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Motivation

✤ D-brane compactifications provide a promising framework for model building

✤ They allow for large extra dimensions which imply a significantly lower string scale, 
even of just a few TeV.

✤ Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy 
signatures that can be observed at LHC.

✤ There exists a class of amplitudes containing arbitrary number of gauge bosons and 
maximal two chiral fermions that exhibit a universal behaviour independently of the 
specifics of the compactification

✤ Due to their universal behaviour  they have predictive power.

✤ The observed poles correspond to the exchanges of Regge excitations of the standard 
model gauge bosons, whose masses scale with the string mass      .

✤ Such poles might be observable at LHC if one has low string scale
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Motivation

✤ On the other hand there exist a tower of stringy excitations localized at the intersections 
of two stacks of D-branes. 

✤ Their masses depend on the string mass        and the intersection angle ! and thus can 
be significantly lighter than the Regge excitations of the gauge bosons.

✤ As we will see those light stringy states show up as poles in the scattering amplitudes 
containing four fermions.

✤ Such amplitudes are very model dependent, thus do not have the predictive power of 
the universal amplitudes.

✤ However the poles corresponding to light stringy states should be observed primary to 
Regge excitations for the universal amplitudes and thus may provide a first step 
towards evidence for string theory.
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For the sake of calculability we assume two intersectng D6-branes on                         , where 
the D6-branes wrap in each torus a one-cycle

✤ Supersymmetry translates into:    

✤ We will take a closer look at the (massless and massive) states appearing at such an 
intersection.

Intersecting D6-branes
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Quantization at angles
✤ Boundary conditions for strings between branes at angles:

✤ Mode expansion (                                ):

for " = 0, 1/2 for R and NS respectively. 

✤ The commutator/anticommutators:
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The vacuum
✤ Intersecting branes in 10D:

✤ NS sector (4D bosons):

- Positive angle 

- Negative angle 

✤ Recall:      GSO-projection requires odd number of fermionic excitations.
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Lightest string states
✤ Recall the mass formula:

✤ Concrete setup:                                                   with                                        (SUSY).

✤ The lowest fermionic excitations of this configuration:
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Lightest string states

✤ Some additional light states (for small     ):

✤ These scalars are potentially very light, depending on the intersection angles.

✤ If the string scale is low, and the angles are small, such states have very low masses.

✤ Additional states, such as Higher Spin states, but even               massive. 
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The vacuum
✤ Intersecting branes in 10D:

✤ R sector (4D fermions):

- Positive angle 

- Negative angle 
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✤ Recall the mass formula:

✤ Concrete setup:                                                   with 

✤ Massless state:   the vaccum:                       

✤ Light states: (     is small):

✤ These states are the corresponding superpartners to the NS-scalars.

✤ Question: Can they be observed?

Lightest string states
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The Amplitude
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✤ Consider three stacks of D-branes within a semi-realistic brane configuration:

✤ For the sake of concreteness we choose the setup

✤ At the intersections live chiral fermions:    ,    ,    ,   .
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✤ We want to compute the scattering amplitudes of four chiral fermions:

✤ The corresponding diagram contains different channels:

✤ Two difficulties:  1. Vertex operators  

                                   2.  Bosonic Twist field correlator
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✤ To each state there is a corresponding vertex operator, whose form crucially depends on 
the intersection angle

✤ challenging part is the internal part             bosonic and fermionic twist fields

✤ Method: We determine the OPE’s  of                   and     with vacuum and excitations of it

✤ Example: 

✤ analogous  for fermionic degrees of  freedom and higher excitations

✤ OPE’s give us detailed knowledge of the conformal twist fields.                   
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✤ For the NS-sector apply the following dictionary 

                  positive angle                                                           negative angle 

✤ For the R-sector apply the following dictionary

                    positive angle                                                        negative angle 
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An example
✤ Consider                                                   with                                    .        

