poles.

* In case the fermions are too much separated in the internal manifold WS-instantons
cannot be ignored; poles arising from them correspond to exchanges of KK and
winding excitations.

* There are also integer poles, that correspond to exchange of Higher Spin states.

* QOther poles that correspond to exchanges of massive scalar fields whose mass is non-
vanishing even for vanishing intersection angles.

* Rich spectrum of signatures, but the first once to be observed correspond to lightest
string states.
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Conclusions

+ ]\E/)Ve have studied the spectrum of open strings localized at the intersections of D6-
ranes.

* The masses of such states scale as M/~ ~ §)? and can thus be parametrically smaller
than the string scale if the relevant angle is small.

* We have considered scattering amplitudes that expose such light stringy states.
Along the computation
Give a description to formulate the vertex operators for states localized at intersections.
Rederived the four bosonic twist field correlator with one and two independent angles.
* Investigated s- and t-channel and found poles corresponding to light stringy states.
*  Assuming a scenario with a low string scale, these states may be observable at LHC.

. I—tIotwever further poles corresponding to KK and winding states, as well as Higher Spin
states

~~  Rich spectrum of signatures
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