✤ A massless state in the NS-sector and the corresponding VO:

              Conformal  dimension                                  World-sheet charge

✤ A massless state in the R-sector and the corresponding VO:

            Conformal  dimension                                  World-sheet charge
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✤ For this configuration, the amplitude is  

with the corresponding vertex operators:

Amplitude
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✤ Computing:

which takes the form:

Amplitude
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✤ Computing:

which takes the form:

Amplitude
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The correlator: h�+
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Recipe A
✤ Extend via the “doubling trick” the upper half plane to the whole complex plane.

✤ Quantum part is then computed by employing conformal field theory techniques 
(energy momentum tensor method)              analogous to the closed string derivation:

✤ The classical part is given by the sum over all quadrangles connecting the four chiral 
fields                   .

✤ The final result is then given in the so-called Lagrangian Form.
Cvetic, Papadimitriou, Abel, Owen  
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Recipe A
✤ One independent angle:       

✤ Two independent angles:       
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Recipe B
✤ A generic closed twisted-field correlator takes the form: 

where           is holomorphic,                  and 

✤ The open twisted-field correlator will look like (Hamiltonian Form):
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✤ The closed string result has the form:

where                                         and                                                                    .

✤ The open string result has the form:

where                                            and                                                                                  .

after Poisson resummation the same result as via recipe A.
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✤ Following the same recipe, we get (original closed                                              string 
result is far too complicated to display here):

with the                                           and

✤ Again after Poisson resummation the same result as obtained via recipe A.

Correlator: Two angles
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✤ Computing:

which takes the form:
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✤ Computing:

which takes the form:

Amplitude (Back)
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Amplitude
✤ Combining all together we get:

where

✤ Finally, we need to normalize the amplitude.
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✤ At the limit             the amplitude factorizes on the exchange of a gauge boson:

✤ that allows to normalize the amplitude (                      )

with 

✤ Comparing the two results we normalize the amplitude to:              .
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✤ At the limit             there are other (higher order) poles corresponding to other massive 
exchanges:

✤ Other poles that arise from                     , they correspond to KK and winding states 
exchanges.

✤ Additional poles from higher order poles of the “quantum part” corresponding to 
Regge excitations.    

✤ Similar pole structure than the behavior of amplitudes containing at most two chiral 
fermions. Thus “universal behavior” dressed with poles arising from KK and winding 
states.
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Amplitude at the t-channel (          )x! 1
✤ In the limit             the amplitude factorizes on the exchange of scalar particles

✤ In this limit the amplitude takes the form                                                                              
(SUSY preserved, ignore WS-instantons):
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✤ Assuming that                                      is small, the amplitude becomes:

✤ Thus we have the exchange of:

- a massless scalar    :                   

- a massive scalar    :                                                       with                               .

✤ Note that there is no coupling to the lightest massive field with mass                          .                        

✤ This is can be traced back to the fact that the two bosonic twist fields       and       do not 
couple to the excited twist field          , but only to an even excited twist field.
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Further poles
✤ The exchange particle is a scalar field, thus the signatures induced by the                                

tower                                              resembles signatures of KK states in extra-dimensional 
theories.

✤ Above just the first sub-dominant poles, but there are many more poles.

✤ In case the fermions are too much separated in the internal manifold WS-instantons 
cannot be ignored; poles arising from them correspond to exchanges of KK and 
winding excitations.

✤ There are also integer poles, that correspond to exchange of Higher Spin states.

✤ Other poles that correspond to exchanges of massive scalar fields whose mass is non-
vanishing even for vanishing intersection angles.

✤ Rich spectrum of signatures, but the first once to be observed correspond to lightest 
string states.

Monday, February 20, 12



Conclusions
✤ We have studied the spectrum of open strings localized at the intersections of D6-

branes.

✤ The masses of such states scale as                      and can thus be parametrically smaller 
than the string scale if the relevant angle is small. 

✤ We have considered scattering amplitudes that expose such light stringy states.

                                                         Along the computation     

     Give a description to formulate the vertex operators for states localized at intersections.

     Rederived the four bosonic twist field correlator with one and two independent angles.

✤ Investigated s- and t-channel and found poles corresponding to light stringy states. 

✤ Assuming a scenario with a low string scale, these states may be observable at LHC.

✤ However further poles corresponding to KK and winding states, as well as Higher Spin 
states 

                                                                                  Rich spectrum of signatures
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